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Abstract. The nonlinear destabilization of the Double Tearing Mode (DTM) and its subsequent collapse have 

attracted much attention as a crucial problem which terminates high performance reversed magnetic shear 

plasmas. However, the underlying physical mechanisms, especially the trigger mechanisms, have not been fully 

understood. Here, we find possible responsible processes which are characterized by two distinct but coupled 

secondary instabilities. First, a secondary instability has been found to grow due to the magnetic topology 

deformation induced during the nonlinear evolution of the magnetic islands. This secondary instability can be 

associated to the growth of potential flows with fast time scale. Investigating cases near marginal stability, we 

also find that the secondary instability resembles a modulational instability, as its growth rate is directly related to 

the amplitude of the original two dimensional deformation of the magnetic islands. Also, we find that a strong 

zonal field (m=0 component of the flux) arises, leading to total reconnection of the magnetic field. Such strong 

zonal component can modify the original equilibrium profile and lead to new current instabilities as its alteration, 

i.e., corrugations, can affect tearing mode stability. As the zonal field is generated by the coupling between 

destabilized flows and slowly evolving magnetic flux, the two possible mechanisms for the nonlinear 

destabilization of the double tearing mode are subsequently coupled, leading to strong kinetic flow growth and to 

full reconnection/collapse.  

 

1. Introduction 

 

 High performance plasma with internal transport barriers (ITBs) have been observed in 

reversed magnetic shear configuration in tokamaks. However this configuration, associated to 

hollow current density profiles, sometimes leads to plasma discharge termination due to the 

sudden appearance of macro-scale MHD activities [1]. The double tearing mode (DTM), 

consisting in two unstable current sheets, has been considered as a plausible candidate to 

explain such phenomena, and has been observed to cause enhanced dynamics leading to 

disruptions or collapse [2]. First analyzed for two typical regimes, the 53 /~  regime 

(tearing-like DTM for large separation of rational surfaces) [3] and 31/~  regime (kink-

like DTM for small separation) [4], this particular MHD mode has since then been studied 

systematically for different rational surface separation lengths. Ishii et al. [5,6] and Wang et al. 

[7,8] found that for intermediate distances between tearing layers, the DTM evolution exhibits 

a nonlinear destabilization, i.e., a nonlinear regime where kinetic and magnetic energies 

suddenly grow. Ishii et al. found this resulting explosive growth by performing simulations in 

cylindrical geometry for the mode m/n=3/1. However, similar behaviours have been found in 

slab geometry [7-10], proving the phenomenon universality. They explained the nonlinear 

DTM sudden growth as a structure-driven nonlinear instability generation due to the magnetic 

configuration deformation associated to magnetic islands growth. The importance of the 

Maxwell stress term in the MHD equations was emphasized in evaluating the current role 

compared to that of the flow. However, Wang et al. found that generation of intrinsic flows 

could be the origin of driven reconnection leading to faster time scale at the end of the 

nonlinear regime. 

 Here, by studying the DTM in slab geometry, we propose a new and deeper analysis of 

the problem by separately looking at the flow and flux roles. Conducting a secondary 

instability analysis, we have been able to identify the explosive growth as two different but 



2                        THS/P5-09 

nonetheless correlated secondary instability processes with respect to the flow and flux on 

different time scales. First, two dimensional deformation of magnetic structures due to the 

growth of magnetic islands can destabilize modulational-type instabilities. Secondly, the 

strong zonal field that is generated via coupling of nonlinear flow and flux can play an 

important role in triggering new current instabilities through corrugations of the equilibrium. 

 

2. Nonlinear simulation of DTM 
 

2.1. Reduced MHD equations and configuration 
 

 We study the DTM nonlinear evolution based on the two-field reduced MHD 

equations for the potential   and the flux   in slab geometry, assuming incompressibility 

of the flow and a strong guide field in the z-direction: 

 

        2 ,t ,        (1) 

 

         222  ,,t  .  (2) 

 

The flux   and the potential   are related to the magnetic field B


 and the velocity field 

v


 via  zeB


 and  zev


, where ze


 is the unit vector in the parallel field 

direction. Time and length respectively have the unit of Alfvén time A  and of a specific 

length of the system a . 

The configuration of the equilibrium magnetic field oyB  is chosen as 

)x(cosh)B()x(B coy 111   [3]. The constants cB  and   are chosen so as to obtain 

2/)x(J)x('B soysoy   where sx  defines the positions of the rational surfaces. No 

initial flow is assumed ( 00  ). The equations are solved using a finite difference method in 

the x-direction. The box of length  55 :  is divided by 2048  mesh numbers with equal 

spacing ( 004890.x  ). Conducting walls are chosen as boundary conditions in the x-

direction. In the y-direction, perturbations are Fourier decomposed assuming periodical 

boundaries. The number of Fourier harmonics that is necessary to obtain full convergence 

depends on other parameters of the simulation such as the box size in the y-direction or the 

resistivity, but generally around 10 harmonics are enough to reproduce the dynamics of the 

DTM. In the present study, the distance between the rational surfaces is fixed as 6012 .xs  , 

and the typical resistivity is 410 . 

 

2.2. Typical dynamics of the nonlinear destabilization of the DTM 

 

 In this subsection, we present a typical case for the nonlinear destabilization of the 

DTM. The box size in the y-direction is chosen as 2122 .Ly    with five Fourier 

harmonics for the spatial decomposition. The time evolution of the energies are given in 

Fig.1(a): the magnetic energy 22

M /||E   for m=0 (black solid line) and m=1 (red dashed 

line), and the kinetic energy 22

K /||E  for m=1 (green solid line). Extending the definition 

of the linear growth rate to the nonlinear regime ( )E(ln(d)),E(ln(d tt KKMM   ), the 

instantaneous growth rates of the energies mentioned above are plotted in Fig.1(b). 

 The DTM starts with a linear evolution during which nonlinear couplings are weak. 

Note that m=1 is the only linearly unstable mode that drives the other Fourier harmonics 

growth (such as the zonal field m=0) in the nonlinear regime. The linear stage ends around 

At 500  and is followed by a slow down similar to the Rutherford stage [11] in the classical 
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Fig.1.a) Evolution of magnetic and kinetic energies b) Equivalent instantaneous growth rates 

c) Corresponding evolution of magnetic field topology 

tearing instability. In this latter phase, the flux continues to increase in time while the flow 

evolves much slowly, suggesting a decoupling between magnetic flux and potential flow. 

However, contrary to a typical single tearing mode, the energies do not saturate but instead 

grow again up to roughly A~t 1300  when they enter an abrupt growth regime. The 

corresponding evolution of the magnetic field topology (contour plot of   function) at 

selected times is given in Fig.1(c). In the slow-down regime, small and elongated magnetic 

islands start to appear and continue to grow. During the fast growth regime, the islands are 

well developed and lose their symmetry in regards to their relative current layer: their growth 

mutually deforms each other. The abrupt growth is terminated when the zonal field harmonic 

(m=0) reaches a higher energy amplitude than the dominant mode m=1. This corresponds to 

total reconnection of magnetic field line as shown in Fig.1.3 (bottom left image) where the 

two tearing layers have completely disappeared. 

 Now, looking in more details at the flow and the flux energy evolutions, they seem to 

follow different dynamics: first, around 
Aa

~t 1220 , 
2

1K 1  m)m(E   abruptly increases 

and is followed, around 
Ac

~t 1350 , by
2

1M 1  m)m(E  with a smaller growth rate. More 

interestingly, 
2

0M 0  m)m(E  also starts to increase with a delay from time at , i.e. 

around Ab ~t 1280 . In Fig.1.(b), where the instantaneous growth rates are plotted, the 

causality relation cba ttt   can also be seen. The DTM nonlinear destabilization leading to 

subsequent fast growth of energies may be understood as the triggering of new instabilities. 

To investigate such idea, we conduct a secondary instability analysis. 

 

3. Modulational-type secondary instability 

 

3.1. Numerical method for a secondary instability analysis 

 

 The secondary instability analysis consists in investigating a subsequent instability 

growth from a primary instability saturated quasi-steady state. This study is for example 
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relevant to the investigation of zonal flow generation mechanisms in a saturated turbulent 

background [12]. Here, the primary instability is the DTM and the quasi-steady states 

correspond to the magnetic configurations such as represented in Fig.1(c): structures at 

different times in the slow-down regime correspond to quasi-steady equilibria with more or 

less developed magnetic islands. The evolution of the instantaneous growth rates of the 

magnetic and kinetic energies justify this choice. As seen in Fig.1(b), they decrease from their 

linear value 0250.~lin  to a lowest one during the nonlinear slow-down, before increasing 

again. The growth rates remain around their smallest value from As ~t 900  to Af ~t 1250 , 

suggesting a quasi-steady state and making possible a secondary instability analysis. To study 

the stability of an equilibrium with two-dimensional islands, we employ the same magnetic 

island structures as those obtained during the DTM nonlinear evolution. We define several 

equilibria corresponding to magnetic islands with different sizes, such as in Fig.1(c). 

 Numerically, the secondary analysis implies linearly solving the RMHD equations with 

a two-dimensional new equilibrium (x and y directions with magnetic islands) [9,10] given by: 

 

        ~~),y,x()y,x(,
~~

EEt

2     (3) 

 

    
~

),y,x()y,x(,
~~

EEt

222      ~),y,x()y,x(,~
EE

22  . (4) 

 

The equations above are similar to the usual RMHD equations, although now new 

infinitesimal perturbations ~  and 
~

 are evolving under the new equilibrium E  and E . 

Note that due to this specific equilibrium, perturbations are linearly coupled with each other 

via the Poisson brackets. Therefore, all newly generated harmonics are evolving with the same 

linear growth rate, leading to a global mode. To make the study self-consistent, EE ,  and 

their radial derivatives ( ,...J,B EE ) are taken from the DTM nonlinear evolution of part 2 (Fig. 

1) at selected times. As we study several magnitudes of magnetic islands deformation, the 

magnetic island width refer to corresponding different equilibria (calculated during the nonlinear 

evolution of the DTM). 

 

3.2. Typical case for the secondary instability analysis 

 

 The time evolution of the magnetic island width, corresponding to the case studied in 

Part.2 ( 2122 .Ly   ), is plotted in Fig.2(a). Note that from A~t 500  to A~t 800 , a 

linear time dependency confirms the Rutherford-type evolution, such as for the single tearing 

mode. Also, even though the DTM corresponds to the growth of two magnetic islands on their 

respective rational layer, we will only refer to one magnetic island as their evolution is 

completely equivalent. When conducting the secondary instability analysis, we provide new 

equilibria with already developed magnetic taken from the DTM nonlinear evolution. The 

equations are solved as an initial value problem with infinitesimal perturbations ~  and 
~

. 

Every equilibrium corresponding to the nonlinear magnetic configuration is found to be 

unstable. However, the linear growth rate of the perturbations depends on the two-

dimensional structural shape. This growth rate has been plotted in function of the equilibrium 

island width in Fig.2(b) (y-axis in logarithm scale). Note that for an equilibrium with no 

magnetic islands ( 0w ), the growth rate is the same as the linear DTM as the current sheets 

remain unmodified. Then, two phases can be seen: first, the growth rate decreases when the 

magnetic islands grow, up to 60.~w . This suggests that small and thin magnetic islands 

such as in the slow-down DTM nonlinear regime have a stabilizing effect. However, from 

60.~w , the linear growth rate of the perturbations starts increasing, suggesting that large 

magnetic islands can play a destabilizing role. The width 60.~w  corresponds to the time 
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Fig.3: DTM nonlinear evolution for Ly=0.75 

 and Ly=0.8 

 

Fig.2.a) Time evolution of magnetic island width  b) Second instability growth rate in function of 

       the equilibrium island width 

A~t 1000  in the nonlinear calculation. Therefore, during the development of the DTM, a 

secondary instability starts growing around A~t 1000  but is still weak so that its evolution 

is masked due to other nonlinear processes that may work as dissipation. Comparison between 

the secondary instability growth rate and the instantaneous growth of potential flows shows 

similarities, suggesting that when the new instability becomes strong, its evolution can be seen 

in that of the flow (In Fig.1 around at~t ). Also, with rough estimations, the size of thin 

magnetic islands can be approximated by ~w . Although such relation may not stand for 

larger magnetic islands, we suggest that the growth rate of the second instability can depend on 

the flux amplitude, similarly to a modulation instability which generates a zonal flow 

component from a turbulent background. To further investigate such relation, we conduct new 

studies for cases of nonlinear DTM that are near marginal stability. 

 

3.3 Case near marginal stability 

 

When conducting a systematic study for the DTM, we found that linearly unstable modes with 

small linear growth rates yield subsequent dynamics with no nonlinear destabilization. The 

selection of such modes corresponds to the reduction of the box size in the y-direction: as the 

DTM linear growth rate depends on the 

wavenumber k  (itself related to the 

poloidal length of the box size via 

yx L/mLk 2 ), decreasing the length can 

excite small wavelengths, which are more 

stable to current destabilization. In the case 

of section 3.2 ( 2122 .Ly   ), the 

dynamics is therefore fast compared to 

smaller box size configurations as seen in 

Fig.3. In this figure, we have plotted the 

evolution of the total magnetic (plain 

curve) and kinetic (dotted curve) energy for 

75022 .Ly   (case A, in blue) and 

8022 .Ly    (case B, in red) (with ten 

poloidal Fourier harmonics). 
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Fig.4: Second instability growth rate in function 

of the equilibrium island size (Ly=0.8) 

 

For 750.Ly  , the kinetic energy as well as the magnetic energy reach saturation after the 

slow-down during the nonlinear regime. With 80.Ly   however, the dynamics returns to 

nonlinear stability as observed in 20122 .Ly    case. This suggests that there is a critical 

box size within 8070 .L. yc   from which the nonlinear DTM destabilization is 

systematically triggered. Note that compared with case 21.Ly  , the dynamics for 80.Ly   

is very long as the nonlinear slow down continues up to A~t 10000 . 

 The same investigation of the secondary instability as in the part 3.2 is conducted for 

80.Ly   [10] and the results are plotted in Fig.4 for different equilibria (corresponding to 

different magnetic island widths, equivalent EE ,  of case B simulation). Here also, the 

growth rate is shown on a logarithmic scale. Up to 80.~w , the linear growth rate decreases 

as the small magnetic islands slightly modify the current sheets. Again, this can be understood 

as there is less free energy due to the quasi-linear current flattening in the Rutherford regime. 

However, this growth rate rapidly and discontinuously increases from 80.~w . This feature 

clearly displays the appearance of a secondary instability, its energy source being different 

from that of the linear instability, i.e. a current gradient. 

 Interestingly, the growth rate of this instability is found to evolve exponentially with 

the magnetic island width (linearly in logarithm scale as in Fig.4). Then, roughly estimating 

this width as ~w , the linear growth rate of the secondary instability can now be linked to 

the magnetic flux amplitude: 
 e~s . This exponential dependence has not been detected as 

clearly in previous simulations far above marginal stability [9], but is determined for the first 

time in the present simulation near 

marginality. The time evolution of the 

magnetic island width (not presented here) 

shows that the critical width 80.~w (from 

which the secondary instability grows) 

corresponds to A~t 5000  in the DTM 

nonlinear simulation (Fig.3). Comparing the 

flow instantaneous growth rate and the 

secondary instability one, we found that 

they become comparable around 

A~t 10000 . Again, the secondary 

instability can start to grow around 

A~t 5000 , but its evolution becomes 

detectable in the nonlinear simulation only 

around A~t 10000 , in the evolution of the 

kinetic flows. 

 

4. Zonal field driven secondary instability 

 

 The DTM nonlinear growth is abruptly ended when the m=0 magnetic energy 

component reaches the same level as the dominant m=1 one, leading to total reconnection. 

The m=0 harmonic generation (referred to as a zonal field) is possible via nonlinear coupling 

of other harmonics 0m  ( 0

2

0    ],[ mmt  ), and affects the equilibrium 

profiles. Whereas the resulting total radial profile of the poloidal magnetic field appears 

smooth, it has in fact small corrugations. Thus, radial divergences or gradients of this profile 

have large local variations. The subsequent highly corrugated current profiles can affect 

tearing mode stability [13].  Following those considerations, it is of primary importance to 

understand what the direct effects on the equilibrium profile are, and if resulting modifications 

can affect current instability developments in the DTM nonlinear dynamics. Furthermore, 
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Fig.5.a) Profile evolution of the equilibrium        b) Profile evolution of J’(derivation of the 

current modified by zonal components      current in the x direction) 

 

when conducting the secondary instability analysis, structure deformations in the y-direction 

due to harmonics m>0 as well as radial characteristics are included. Those latter come either 

from harmonics m>0 or from the m=0 component itself. Therefore, we propose here to 

investigate this specific term. To reproduce local variations of magnetic field gradients, 

necessary convergence has been obtained by increasing Fourier harmonics in the y-direction 

up to 50totm . In the present case, 21.Ly   and 4105   are chosen for an easier 

computation. The profile time evolutions for the modified current 0 meq JJ  and its x-

gradient 0
 meq JJ  are plotted respectively in Fig.5(a) and 5(b). Although the energy time 

evolution is not shown, the original current profile eqJ  (black solid line, Fig.5(a)) do not 

present any change at A~t 200  (orange dashed line) (linear stage), is being flattened by 

m=0 at A~t 300  (red solid line) (slow down regime), and from A~t 400 , a peaked profile 

appears, correlated to strongly localized corrugations of J   (blue and green curves in 

Fig.5(a) and 5(b)) (nonlinear destabilization phase). Those corrugations can influence the 

evolution of tearing modes: when looking at the quasi-linear equations for m>1, 

 

   0

2

000   mmeqxmymt )(    (5) 

 

 00000

2

  mymeqxeqmmymt J)()'J'J(  , (6) 

 

the term 0
 meq JJ  plays an important role. 

 To confirm this idea, we proceed to the numerical investigation of infinitesimal 

perturbations linearly evolving under equilibrium profiles defined as 0 meqnew XXX  

(where J,B,X  ). They actually correspond to the profiles in Fig.5. We reported in Fig.6 

the linear growth rate (blue circles) of the resulting linearly unstable mode m=1 for each 

profile taken from the original DTM simulations at 0t , At 200 , At 300 , At 400  

and At 450 . We also added the growth rates corresponding to the original simulation with 

the same parameters except the total Fourier harmonics ( 20totm ). Note that convergency is 

assured as same results are found. At At 200 , the current profile being unmodified, the 

resulting growth rate is the same as in the linear stage of the DTM. At At 300 , the linear 

growth rate decreases: as the m=0 component flattens the current profile (Fig.5(a)), there is 

less free energy available for a current destabilization. The minimum for the linear growth rate 

would be found for a modified equilibrium at At 350  (run for 20totm ). However, for  
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Fig 6. Linear growth rate for different 

equilibria modified by zonal field components 

 

At 400  and At 450 , the linear 

growth rate of the new perturbation 

increases and from At 420 , becomes 

even higher than the linear DTM growth 

rate. Then, the corrugations of the zonal 

field profile and especially of its derivatives 

( 0mJ  and 0

mJ ) affect the original 

equilibrium profile. This latter can therefore 

drive new instabilities. We refer to this 

instability as a zonal field driven tearing 

instability. This may contribute to enhanced 

nonlinear dynamics leading to the fast 

growths observed in the DTM nonlinear 

destabilization. 

 

Conclusion 

 

To investigate the possible mechanisms 

leading to the DTM nonlinear 

destabilization, a secondary instability analysis with two-dimensionally modified quasi-steady 

equilibrium has been conducted near and far from marginal nonlinear stability of the DTM 

dynamics. The results show that two-dimensional structure deformations due to growing 

magnetic islands can explain the generation of a modulational-like instability which evolution 

can be linked to the growth of kinetic flows. Resulting nonlinear coupling with magnetic flux 

may lead to current corrugations of the equilibrium. A further study showed that such 

modifications can be the origin of current driven instabilities. These and modulational-type 

secondary instabilities are taking place subsequently, and a causality relation might exist 

between flow and flux evolution, such as discussed in Part 2, leading to the full reconnection of 

magnetic field lines. 
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