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Abstract. The control of transport barrier relaxation oscillationsriesonant magnetic perturbations (RMPs)
is investigated with three-dimensional turbulence siraites of the tokamak edge. It is shown that single har-
monics RMPs (single magnetic island chains) stabilizeibarelaxations. In contrast to the control by multiple
harmonics RMPs, these perturbations always lead to a degwacf the energy confinement. The convective
energy flux associated with the non-axisymmetric plasmdibgum in presence of magnetic islands is found to
play a key role in the erosion of the transport barrier thatifeto the stabilization of the relaxations.

1. Introduction

Transport barriers in tokamak plasmas are key ingredidntamroved confinement regimes.
These barriers are thin layers in which turbulent transpidneat and matter is reduced signifi-
cantly and a strong pressure gradient builds up. At the @asiige, the barrier typically is not
stable but exhibits relaxation oscillations associatetth witermittent high energy flux peaks.
These barrier relaxations are an essential charactergdtitie so called edge localized modes
(ELMSs) [1]. The control of such ELMs is a crucial issue for thext generation of tokamak
experiments such as ITER. Experimental studies on a vanietljfferent tokamaks such as
DIII-D [2, 3], JET [4], and TEXTOR [5, 6] reveal that a qualitee control of ELMs can be
obtained by imposing resonant magnetic perturbations (®M£the plasma edge. Such a per-
turbation has the same helicity as the magnetic field line paréicular (resonant) magnetic
surface, and leads to a perturbation of this surface by ttm&tion of magnetic islands [7].

The control of ELMs by RMPs is generally attributed to a rechrcof the pressure gradient
by a radial energy flux associated with the strong collisitneat flux along perturbed field
lines [8]. In patrticular, it has been found that when incinegghe perturbation amplitude,
ELMs control becomes efficient when field line stochastiejpypears, induced by overlapping
magnetic islands [8]. However, the actual amplitude of tlegnetic perturbation inside the
plasma is not precisely known yet, as the penetration of greugation depending on the
plasma response is a complex issue [9, 10]. It is therefdeedsting to investigate, whether a
control of transport barrier relaxations can also be addevith a single harmonic perturbation
only, i.e. one island chain localized at one resonant serdac therefore no island overlap and
no stochasticity. In the same framework, it is also impdrtarstudy the possible mechanisms
that can lead to an increase of the radial energy flux in poeseha magnetic island, as well
as their relative importance.

In previous works, barrier relaxations have been studieshégins of three-dimensional turbu-
lence simulations [11, 12] and the possible control of thretaxations by externally induced
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Figure 1:Imposed rotation velocity (top) and amplitudes,,, of the different harmonics of the
prescribed poloidal magnetic flux perturbation (bottong g&function of the normalized radial
coordinatex. Circles indicate the amplitudes,, on the corresponding resonant surfaces
q =m/ny.

resonant magnetic perturbations has been investigated41.3In this framework, it has also
been shown recently that a single harmonic resonant mageturbation localized at the bar-
rier position can also lead to a stabilization of the relentet [15]. However, in this geometry,
the confinement is always degraded.

As shown in these turbulence simulations, a key elementmstabilization of barrier relax-
ations is the convective energy flux associated with theaxasymmetric plasma equilibrium
in presence of magnetic islands. In fact, when a magnetadsthain is externally imposed
inside the plasma, the modified equilibrium pressure anctrgdgpotential give rise to a con-
vective flux that plays an important role in the local erosodrihe transport barrier and the
stabilization of its relaxations. The magnetic island ohzan either result from a single har-
monic resonant perturbation [15] or from a multiple harnocaeisonant perturbation leading to
a complex geometry with stochastic regions and residuahds [13, 14].

2. Turbulence model and transport barrier relaxations
2.1. Turbulence mode

The three-dimensional turbulence model studied here st the normalized reduced MHD
equations for the plasma pressprand the electric potential [12],

Op + {0, p} =0.Go+xVip+x1Vip+5S. (2)

In toroidal coordinate$r, 0, ¢) and in a slab geometriyz, y, z) in the vicinity of a reference
surfacer = r, at the plasma edge, i.e.= (r — o) /&bat, Y = 700/Evats 2 = Rop/Ls, the
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Figure 2: Time evolutions of the convective fl@x,,. at the barrier centerr = 0, ¢ = 3
(left) and of the edge energy confinement timg,,. (right) for different amplitudes), of the
multiple harmonics magnetic perturbation (5). Het@,; = 10, Wwgp = 6, d = 11.7 =
0.15 (Zmax — Tmin)-

normalized operators are

LSTO

¢ ) -
Vi=o.+|>—-xz|0,— , with = ,
| (CJO 7 ) 9 ~ {Yrup, - } ¢ Ro&pal
G =sinfd, +cos00,, Vi=0:+0., {6, -}=0:00,— 0,00, ,

whereyryp represents the externally imposed perturbation of theigalonagnetic flux (see
section 3). Hereg, = q¢(ro) is the safety factor at the reference surfafg,is the major
radius of the magnetic axis ard is the shear length used as the scale length in the direction
parallel (|) to the unperturbed magnetic field. The normalization lkngtthe perpendicular
(L) direction is the resistive ballooning lengfh., which for a collisional tokamak plasma
edge typically is of the order gi,, the ion Larmor radius at electron temperature. Time is
normalized to the interchange timg; which typically is one order of magnitude larger than
the characteristic inverse drift frequendy/c;, wherec, and L, are the sound speed and
the pressure gradient length, respectively. Note that émpgndicular ion viscosity.{ and
heat conductivity X, ) coefficients in (1) and (2) are normalized using the perpriar scale
length¢,.;, whereas the parallel heat conductivity coefficignts normalized with the parallel
scale lengthL,. In the present simulations, we uge- y, = 0.93 andy| = 1, and the ratio of
x|/x. ~ 1 of the normalized coefficients corresponds to a ratio of threedsional coefficients

of L2/&2, ~ 107 — 10%. Finally,é. = 2 2L, /R, is a curvature parameter seto= 0.01.

In the present model, resistive ballooning turbulence igedrby an energy source located
close to the inner boundary of the main computational dom&ie latter corresponds to the
volume delimited by the toroidal surfaces characterizeg by2.5 andq = 3.5, respectively,
and including the reference surfage= ¢, = 3. Here, a linearn /¢ profile is assumed, and
&par/To = 1/500, Ls/Ry = 1. The complete computational domain is slightly larger and
delimited byz,,i, < £4=25 aNdza > x,-35. The SOUrces gives rise to a constant incoming
(from the plasma center into the main computational doneie)gy flux Qo = [7=*° S da.

T

The pressure profilg(z, t) = (p), , evolves self consistently according to the energy trartspor
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Figure 3: Pressure profiles for different amplitudeg of the multiple harmonics magnetic
perturbation (5) (left) and the single harmonic magnetictpebation (8) (right).

equation [the toroidal and poloidal averagg,, of (2)],
atﬁ == _ax (Qconv + Qcoll + QJB) + S ) (3)

With Qeony = (P0y9),, .+ Qeotl = —X10:P, Qs = —X| (OyYrmrV)p), .. In a statistically
stationary state, averaging (3) in time and integratingperadial direction leads to the energy
flux balance

Qconv (l‘) + Qcoll(l‘) + QéB (l‘) = Qtot for =z Z Lgq=2.5 - (4)

2.2 Transport barrier relaxations

When a poloidalE x B flow Ue, = d,¢inpe, With radially localized velocity shear is imposed
via an artificial friction term in (1) (with friction coeffieint ., and¢ = (gb) .), the turbulent
radial energy fluxQ..., is reduced in the velocity shear region. Accordlng to the Halance
(4), when no magnetic perturbation is presemt\r = 0 = Q55 = 0), the pressure gradient
steepens in the shear layer, i.e. a transport barrier fat@js Figure 1 (top) shows the profile
of the rotation velocity = wgdtanh (x/d) used in the present simulations. The shear is
maximalmax (d,U) = wg at the reference surfage= 3 leading to a transport barrier at that
position. The parametetl characterizes the width of the velocity shear layer. Tylpicauch
barrier is not stable but exhibits relaxation oscillatiphk, 12]. Time traces of the convective
flux Q.ony at the barrier center and the edge energy confinement time

fﬂ?q 3.5 _dl‘

T o Tg=2.5
Eedge — Q
tot

are shown in Figure 2 (left, top) and (right), respectiveQuasi-periodic relaxations of the
transport barrier are characterized by drops in the enevgfirement time associated with
strong flux peaks.

3. Effect of resonant magnetic perturbations on barrier dynamics

3.1. Multiple harmonics pertur bation
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Figure 4: Radial profiles of the different contributions to the enefiyx balance (4), with
and without the multiple harmonics magnetic perturbatibh (According to (6) and (7), the
convective flux is decomposed into two parts, one assocvatbdthe equilibrium and one
associated with fluctuations. Parameters are the same agjuré-2.

In the electrostatic model (1), (2), we now impose a statsomant magnetic perturbation
described by the normalized poloidal magnetic flux

e =10 Y _(—1)™h () cos (mh — noy) (5)

sin [(m —my) ?gf]

m(m —mg)

with ¢, (z) =C exp [ - (70 + &b — 1)

Brre
Here, (mg, ng) = (12,4), Ab. = 2xn/5, /1 = 0.6, andr./&,a = 590 are parameters typical
for the DED device in the TEXTOR tokamak [17, 18] and the canst’ is chosen such that
Um,(z = 0) = 1. The radial profiles of the amplitudes, (x) are shown in Figure 1 (bottom)
for the five harmonics that are resonant in the main compmrtatidomain. Note that the am-
plitude of each harmonia: is increasing with radius but that the sizes of the magnslands
induced by each harmonie is determined by its amplitude at the corresponding resonan
surfaceg(z) = m/ng (these amplitudes are indicated by circles in Figure 1).

For sufficiently high amplitudes/ > 6.5), the perturbation (5) leads to a stabilization of
the barrier relaxations [Figure 2 (left, middle and botthrixcept for very high perturbation
amplitudes{, > 19), the control of barrier relaxations is accompanied by @djight degra-
dation of the energy confinement time [Figure 2 (right)]. ’lbehavior can be attributed to an
erosion of the transport barrier and a steepening of thespregradient next to the barrier (on
the outward side) [13, 14], as can be seen from Figures Bédeit 4a.

Although the radial energy flug;z, i.e. the radial component of the collisional parallel heat
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Figure 5:Time evolutions of the convective flix,,., at the barrier centerr = 0, ¢ = 3 (left)
and of the edge energy confinement tirpg,,. (right) for different amplitudes), of the single
harmonic magnetic perturbation (8). Parameters are thesasnin Figure 2.

flux on perturbed magnetic surfaces, is increasing with gréupbation amplitude, (Figure
4b), the erosion of the transport barrier is mainly causethbyconvective flux

ggnv = <peqay¢eq>y,z (6)

associated with the non-axisymmetric plasma equilibrimnthie presence of the magnetic
perturbation. Here

peq(xjy’ 2) = <p>t ) ¢eq(l,7y7z) = <¢>t ;

where(-), is the time average in a statistically stationary state.[T8F convective energy flux
associated with fluctuations,

ngg = Qconv - Egnv ) (7)
is decreasing with the perturbation amplitugg(Figure 4c), but the convective flux associated
with the equilibrium@¢Z . is strongly increasing, especially in the barrier centegyfe 4d),
where residual islands are present even for high pertaramplitudes), (when field line
stochastisation occurs between the barrier and the owtemal edge) [13, 14].

3.2. Single harmonic perturbation

As the stabilization of barrier relaxations is mainly duetoerosion of the barrier associated
with a magnetic island chain localized at the barrier positive expect a similar effect when
restricting the perturbation (5) to the single harmonia¢ th@aesonant ag = 3,

mo&bal )
T

Brre (8)
This magnetic perturbation is indeed stabilizing the leamelaxations [Figure 5 (left, middle
and bottom)], however, even for relatively low perturbatamplitudes)y, this stabilization is
accompanied by a significant reduction of the edge energijrmment time [Figure 5 (right)].
In fact, as shown in Figures 3(right) and 6a, the erosion@t#urrier center is similar com-
pared to the one observed with the multiple harmonics peation, but the single harmonic

el = Yt () 08 (mof) — nogp)  With 1), (z) = exp (



7 THS/P5-02

8 8| (b) — =0
_ 6 6f o qJO:]_s
8 4 S 4/
o o
2\ 2| .
of Op====" e
8¢ 8'(d) I
6' 6 ,’ \\
ot = o
384 g S 4 -
o o HE
2t 2t 1 “
O 0 -" ——
-20 0 20 -20 0 20

Figure 6:Radial profiles of the different contributions to the enefigyx balance (4), with and
without the single harmonics magnetic perturbation (8)c@ding to (6) and (7), the convec-
tive flux is decomposed into two parts, one associated wétledfuilibrium and one associated
with fluctuations. Parameters are the same as in Figure 2.i3laad width corresponding to
the perturbation amplitudé, = 13 is W = 14.4. We recall the shear layer width= 11.7.

perturbation does not affect the pressure profile far frawasonant surface. In particular,
the steepening of the pressure gradient between the bandehe outer edge, observed in the
case of the multiple harmonics perturbation, and compegsédr the erosion of the barrier,
is not present in the case of the single harmonics pertanftb]. In both cases, however, the
erosion of the transport barrier is mainly due to the convedtux Q¢4 = associated with the
helical plasma equilibrium induced by the magnetic islangic (Figures 4d and 6d).

4. Conclusions

Transport barrier relaxation oscillations observed ie#&dimensional turbulence simulations
can be controlled by multiple harmonics or single harmori¢FR. This stabilization is due
to an erosion of the barrier. In the first geometry, for intedmte perturbation amplitudes,
the overall confinement is nearly unchanged because thimemisthe barrier is compensated
by an increase of the pressure gradient outside the baiftas steepening of the pressure
gradient occurs in a layer where magnetic field lines stdatigsleads to a reduction of tur-
bulent energy flux which is not completely compensated byrdlaél energy flux due to the
collisional heat transport along perturbed magnetic figldd. Consequently, the single har-
monics RMP always leads to a degradation of the confinemdre.barrier erosion is due to
an enhanced radial energy flux in the presence of magneditds! Two different mechanisms
are at the origin of this enhancement. One is the radial grfeng due to the collisional heat
transport along perturbed magnetic field lines. The seceadtonvective flux associated with
the non-axisymmetric equilibrium in the presence of the megig island.
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