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Abstract. The e�ect of equilibrium plasma rotation (toroidal and poloidal) on low frequency, elec-
trostatic modes � the geodesic acoustic modes (GAM) and the zonal �ows (ZF) � in a large aspect ratio
tokamaks is studied in the framework of ideal MHD. It is shown that the plasma rotation results in a
frequency up-shift of the ordinary GAM. The new branch of continuum modes induced by the poloidal
rotation is found. In the case of slow poloidal rotation its frequency is close to the acoustic frequency
cs/qR0 (cs is the speed of sound, q is the safety factor, and R0 is the major radius of tokamak). The
mode disappears in the case of purely toroidal plasma rotation. In the case of larger poloidal angular
velocities ΩP (ΩP ≥ 2cs/qR0) the mode becomes unstable and is identi�ed as the unstable ZF.

1. Introduction

Geodesic acoustic modes (GAMs) have been actively studied in recent years. The modes
are localized on the �ux surfaces and characterized by poloidally symmetric radial electric
�eld and poloidally oscillating perturbations of plasma pressure and mass density induced
by plasma compressibility due to geodesic curvature of the magnetic lines of forces, inher-
ently present in toroidal con�gurations. These modes were predicted a long time ago by
Winsor et al. [1] and had been observed in a variety of tokamaks [2]�[5]. Most of theoret-
ical studies of GAMs have been ful�lled for static plasma equilibria. However, tokamak
equilibria with essential mass �ows may exist. In particular, toroidal plasma velocities
comparable to the sound velocity may be reached in discharges with an unbalanced neutral
beam injection.The e�ects of toroidal rotation on GAMs have been investigated recently
[6]�[8]. For the case of plasma equilibrium with isothermal magnetic surfaces in addition
to an ordinary GAM modi�ed by rotation e�ect a new, lower frequency branch induced
by toroidal plasma �ow has been found. The new mode appears as a consequence of the
non-uniform equilibrium plasma density and pressure created by the centrifugal force on
the magnetic surfaces of tokamak. The frequency of this mode goes to zero in the limit
of zero toroidal rotation.

All possible plasma equilibria with a mass �ow are not reduced to the equilibria with
toroidal rotation only. The tokamak plasmas can also rotate in poloidal direction. Such
rotation can be caused by both neoclassical and turbulent e�ects [9, 10]. In general, toka-
mak equilibria have both toroidal and poloidal rotation. In this paper we generalize the
analytical theory of GAMs for the case of plasma equilibrium with both toroidal and
poloidal �ows. This problem is analyzed by using the standard ideal MHD equations
with adiabatic equation of state.
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2. Equilibrium

The equilibrium in axisymmetric tokamak with both toroidal and poloidal plasma �ows
is considered, so that the tokamak magnetic �eld and the plasma velocity are described
by (see, e.g., [11])

B0 = F∇ϕ +∇ψ ×∇ϕ, v0 =
κ(ψ)

ρ0

B0 + R2Ω(ψ)∇ϕ. (1)

Here ψ is the poloidal �ux; ϕ and θ are the toroidal angle and the poloidal angle, re-
spectively. The straight �eld line coordinates are used, so that the safety factor q is the
�ux function, q = q(ψ). Equilibrium plasma entropy is the function of poloidal �ux,
p0/ρ

Γ
0 = S(ψ) (p0 and ρ0 are equilibrium pressure and density, Γ is the ratio of speci�c

heats). The poloidal and toroidal angular velocities of plasma are given by

ΩP ≡ v0 · ∇θ =
κF

ρ0qR2
, ΩT ≡ v0 · ∇ϕ = Ω(ψ) + qΩP . (2)

We restrict ourselves to the case of large aspect ratio tokamaks R0/a ≡ 1/ε À 1 (R0 and
a are the major and minor radii of the torus) and of low beta plasma β ≡ 8πp0/B

2
0 ∼ ε2.

Furthermore, we assume that both the poloidal angular velocity and the toroidal angular
velocity are su�ciently small, so that (ΩP , ΩT ) ≤ cs/R0. Here cs is the speed of sound,
c2
s = Γp0/ρ0. Under such assumptions the e�ect of plasma rotation does not exceed the
plasma pressure e�ects. The magnetic surfaces of tokamak are considered to be circular
and concentric. To the main order in small parameter ε the Shafranov shift can be
neglected, so that R = R0 + r cos θ where r = r(ψ) is the label of magnetic surface
meaning its radius. One can also expect that, like in the case of plasma equilibrium
without rotation, to the main order in ε the functions f = (p0, ρ0, ΩP , ΩT ) are uniform on
the magnetic surfaces. They can be represented in the form f = f̄(ψ)+ f̃(ψ, θ), f̃ ∼ εf̄ .
The additional applicability condition of this assumption will be given below. Under the
above conditions up to the terms of order ε2 the poloidal current stream function F is a
function of poloidal �ux ψ. The poloidal angle dependent part of plasma pressure p0 is
related to the corresponding part of the mass density by

p̃0 = c̄2
sρ̃0, c̄2

s ≡
Γp̄0

ρ̄0

. (3)

Then the force balance along the magnetic �eld results in the following expression of mass
density oscillations on the magnetic surfaces caused by the centrifugal e�ect

λρ =
M2

P −MP MT + M2
T /2

1−M2
P

. (4)

Here MT ≡ Ω̄T /ω̄s and MP ≡ qΩ̄P /ω̄s are the toroidal and poloidal Mach number,
respectively, and the dimensionless parameter λρ is introduced according to

1

ρ̄0

B0 · ∇ρ̃0 ≡ λρ

R2
0

B0 · ∇R2. (5)

It follows from Eqs.(4) and (5), that the assumption f̃ ∼ εf̄ is valid if
∣∣∣1−M2

P

∣∣∣ ≥
∣∣∣∣∣
M2

T

2
−MP MT + M2

P

∣∣∣∣∣ . (6)
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FIG. 1. λρ as a function of MP and MT .

The coe�cient λρ from Eq.(4) as the function of two variables � the toroidal and poloidal
Mach numbers � is represented in Fig. 1. The domains in (MP , MT )-plane, where condi-
tion (6) is satis�ed, are shaded and marked by numbers from 1 to 3.

3. Dispersion relation of GAMs and zonal �ows in rotating plasma

We consider the electrostatic perturbations of the above equilibrium and neglect the
perturbation of the magnetic �eld. We assume that the perturbations are axisymmetric,
and take their spatio-temporal dependence in the form f ′ = f ′(ψ, θ) exp(−iωt), where
f ′(ψ, θ) is periodic function of θ: f ′(ψ, θ + 2π) = f ′(ψ, θ). It follows from the induction
equation in electrostatic approximation that

v′ ×B0 = c∇φ′, (7)

where φ′ and v′ are the perturbed electrostatic potential and velocity. Then it is evident
from Eq.(7) that φ ′ = φ ′(ψ). To the main order in ε the responses of mass density ρ′,
of pressure p′ and of parallel velocity perturbation v′‖ to φ′ due to the geodesic curvature
and non-uniformity of equilibrium mass density and pressure on the magnetic surfaces are
oscillating functions of the poloidal angle θ. After straightforward calculations we �nally
arrive at the following eigenmode equation

d

dψ

[
ρ̄0r

2

qF

Λ

D1D−1

dφ ′

dψ

]
= 0, (8)

where

Λ = ω̂4 − 2aω̄2
s ω̂

2 − bω̄4
s , ω̂2 ≡ ω2 + Ω2

P − ω̄2
s/q

2,



4 THS/P8-01

D±1 = (ω ∓ Ω̄P )2 − ω̄2
s/q

2,

a = 1 + λρ +
M2

T

2
(3 + λρ)−MP MT (1 + λρ) +

2M2
P

q2
,

b =
4MP

q2

{
MP

(
1

q2
− 2(1 + λρ)

)
+ MT (2 + λρ)− M3

P

q2

−MP M2
T (2 + λρ) +

M3
T

2
+ M2

P MT (1 + λρ)

}
. (9)

The continuum spectrum is de�ned by the equation Λ/D1D−1 = 0. Let us notice that Λ
and D±1 are invariant with respect to the transformation MP → −MP ,MT → −MT .

In the case of purely toroidal plasma rotation, MP = 0, we have D±1 = ω̂2, and the
continuum is de�ned by quadratic equation which gives

ω2 = ω2
s

(
2 +

1

q2
+ 4M2

T +
M4

T

2

)
. (10)

This mode is an ordinary GAM with the frequency up-shift due to the toroidal rotation.
Unlike [6] �[8], in which the plasma temperature has been assumed uniform on the mag-
netic surfaces, no new branch of low-frequency GAMs due to toroidal rotation arises in
the case of equilibrium with isentropic magnetic surfaces.

When the poloidal plasma rotation takes place (Ω̄P 6= 0), we have the dispersion re-
lation of the 4th order, Λ = 0. In the case when both toroidal and poloidal rotations are
slow compared to ω̄s, so that (MP ,MT ) ¿ 1, with an accuracy up to quadratic terms
with respect to these small parameters, we obtain two continuum spectra

ω2
1 = ω̄2

s

[
2 +

1

q2
+ 4M2

T − 4MP MT

(
1− 1

q2

)

+M2
P

(
2− 1

q2
+

2

q4

)]
, (11)

ω2
2 =

ω̄2
s

q2

[
1− 4MP MT + M2

P

(
3− 2

q2

)]
. (12)

The �rst mode is the ordinary GAM modi�ed by plasma rotation. Another mode has a
lower frequency which is close to the frequency of acoustic mode ω̄s/q. The new GAM is
intrinsically related to poloidal plasma rotation (despite its weak dependence on poloidal
angular velocity!). Namely, it appears as a consequence of the Doppler-shifted response
of the side-bands of plasma density, pressure and parallel velocity perturbations to the
electrostatic potential perturbation, driven by the curvature of magnetic �eld lines and
by the e�ect of non-uniformity of equilibrium plasma density and pressure on magnetic
�ux surfaces created by the centrifugal forces. The Doppler shift of frequency is caused
by poloidal rotation and has opposite signs for the m = 1 and m = −1 side-bands. This
mode disappears in the case of purely toroidal rotation, Ω̄P = 0, due to the above men-
tioned cancellation of the multiplier ω̂2 in the dispersion relation.

In the general case we have numerically studied the solutions of the dispersion relation
under conditions typical of the tokamak edge, choosing q = 3. We have separately con-
sidered the domains shown in Fig. 1. The frequencies in the �gures are normalized to ω̄s.



5 THS/P8-01

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1.5

−1

−0.5

0

0.5

1

1.5

0

5

10

15

20

25

30

35

MP
M T

ω
12

, 
ω

22

ω
1

2

ω
2

2

FIG. 2. The squares of mode frequencies ω1 and ω2 as the functions of the poloidal and toroidal
Mach numbers MP and MT in domain 1.
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FIG. 3. The squares of mode frequencies ω1 and ω2 as the functions of the poloidal and toroidal
Mach numbers MP and MT in domain 2.
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Figure 2 shows the squares of mode frequencies ω2
1 and ω2

2 as 2-D functions of MP and MT

in domain 1, corresponding to su�ciently slow poloidal rotation, |MP | ≤ 0.6. Both ω2
1 and

ω2
2 are positive, which means that two branches of stable continuum modes exist. In the

absence of poloidal rotation one of these modes (ω1) transforms into an ordinary GAM.
Another one (ω2) is the the new found GAM, which is intrinsically related to poloidal
plasma rotation. It always has lower frequency than the �rst mode. In the case of slow
poloidal rotation, (MP ,MT ) ¿ 1, its frequency is de�ned by Eq.(12).

In Fig. 3 we have presented ω2
1 and ω2

2 as 2-D functions of MP and MT in domain 2,
where the poloidal Mach number MP is su�ciently large, positive number. The poloidal
angular velocity in this domain exceeds the ion sound frequency, Ω̄P > c̄s/qR0. The
situation is qualitatively di�erent from domain 1. The mode described by ω1 remains
stable (ω2

1 > 0), but in some subdomain ω2
2 becomes negative. It means that the mode

is aperiodically unstable. In this case the mode can be identi�ed as an unstable zonal
�ow. According to the �gure, the most unstable are the �ows with negative MT , such
that MP ·MT < 0.

In Fig. 4 the dependence of ω2
2 on the poloidal Mach number MP is given for di�er-

ent values of MT . When the toroidal plasma rotation is su�ciently fast (MT ' 1) the
mode described by ω2 is stable and can be identi�ed as the GAM induced by the poloidal
plasma rotation. The instability of this mode appears when the toroidal rotation is rela-
tively slow, so that MT ≤ 0.78. The function ω2

2 grows with MP . If it is negative for some
MT in the interval 2.0 < MP < M0, it passes through zero at some point MP = M0(MT ),
which depends on MT . At this point the mode transforms into the stable zonal �ow. With
further increase of MP the mode transforms into a stable, oscillating mode, which can be
identi�ed as the GAM induced by the poloidal plasma rotation. Its frequency is smaller
than the frequency of the ordinary GAM. As far as dispersion relation is invariant with
respect to transformation MP → −MP ,MT → −MT , in domain 3 we will have the mode
picture similar to Fig. 3.

4. Conclusion

In this paper, a theory of low frequency, electrostatic ideal modes � GAMs and zonal
�ows � in tokamaks has been developed to include the e�ects of both the toroidal and
poloidal equilibrium plasma �ows. The analysis is based on ideal MHD equations with the
adiabatic equation of state. It has been assumed that the aspect ratio of tokamak is large
(R0/a À 1), that the plasma pressure is low (β ∼ ε2), that the poloidal plasma rotation
is relatively slow (ΩP ≤ cs/R0), and that the magnetic surfaces of tokamak are circular.
The electrostatic, axisymmetric perturbations of the rotating plasma have been consid-
ered. The perturbations are characterized by the electrostatic potential, which is uniform
on the magnetic surfaces (the principal harmonic), and the mass density, pressure and
parallel velocity, which are oscillating functions of the poloidal angle to the main order in
ε (the side-bands). The responses of plasma mass density, pressure and parallel velocity to
the electrostatic potential perturbation are driven by two e�ects: by the curvature of the
magnetic �eld lines (which is responsible for the ordinary GAMs) and by non-uniformity
of equilibrium plasma mass density and pressure on the magnetic surfaces, created by the
centrifugal forces.
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In the limiting case of purely toroidal rotation (ΩP = 0) only the ordinary GAM with
the frequency shifted up by the toroidal rotation exists in the case of plasma equilibrium
with the isentropic magnetic surfaces. Due to the poloidal rotation the frequencies of the
responses of side-bands to the electrostatic potential perturbation are shifted (the Doppler
e�ect). The Doppler shift has the opposite signs for the m = ±1 side-bands. This di�er-
ence in the Doppler shift of side-band frequencies results in a new type of GAMs-zonal
�ows (in addition to the rotation modi�ed ordinary GAM). In the case of slow plasma
rotation (MP ,MT ) ¿ 1 its frequency is close to the acoustic mode frequency cs/qR0. The
new GAM is intrinsically related to poloidal plasma rotation and disappears in the case
of purely toroidal plasma rotation.

Numerical analysis of the continuum spectra has been performed for q = 3 and �nite
poloidal and toroidal Mach numbers. It has shown that in the case of relatively slow
poloidal rotation such that Ω̄P ≤ c̄s/qR0 both branches of the continuum spectrum are
stable. The branch, which is an ordinary GAM modi�ed by plasma rotation, has higher
frequency compared to the new found mode induced by poloidal rotation. When the
angular velocity of poloidal rotation is larger, |MP | ≥ 2, the situation becomes qualita-
tively di�erent. While the branch, corresponding to the standard GAM, remains stable
and its frequency is mainly a growing function of |MP | for MT = const, a new branch of
the continuum modes becomes unstable in some range of the poloidal and toroidal Mach
numbers. The instability is aperiodic, so that the modes are non-oscillating, and in a
natural way are identi�ed as unstable zonal �ows. The most unstable (with larger growth
rates) are the �ows with MP · MT < 0. For MT = const the instability is suppressed
with the increase of the poloidal Mach number |MP |, and passing through some point
MP = M0, the mode transforms into the oscillating mode � the marginally stable GAM.

This work was ful�lled (partly) in the framework of realization of the Federal program
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