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Abstract. A minimum set of equations based on the Peeling-Ballooning (P-B) mode with non-ideal physics
effects (diamagnetic drift, ExB drift, resistivity, and anomalous electron viscosity) is found to simulate
pedestal collapse when using the BOUT++ simulation code, developed in part from the original fluid edge
code BOUT. Linear simulations of peeling-ballooning modes find good agreement in growth rate and mode
structure with ELITE calculations. The influence of the E × B drift, diamagnetic drift, resistivity, and
anomalous electron viscosity on peeling-ballooning modes is being studied; we find that (1) the diamag-
netic drift and ExB drift stabilize the peeling-ballooning mode in a manner consistent with theoretical
expectations; (2) resistivity destabilizes the peeling-ballooning mode, leading to resistive peeling-ballooning
mode; (3) anomalous electron viscosity destabilizes the peeling-ballooning mode, leading to a viscous peeling-
ballooning mode. With addition of the anomalous electron viscosity under the assumption that the anomalous
kinematic electron viscosity is comparable to the anomalous electron thermal diffusivity, it is found from
nonlinear simulations using a realistic high Lundquist number that the pedestal collapse is limited to the
edge region and the ELM size is about 5-10% of the pedestal stored energy. This is consistent with many
observations of large ELMs. It is also shown that for high Lundquist number there are two distinct processes
in the evolution of pressure profiles: a fast collapse greatly flattening the pressure profile near the peak pres-
sure gradient on the order of tens of Alfvén times after the onset of nonlinear P-B mode and a slow buildup
of pressure gradient. We can characterize the fast collapse as a magnetic reconnection triggered by P-B
modes→ an island formation and magnetic braiding→bursting process and a slow collapse as a turbulence
transport process. The estimated island size is consistent with the size of fast pedestal pressure collapse. In
the stable α-zones of ideal P-B modes, nonlinear simulations of viscous ballooning modes or current-diffusive
ballooning mode (CDBM) for ITER H-mode scenarios are presented.

1. Introduction

Through the development of the theory of peeling-ballooning (P-B) modes and their numeri-
cal implementation in codes such as ELITE [1, 2], a robust prediction of edge MHD stability
limits is available for existing and future tokamaks. It has been found that large ELMs are
triggered and pedestal height is constrained by the ideal P-B stability. P-B modes are ideal
MHD modes which are driven by a combination of sharp pressure gradients (ballooning)
and bootstrap current in the pedestal. The onset of each ELM (type-I) has been consistently
found to correlate with crossing of the ideal P-B stability boundary [3], i.e., P-B theory
successfully describes the trigger of the ELM. Having said this, there are situations where
the profiles sit at marginal stability for some time before the ELM is triggered [4], so linear
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95ER54309 at general Atomics, and by the UK Engineering and Physical Sciences Research Council under
grant EP/H012605/1 and the Euro. Commun. under the contract of Association between EURATOM and
CCFE.
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stability analysis may not provide the complete pciture. The nonlinear dynamics, and in
particular the physics of the ELM energy loss and pedestal dynamics after the onset of each
ELM (type-I) remain uncertain, and may even play some role in the trigger.

Nonlinear ELM simulations become computationally difficult for high Lundquist number due
to the fine resolution needed to resolve the narrow current sheet at rational surfaces and/or
narrowing fingers as a result of explosive ideal MHD instabilities predicted from nonlinear
ballooning theory [5, 6], leading to collapse of the simulation time-step at the early non-linear
stage of P-B mode development[6]. A common practice is to use an anomalous resistivity
and/or ion viscosity to achieve nonlinear ELM simulations, which leads to significantly differ-
ent linear growth rates and instability thresholds. Furthermore, in nonlinear resistive MHD
simulations, the pedestal pressure collapses deep into the plasma core, which yields much
larger ELM sizes than observed.

In this paper we summarize recent developments in nonlinear simulations of peeling-ballooning
modes with anomalous electron viscosity and explore its role in ELM crashes[7, 8]. From
nonlinear simulations we have found that the P-B modes trigger magnetic reconnection,
which drives the collapse of the pedestal pressure. The hyper-resistivity is found to limit
the radial spreading of ELMs by facilitating magnetic reconnection. In quiescent H-mode
plasma, the hyper-resistivity also drives the viscous ballooning mode or the so-called current
diffusive ballooning mode (CDBM)[9], which is a magnetohydrodynamic (MHD) instability
and localizes in the outer region of the torus where the gradient of the pressure aligns with
the magnetic curvatures.

The organization of this paper is as follows. The basic set of equations and simulation model
are given in Sect. 2. Nonlinear simulations of peeling-ballooning modes are described in
Sect. 3. Nonlinear CDBM turbulence simulations in ITER H-mode Scenarios are given in
Sect. 4. The results are summarized and discussed in Sect. 5.

2. A Non-Ideal MHD Simulation Model

In the present paper, we describe nonlinear simulations of plasma edge pedestal collapse
using a three-field model in the tokamak configuration. The simulations are carried out
in the BOUT++ two-fluid framework [10], which allows studies of nonlinear dynamics of
ELMs including extensions beyond MHD physics. Based on the P-B model with non-ideal
physics effects (diamagnetic drift, ExB drift, resistivity, and anomalous electron viscosity),
a minimum set of nonlinear equations for perturbations of the magnetic flux A‖, electric
potential φ, and pressure P can be extracted from a complete set of the BOUT two-fluid
equation [11], with an additional effect of hyper-resistivity incorporated [12]. This can be
written as

∂$

∂t
+ vE · ∇$ = B0∇‖J‖ + 2b0 × κ0 · ∇P (1)

∂P

∂t
+ vE · ∇P = 0 (2)

∂A‖

∂t
= −∇||Φ +

η

µ0

∇2
⊥A‖ −

ηH
µ0

∇4
⊥A‖ (3)

$ =
n0Mi

B0

(
∇2
⊥φ+

1
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,Φ = φ+ Φ0,
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J|| = J||0 −
1

µ0

∇2
⊥A‖, vE =

1

B 0
(b0 ×∇⊥Φ) .

Here ∇‖F = B∂‖(F/B) for any F , ∂‖ = ∂0
‖ + b̃ · ∇, b̃ = B̃/B = ∇‖A‖ × b0/B, ∂

0
‖ =

b0 · ∇, κ0 = b0 · ∇b0. Although hyper-resistivity ηH , also known as electron viscosity, is
generally negligibly small in collisional plasmas, it can be significant in a collisionless plasma.
In this model the frozen-in flux constraint of ideal MHD theory is broken by either resistivity
or hyper-resistivity.

The equations (1)-(3) are solved using a field-aligned (flux) coordinate system (x,y,z) with
shifted radial derivatives [10]. Differencing methods used are 4th-order central differencing
and 3rd-order WENO advection scheme. The resulting difference equations are solved with a
fully implicit Newton-Krylov solver: Sundials CVODE package. Radial boundary conditions
used are: $ = 0,∇2

⊥A‖ = 0, ∂P/∂ψ = 0, and ∂φ/∂ψ = 0 on the inner radial boundary;
$ = 0,∇2

⊥A‖ = 0, P = 0, and φ = 0 on outer radial boundary. The domain is periodic
in the parallel cooordinates y (with a twist-shift condition) and in z (toroidal angle). For
efficiency, when performing nonlinear simulations, only 1/5th of the torus is simulated. The
number of grid cells in each coordinate are nψ = 512, nθ = 64, nζ = 32 for linear runs and
nζ = 64, 128, 256 for nonlinear runs (nψ and nθ are kept fixed).

In this study, the resistivity η, hyper-resistivity ηH and edge density n0 = 1 × 1019m−3 are
treated as constants in space-time across the simulation domain. In the present simplified
model, both equilibrium flow and turbulent zonal flow have been set to be zero: V0 =
VE0 + V∇Pi

= 0 and 〈δv〉ζ = 〈vE〉ζ + 〈v∇Pi
〉ζ = 0. Therefore, the equilibrium electric field

is Er0 = (1/n0Zie)∇rPi0 with ion pressure Pi0 = P0/2, and the perturbed electric field is
〈Er〉ζ = (1/n0Zie)∇r〈Pi〉ζ . The zonal magnetic field is also set to be zero as it is negligibly
small compared to the equilibrium magnetic field B0.

3. Nonlinear Simulations of Peeling-Ballooning Modes in Circular Geometry
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FIG. 1: The influence of the non-ideal
physics on the linear growth rate of
peeling-ballooning modes vs toroidal mode
number n for the ideal MHD peeling-
ballooning mode (black), with diamag-
netic drift stabilization (red), with ExB
drift stabilization (blue), resistive (green
cross) and viscous (purple square) peeling-
ballooning mode.

To study the physics of nonlinear P-B mode dynam-
ics, we choose circular cross-section toroidal equilib-
ria with an aspect ratio of 2.9 generated by the TOQ
equilibrium code. Two model equilibria have been sim-
ulated for H-mode plasmas with steep pressure and
current gradients at the edge [13]. The first equilibrium
(cbm18 dens8), which we describe in some detail here,
is far from the marginal P-B instability threshold with
a pedestal toroidal pressure βt0 = 1.941 × 10−2 and a
normalized pedestal width Lped/a = 0.0486. We have
also considered a second equilibrium (cbm18 dens6)
that is near the marginal P-B instability threshold
with βt0 = 1.45 × 10−2 and Lped/a = 0.0518. Results
for that case are described in [7], and will not be dis-
cussed here. Parameters that are held fixed in the sim-
ulations include a minor radius a = 1.2m, major radius
R0 = 3.4m, toroidal field on axis B0 = 2T , an edge
qa '3, the pedestal pressure 2/3 of the axis pressure, and a pedestal half width 7% of the
poloidal flux.
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A series of BOUT++ simulations is conducted to investigate the scaling characteristics of
the P-B mode in the strongly unstable case as a function of two dimensionless quantities
S and SH [7]. One is a S-scan for a fixed SH = 1012, while the other is a SH-scan for a
fixed S = 107 or S = 108. Here the Lundquist number S = µ0R0vA/η is the dimensionless
ratio of an Alfvén wave crossing timescale to a resistive diffusion timescale of magnetic
field, vA is the Alfvén velocity, η resistivity, and R the major radius. Similarly, the hyper-
Lundquist number SH = µ0R

3
0vA/ηH = S/αH is the dimensionless ratio of an Alfvén wave

crossing timescale to a hyper-resistive current diffusion timescale, with a dimensionless hyper-
Lundquist parameter αH = ηH/R

2
0η. For a collisional electron viscosity, αH ' µe/R

2
0νei.
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FIG. 2: Radial pressure profiles at several
different Lunquist numbers S and 4 time
slices (t=0, 74, 160τA). The black dotted
line is at t=0; blue dashed group lines for
S = 105 at t=74τA and 160τA; red solid
group lines for S = (107, 108, 109, 1010) at
t=74τA; yellow dotted-dashed group lines
for S ≥ 107 at t=160τA. The vertical line
indicates the position of peak pressure gra-
dient. Here SH = 1012.

Assuming that the anomalous kinematic electron vis-
cosity µe is comparable to the anomalous electron
thermal diffusivity χe, for edge plasma parameters
µe ' χe ' 1m2/s and electron-ion collision frequency
νei ' 105/s, we can estimate the amplitude of the
hyper-Lundquist parameter to be αH ' 10−4 − 10−6.

3.1 Linear benchmarking

Linear simulations of P-B mode evolution find good
agreement in growth rate and mode structure with
ELITE calculations [2, 10]. Fig. 1 shows the growth
rate vs toroidal mode number n of the strongly unsta-
ble equilibrium as calculated by BOUT++ for various
cases. A good agreement for an ideal MHD model is
shown between GATO (open circle), ELITE (open tri-
angle), and BOUT++ (black curve with filled circle).
The influence of the E × B drift, diamagnetic drift,
resistivity, and anomalous electron viscosity (hyper-
resistivity) on linear P-B modes has been studied. We
find that (1) the diamagnetic drift and ExB drift sta-
bilize the P-B mode (red and blue filled circle) in a
manner consistent with theoretical expectations; (2)
resistivity destabilizes the P-B mode, leading to resis-
tive P-B mode (green cross) for S = 105 and SH = ∞;
(3) anomalous electron viscosity destabilizes the P-B mode, leading to a viscous P-B mode
(purple open square) for a fixed S = 108 and αH = 10−4. For a fixed S = 108, as αH reduces
from 10−4 to 10−6, both resistive and viscous effects disappear. The BOUT++ reduced-MHD
model captures the marginal stability value n > 3.

3.2 Role of the hyper-resistivity

Nonlinear simulations of P-B modes at the early non-linear stage of development reveal that
the current sheet narrows with increasing Lundquist numbers. For typical edge parameters,
the Lundquist number is around S ' 108− 1010, the growth rate of the P-B mode is around

γPB ' 0.1ωA, and the width of the resistive current sheet ∆J ' R
√
ωA/γPB/S is around

10-100 microns, which is comparable to be electron Larmor radius ρe. In the absence of
the hyper-resistivity, the simulation time-step collapses as the radial scale-length of the

xu2
Text Box
4



1 THS/P3-05

current sheet approaches the radial grid spacing ∆x for typical resistive MHD simulations
∆x � ∆J ' ρe . With the hyper-resistivity, the width of the hyper-resistive current sheet
is ∆H ' R(ωA/γPB/SH)1/4. The hyper-resistivity could arise, for example, from small scale
electron turbulence in the H-mode pedestal [14]. For the rest of this paper, we assume
SH = 1012; hence ∆H(' 1.78mm)>∆x(' 1.1mm) � ∆J with ∆H/∆J > 17.8.

The radial pressure profiles at the outer mid-plane at several different time slices and different
Lundquist numbers are shown in Figure 2. It is clearly shown that the pedestal pressure

FIG. 3: Elm sizes vs Lundquist number S with
SH = 1012.

collapses deeply inside the core plasma at low
Lundquist number (S = 105). It is also shown
that for high Lundquist number there are two
distinct processes in the evolution of pressure
profiles: a fast collapse greatly flattening the
pressure profile near the peak pressure gradient
on the order of tens of Alfvén times after the
onset of nonlinear P-B mode, t = 74τA, and
a subsequent slow buildup of pressure gradient.
We can characterize the fast collapse as a mag-
netic reconnection (triggered by P-B modes) →
an island formation → bursting process, and a
slow buildup as a turbulence transport process.
The radial-poloidal pressure profiles clearly show the characteristics of the ballooning mode.
As is well known from linear instability analysis, φ and A‖ have ballooning parity for the
P-B mode. In the nonlinear stage, however, tearing parity component appears due to the
nonlinear mode coupling, which facilitates magnetic reconnection and island formation.

3.3 ELM-size

Defining an ELM size as ∆th
ELM = ∆WPED/WPED = 〈

∫ Rout
Rin

∮
dRdθ (P0 − 〈P 〉ζ)〉t/

∫ Rout
Rin

∮
dRdθP0,

the ratio of the ELM energy loss (∆WPED) to the pedestal stored energy Wped (Wped =
3/2PpedVplasma), the ELM size can be calculated from each nonlinear simulation. Here P
is the pedestal pressure and the symbol 〈〉t means the average over time (∼ 50 − 100τA)
and symbol 〈〉ζ means the average over bi-normal periodic coordinate. The lower integral
limit is the pedestal inner radial boundary Rin, while the upper limit is the radial position
of the peak pressure gradient Rout. Alternatively, the ELM size ∆ELM can be calculated
by radially integrating the pressure profile at the outer mid-plane as done in experiments,
which is about a factor of two larger than that based on the 2D integral with ballooning
characteristics: ∆ELM ' 2∆th

ELM . The ELM size scaling vs. Lundquist number S is given in
Fig. 3, which plots the ELM loss fraction ∆Wped/Wped as a function of the Lundquist number
for a fixed SH = 1012. The size of the ELM eruption varies dramatically between the high
and low resistivity cases. As the Lundquist number S is increased, the loss of thermal energy
during the ELM drops from ∼ 50% to ∼ 10% over a range of S = 104 − 107 and then stays
independent of S. This is due to the transition of dominance over resistance in Ohm’s law,
ηJ → ηH∇⊥J and therefore leads to a significant reduction of the inward spreading of the
perturbed magnetic field from the region of the P-B drive (peak gradient region). For better
convergence, a small parallel diffusion term is added to Eq. (2) for S = 1010. A large resistiv-
ity (S ∝ η−1) yields a large ELM size, which is contradictory to experimental observations
in many devices that the relative ELM size scales inversely with pedestal collisionality [15].
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However with a fixed hyper-resistivity SH = 1012, when S > 107, which is relevant to
today’s modestly sized tokamaks and ITER, the ELM size is insensitive to the resistivity.

FIG. 4: (a) The linear growth rate of CDBM
modes vs toroidal mode number n with diamag-
netic drift and ExB drift. The solid line is growth
rate and dashed line is frequency. (b) The linear
growth rate of CDBM modes vs hyper-Lundquist
parameter αH with diamagnetic drift and ExB
drift. The solid line is growth rate and dashed
line is frequency.

Furthermore the ELM size is found to be pro-
portional to the hyper-resistivity. If we assume
that the hyper-resistivity scales inversely with
pedestal collisionality (ηH ∝ ν−νei , ν > 0), then
the ELM size scales inversely with pedestal
collisionality, which is consistent with experi-
ments in the high Lundquist number regime. In
this regard, the hyper-resistivity induced either
by dissipative driftwave/electron-temperature-
gradient driven modes or electron transport in
the presence of stochastic magnetic field in the
collisional regime may yield a consistent collision-
ality.

4. Nonlinear Turbulence Simulations in
ITER H-mode Scenarios

To study the physics of nonlinear P-B mode
dynamics in x-point divertor geometry, we chose
a toroidal equilibrium with an elongated cross-
section and triangularity from one of the latest
designs of the ITER 15 MA inductive H-mode
scenario (under the burning condition) generated
by the CORSICA equilibrium code [17]. Param-
eters are: minor radius a = 2m, major radius
R0 = 6.2m, toroidal field on axis B0 = 5.3T , edge
q95 '3.2, poloidal beta βt0 = 3.4 × 10−3 and Lped/a = 0.0076, edge elongation κ95 = 1.7,
and triangularity δ95 = 0.349. Because of the relatively low pedestal height, the P-B mode
is stable for this ITER H-mode plasma. In turn, we investigate current-diffusive ballooning
mode (CDBM) [9]. The CDBM is destabilized by the current diffusion (i.e., the anomalous
electron viscosity or hyper-resistivity) and has more impact in the stable α-zones of ideal
ballooning mode. Here α = −q2Rdβ/dr, β = P/2µ0B

2
0 . It is precisely the same physics which

limits the radial spreading of ELMs by facilitating magnetic reconnection when P-B modes
are dominantly unstable. The original three-field CDBM model also includes anomalous
perpendicular ion viscosity and thermal diffusivity, which provide stabilizing effect on the
CDBM. Here we neglect these because nonlinear CDBM itself should provide the thermal
transport to stabilize the CDBM, and the balance between the instability drive from current
diffusion and the sink from self-consistent turbulent transport should determine the pedestal
width.

BOUT++ simulations were carried out for CDBM turbulent transport, including the pedestal
region that extends across the separatrix into the scrape-off layer (SOL) and private flux
region. With poloidal flux, ψ, normalized to unity on the separatrix, we take the inner
simulation boundary condition to be ψc = 0.85 and the outer boundary at ψw=1.05. The
toroidal segment is typically one fifth of the torus with full poloidal cross section. Radial
boundary conditions used at ψ = ψc and at ψ = ψw are: $ = 0,∇2

⊥A‖ = 0, ∂P/∂ψ = 0, and
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∂φ/∂ψ = 0 on the inner radial boundary ψ = ψc; $ = 0,∇2
⊥A‖ = 0, P = 0, and φ = 0 on the

outer radial boundary ψ = ψw. Other boundary conditions are: sheath boundary conditions
in y in the SOL and the private flux regions at the divertor plates, twist-shifted periodic

FIG. 5: (a) Time history of perturbed pres-
sure 〈δp〉rms at outside-mid plane at the peak
pressure gradient location. (b) Radial pressure
profiles: the black dotted curve is initial pres-
sure P0(×10−2), the red dashed curve is the
final pressure profile P = P0 + δpn=0 with
P (×10−2), the pink solid curve for perturbed
pressure 〈δp〉rms(×10−3) and blue dotted curve
for relative perturbed pressure 〈δp〉rms/P . The
vertical dotted line at ψ = 1 is the separatrix
position.

in y in the closed flux region due to the choice of
field-aligned coordinates, and periodic in z. For
simplicity, the insulating divertor plate bound-
ary conditions are used, i.e. all fluctuating vari-
ables are set to zero. In addition, our model used
here includes parallel heat conduction in order
to study the end-loss at the divertor plates. The
parallel heat diffusivity follows the electron Bra-
ginskii value in the SOL and is set as a constant
inside the separatix or a ceiling (χ‖ ' vteq95R

2)
when kinetic effect is believed to be important.
The number of grid cells in each coordinate are
nψ = 256, nθ = 128, and nζ = 64. The small par-
allel ion viscosity (µ‖i ' 0.01ωAR

2) is used for
numerical convergence and its negligible effect on
instability has been checked.

The linear growth rate of CDBM modes vs
toroidal mode number n is shown in Figure
4(a) with diamagnetic drift and ExB drift. The
solid curve is the growth rate γ and dot-dashed
curve is the frequency ω. The unstable spec-
trum is similar to P-B mode with growth rate
peaked at n=20. The mode frequency linearly
increases with mode number n. The hyper-
resistivity dependence of the growth rate with
mode number n=15 is shown in Fig. 4(b). The
solid curve is the growth rate γ and dashed curve
is the frequency ω. The dot-dashed curve is proportional to α

1/5
H , which is an analytical esti-

mate in strong ballooning limit with circular cross-section [9].

Nonlinear simulations of the CDBM are shown in Fig. 5 for ITER H-mode plasma. Figure
5(a) shows linear growth and nonlinear saturation of the CDBM. Figure 5(b) shows various
pressure profiles. The black dotted curve is the initial pressure profile P0 while the red dashed
curve is the final pressure profile P = P0 + δpn=0, where δpn=0 means the component of per-
turbed pressure δp with toroidal mode number n=0. The pink curve is the perturbed pressure
〈δp〉rms, where 〈δp〉rms represents the root-mean-square average over bi-normal coordinate
z. The blue curve is the relative pressure fluctuation 〈δp〉rms/P . The initial peak pressure
gradient is located at the normalized ψ̂ = 0.984. From the nonlinear simulations, we observe
the following interesting features. The pressure P gradient drops from initial one P0 by 31%
as a result of CDBM driven radial transport.

There is a broad radial profile of perturbed pressure 〈δp〉rms (red solid curve), indicating
more inward turbulent spreading than outward from its linear instability drive at ψ̂ = 0.984
for H-mode plasma. The relative pressure fluctuation peaks in the SOL due to relatively low
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pressure there. Figure 6 demonstrates the pressure perturbation on a poloidal slice (ψ, θ)
at a fixed toroidal angle ζ in nonlinear phase, showing the characteristics of a ballooning
mode and highly elongated turbulent structure away from the outboard midplane due to
large x-point shear.

5. Summary

FIG. 6: Poloidal slice
through the ITER H-mode
plasma in single-null diver-
tor configuration, show-
ing pressure perturbation
δp for dominant toroidal
mode number n = 15 with
the characteristics of bal-
looning mode.

In conclusion, it is found from nonlinear simulations that the P-B
modes trigger magnetic reconnection, which drives the collapse of
the pedestal pressure. The anomalous electron viscosity or hyper-
resistivity, is found to limit the radial spreading of the ELMs by
facilitating magnetic reconnection. In addition, current diffusion
drives the viscous ballooning modes or CDBM in the stable α-zones
of ideal ballooning mode.
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