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Abstract
Numerical simulation and analytic theory are used to describe the effects of finite
plasma pressure on magnetic island formation and magnetic surface fragility in
three-dimensional geometry. The extended MHD code NIMROD is used to sim-
ulate high-beta physics in net current-free straight stellarator geometry using a
resistive MHD model with anisotropic heat conduction. A connection between 3-D
geometry, flux surface destruction and the breaching of MHD stability boundaries
is investigated. Analytic calculations of magnetic island formation in 3-D equilib-
ria employ drift kinetic theory to describe self-consistent current responses. Three
dimensional components of 1/B2 produce net radial drifts that give rise to viscous
forces on the plasma and reactive responses to the 3-D fields that describe in-surface
currents. Generally, the reactive in-surface currents counteract the island produc-
ing effects due to resonant Pfirsch-Schlüter currents.

I. Introduction
The theory of 3-D MHD equilibria is one of the oldest problems in mag-

netic confinement theory. Unlike axisymmetric equilibria, where the ex-
istence of robust topologicially toroidal magnetic surfaces are guaranteed
to exist, 3-D equilibria generally contain magnetic islands and regions of
magnetic stochasticity. As such, a complete description of 3-D equilibria
requires an understanding of the physics that influences magnetic island
formation, island overlap and magnetic stochasticity. The theory of nonlin-
ear magnetic island growth and saturation is conventionally described as the
nonlinear consequence of tearing mode instabilities. In this sense, the lack
of a continuous symmetry blurs the difference between conventional toka-
mak notions of equilibrium and non-ideal MHD stability. Indeed, analytic
efforts to describe saturated magnetic island widths in 3-D equilibria using
a resistive MHD model show a dependency of the saturated island widths
on resistive MHD ‘stability’ parameters [1]. In high temperature plasmas,
magnetic island physics is highly sophisticated and involves a number of
effects beyond those described by MHD theory.

Numerical simulation and analytic theory are used to describe the ef-
fects of finite plasma pressure on magnetic island formation and magnetic
surface fragility in three-dimensional geometry. The extended MHD code
NIMROD [2] is used to investigate high-β properties of net current-free
straight stellarator geometry using a resistive MHD model with anisotropic
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heat conduction. This approach to describing high-β stellarator behavior
is distinctly different than conventional approaches used to construct solu-
tions to the 3-D MHD equilibrium equations that rely on simplifications in
the physics describing magnetic surface breakup [3]. For the calculations
reported here, the effects of breaching instability boundaries in 3-D config-
urations and their nonlinear consequences are monitored in the simulations.

In an effort to describe physics beyond the MHD model, analytic calcu-
lations of magnetic island formation in 3-D equilibria employ drift kinetic
theory to describe self-consistent current responses. In response to 3-D vari-
ations in field strength, a kinetic distortion develops that has both a reactive
and a dissipative response. While the dissipative response is used to describe
viscous torques and their corresponding effect on neoclassical transport, the
reactive response describes currents flowing within the magnetic surfaces
that are stabilizing to magnetic island formation in 3-D configurations.

II. Resistive MHD simulations of 3-D configurations
In this work, numerical simulations of straight stellarators are performed

with the NIMROD code. The MHD equations are advanced in time, yielding
a description of the evolution of a 3-D configuration that starts from vacuum
magnetic fields and progresses through the formation of stable equilibria
at low β via a heating source. Further heating violates MHD instability
boundaries at higher β and finally the discharge terminates due to pressure-
induced magnetic stochasticity.

A 3-D vacuum magnetic field with finite rotational transform is initial-
ized. Finite-β equilibria are generated by introducing a heating source into
the plasma domain and evolving the full resistive MHD equations in time.
The simulations employ anisotropic heat conduction with typical ratios of
parallel to perpendicular heat diffusivities χ||/χ⊥ ∼ 105 − 108. The ini-
tial vacuum solution can be specified to have a helical symmetry or to be
spoiled by the introduction of small 3-D components. With finite parallel
heat conduction, pressure gradients are allowed to persist in regions with
small magnetic islands or magnetic stochasticity as has been implied in re-
cent stellarator experiments [4].

For all the simulations presented here, the initial vacuum magnetic field
has a dominant m/n = 2/2 vacuum harmonic that produces helically ro-
tating oblate magnetic surfaces. The rotational transform profile is mono-
tonically increasing with stellarator-like magnetic shear, ι-(0) ≈ 0.4, ι-a ≈ 1.
Characteristic parameters of these plasmas are Bz = 1T,L = 2πm, aeff =
0.2m,βmax = 2µo < p > /B2

z ∼ 3 − 5%, S = τR/τA = 1 − 4 × 105, τE =
a2/4χ⊥ = 0.01s. Early in the simulation, robust magnetic surfaces are ob-
served.
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Figure 1 - The evolution of β, kinetic energy perturbations, temperature profiles at
various times and Poincare plots of the magnetic field at t = 0, t = 1.0× 10−3 and
t = 1.73× 10−3. For this case, only even n harmonics are allowed in the simulation
(i. e., only stellarator symmetric perturbations are present).

The case shown in Figure 1 corresponds to a configuration initialized with
a perfectly helically symmetric vacuum magnetic field. Since a continuous
symmetry is present in this configuration, Grad-Shafranov equilibria can
be generated if no instability boundaries are breached. Plasmas heating
produces finite β plasmas with good magnetic surfaces early in time. At
β ∼ 3%, MHD perturbations with a dominant n = 2 harmonic are excited
and grow with continued heating. As β increases, the degree of stochasticity
in the edge region grows. At late times, the temperature profile collapses as
shown in the figure in the lower left and the β value abruptly drops from
its peak value β ∼ 4.5% to zero. For this case, the dominant mechanism for
the β collapse is the degradation of the magnetic surface quality. Magnetic
stochasticity grows from the edge region toward the core as β increases.
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Figure 2- The evolution of β, kinetic energy perturbations, temperature profiles
at various times and Poincare plots of the magnetic field at t = 0, t = 4.8 × 10−4

and t = 9.2 × 10−4. The initial vacuum magnetic field has a continuous symme-
try. Stability of the helically symmetric equilibrium by introducing small symmetry
breaking perturbations into the system.

As in the case shown in Figure 1, the initial configuration for the case
shown Figure 2 is helically symmetric. However, in this simulation, small
n = 1 symmetry breaking perturbations are excited to probe the stability
of odd-n harmonics. At early times, these harmonics do not grow and the
equilibrium remains perfectly helically symmetric. However, at β ∼ 1%,
an instability with a dominant n = 1 structure grows in time. With the
presence of an ι- = 0.5 surface in the core, prominent n = 1 structures appear
that enhances the degree of stochasticity in the system relative to the case
shown in Figure 1. As in the first case, the temperature profile collapses
due to the prevalence of magnetic stochasticity late in the simulation with
a peak β ∼ 2.8% that is considerably lower than that obtained in the first
simulation.
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Figure 3- The evolution of β, kinetic energy perturbations, temperature profiles at
various times and Poincare plots of the magnetic field at t = 0, t = 1.0× 10−3 and
t = 1.18× 10−3. Unlike the cases shown in Figs. (1) and (2), the vacuum solution
contains small levels of 3-D magnetic field perturbations.

The distinguishing property of the case shown in Figure 3 relative to the
first two cases is the presence of 3-D components in the vacuum configura-
tion. A collection of small ∼ 10−4 magnetic harmonics of incommensurate
helicity are present from t = 0 in the simulation. Subsequent finite-β equi-
libria are 3-D. As shown in the middle figure on the left, the presence of the
3-D vacuum components delay the onset of MHD instabilities with dominant
n = 1 harmonics until β ∼ 3% is reached. While the profiles and the gross
macroscopic features are largely the same between the simulations shown
in Figs. (2) and (3), the onset condition for MHD instability and the peak
β are notably different. This suggest that the presence of intrinsically 3-D
magnetic field configurations can be a benefit to the stability properties.

The numerical experiments shown in Figures (1)-(3) can be repeated for
configurations without an ι- = 0.5 rational surface present in the configura-
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tion. While there are detailed differences, the trend is the same. We have
found cases where the plasma tends to be more resilient to instability and
have higher peak β values when 3-D components are present in the vacuum
magnetic field configuration.

III. Kinetic shielding of magnetic islands in 3-D equilibria
While MHD based models provide a useful basis for studying high-β

properties of 3-D configurations, kinetic physics can also influence magnetic
island physics in 3-D configurations. In this section, a kinetic theory for 3-D
plasmas is developed to describe non-MHD physics modifications to isolated
magnetic island formation.

In general 3-D equilibria, singular currents arise at rational surfaces if
topologically toroidal magnetic flux surfaces are assumed [1]. If flux surfaces
ψ exist, the equilibrium magnetic field can be written B = q∇ψ×∇θ+∇ζ×
∇ψ and the equilibrium current profile can be written J = λB+B×∇p/B2.
Writing the parallel current J · B/B2 = λ and 1/B2 in Fourier series,
λ = Σmnλmne

imθ−nζ , 1/B2 = B−2
00 [1 + Σmnδmne

imθ−inζ ], the quasineutal-
ity condition ∇ · J = 0 is Σmne

imθ−inζ [(m − nq)λmn + (dp/dψ)δmn(mG +
nI)/B2

00] = 0. Solutions to this equation have contributions of the form
λmn ∼ p′δmn(m− nq)−1. Resonant components of the Pfirsch-Schlüter cur-
rent solution have “1/x”-like singularities at the rational surfaces q = m/n
when δmn 6= 0. This singularity can be resolved by allowing for magnetic
islands at the rational surface. Self-consistent solutions for the magnetic
island width find that the island resolved Pfirsch-Schlüter currents provide
a mechanism to support the existence of this island.

In addition to Pfirsch-Schlüter currents, non-ideal MHD effects can also
produce resonant responses. In 3-D plasmas, variations of the viscous con-
tribution to the momentum balance produces perpendicular currents that
vary within the magnetic surface. Including this contribution to quasineu-
trality [S =

√
g∇ · J⊥,ν =

√
gΣs∇ · (B × ∇ · ~~πs/B2) = ΣmniSmnνe

imθ−inζ ]
produces an additional source in the general solution for λmn

λmn =
Smnν
m− nq

− dp

dψ

mG+ nI

B2
00

δmn
m− nq

+ ∆′
mnAmnδ(ψ − ψmn). (1)

The Pfirsch-Schlüter current and the first term due to the viscous source
have the 1/(m − nq) singular structure. The third term is a homogeneous
solution to the quasineutrality equation for the resonant harmonic of the
parallel current.

In order to resolve the singular response at q(ψo) = m/n, the presence
of a magnetic island chain is assumed. Its presence is incorporated into
deriving self-consistent island localized plasma currents due to both MHD
and kinetic responses. Ampere’s law is then used to derive self-consistent
magnetic island widths. The magnetic field is now described by B = ∇α×
∇ψ + ∇Ψ∗ × ∇χ where ψ serves as a radial-like variable, α = mθ − nζ is
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the helical angle of the island and χ is a poloidal angle like variable. The
magnetic field lines lie on surfaces of constant Ψ∗ = q′ox

2/2 − A cos(noα)
where q′o = dq/dψ|ψ=ψo , x = ψ−ψo and A is the island producing magnetic
field. The island width is given by w = 4

√
|A/q′o|

An analytic theory is developed to describe kinetic modifications to mag-
netic island width predictions of 3-D equilibria [5]. Drift kinetic theory is
used to calculate non-resistive MHD corrections to conventional analytic
island theory [1] for a quasi-symmetric configuration with B = Bo[1 −
εh cos(Mθ−Nζ)+ δB(ψ, θ, ζ) where Mθ−Nζ denotes the dominant helical
angle and the 3-D sidebands are assumed small (δB � εh). A kinetic theory
is used to deduce the effect of the helical side bands on trapped particles in
collisionless regimes. The bounce averaged kinetic equation is given by

<
∂f1

∂t
> + < vE ·∇α+v0

d ·∇α >
∂f1

∂α
− < C(f1) >= − < v1

d ·∇Ψ∗ >
∂fM
∂Ψ∗ ,

(2)
where the source term on the right denotes net radial drift of the trapped
particles off the magnetic surfaces due to 3-D components of 1/B2 and the
terms on the left describes the contribution from E × B and precessional
drifts within the flux surface and collisions. This kinetic distortion is conven-
tionally used to construct neoclassical transport in high temperature stel-
larators or equivalently the neoclassical toroidal viscosity (NTV) of tokamak
theory when axisymmetry is perturbed by small 3-D fields [6]. However, in
addition to this dissipative response, the kinetic distortion also describes a
reactive response that influences magnetic island physics. Solutions to this
equation are included in the quasineutrality equation

B · ∇λ+ Σsqs

∫
d3v(v1

d · ∇fM + v0
d · ∇f1) = 0, (3)

where superscripts 0(1) on the magnetic drift terms (vd) are calculated using
the quasi-symmetric (3-D) components of the magnetic field strength. In
the zero island width limit, the solution to Eq. (3) is given by Eq. (1)
where the middle term in the above describes the MHD physics source for
the Pfirsch-Schlüter current and the last term produces the viscous source.

Using Eq. (3) to solve for the island resolved parallel current and Am-
pere’s law, a self-consistent expression for the magnetic island width can be
derived. In the absence of the kinetic response, the saturated island width
given by |q′ow| ≈

√
Cδmn, where C ∼ βθ and δmn is the strength of the 3-D

component of the magnetic field.
In general, the kinetic response has both ’reactive’ and dissipative con-

tributions. The dissipative response is used to calculate the net viscous force
on the plasma that affects toroidal flow profile evolution [7]. The reactive
response describes currents that flow within the magnetic surface producing
magnetic fields in-phase with the island producing magnetic field. Generally,
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the reactive response is largest at smallest collisionality. Two classes of 3-D
magnetic fields can produce net radial particle drifts. The first is the O(δ)
contributions to the magnetic field spectrum. Of particular importance is
that part of f1 driven by the resonant component of 1/B2 ∼ δmn. The
second contribution is due to the island’s self-consistent deformation of the
magnetic field spectrum as originally pointed out by Shaing [8].

Recalculating the self-consistent island width accounting for the kinetic
modifications leads to a prediction for the saturated island width of the form

|q′ow|2 ≈ Cδmn(1−R)(1− w

wc
), (4)

where wc ∼ δmn(1−R)/ε′hRw. Here R and Rw characterize the strength of
the kinetic responses. The expressions for these two quantities are kinetic
space integrals over trapped particle space with characteristic amplitude
R ∼ Rw ∼ √

εh in the zero collision frequency limit. With small kinetic
shielding, the saturated island width scales as δ1/2mn . With kinetic responses,
the saturated island width effectively scales as w ∼ wc ∼ δmn. Since δmn �
1, the kinetic effects substantially reduce the predicted island width.

The implication of this work is that at high temperature, kinetic correc-
tions to magnetic island physics are significant in 3-D configurations. High
temperature stellarators are more resilient to flux surface breakup than the-
oretical predictions using conventional MHD models would imply. In order
to calculate the kinetic responses, closure calculations would need to be cou-
pled to extended MHD numerical tools. In particular, to account for the
effects discussed here, drift kinetic theory would be required to calculate the
pressure anisotropy and the associated contributions to the fluid momentum
balance through the closure contribution ∇ · ~~πs.
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