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Abstract. In the tokamak edge, quasi-stationary zonal flows are strongly sigaghesnd the turbulence
saturation is effected by several concurrent mechanisms includingegjeaacoustic modes (GAMS).
GAMs could offer a tempting way to control the turbulence independenteptbperties of the tur-
bulence modes themselves. However, at present they have beeimexgelly observed only at rather
weak displacement amplitudes compared to circular turbulence computatidres been explored by
numerical turbulence studies in how far flux surface ellipticity and the vigly gradients encountered
in the edge affect the GAM intensity. Since experimental flux surfaces isvtle interdependences be-
tween the various geometrical parameters, they are not well suitable tordiste effects on the GAM
from the ones on the turbulence. Therefore, a geometry variation leaschesen which maintains the
turbulence properties (growth rate, structure) at the outboard midpkaoenstant as possible, while
varying the linear GAM properties through the global properties of thedlufaces. That way, for the
variation of ellipticity a strong saturating effect mediated via the GAMs can beslguite convincingly.
In the absence of diamagnetic effects, such as for pure resistive hialipimrbulence, the diamagnetic
GAM drive is switched off and the GAMs are suppressed. Howeveslificiently high gradients, the
GAMs return because the ratio of turbulence free energy stored in éssyre fluctuations to the tur-
bulence kinetic energy rises, whereas the GAMs themselve maintain egc@bris of fluctuation and
kinetic energy. This results in a relative rise of the GAM kinetic energy in @imapn to the turbulent
kinetic energy, which significantly reduces the turbulence to intensities whilvbthe mixing length
estimate. In the limit of infinite gradients, a quasistationary flow pattern resuiishweompletely sup-
presses the transport. Moreover, in the edge regime relevant to the GiAdfdasma parameters change
so rapidly that radial drifts conveyed by the group velocity of the GAMs lsacome important. It is
shown that the turbulence itself can be responsible for the dominantfpibet@ffect.

1. Introduction

While at present there is a tendency to ascribe the saturatiail forms of tokamak turbu-
lence to quasi-stationary zonal flows (ZF), this is not theecim edge turbulence, where the
ZFs are strongly suppressed due to the long connectionhdahgte [1]. In the edge there
are several concurrent saturation mechanisms wherebsagatuby geodesic acoustic modes
(GAM), oscillating global flows, has some similarities teethne by core ZF and is the only
one experimentally detectable and susceptible to plasnaaneders and geometry, independent
of the turbulence. Although GAMs potentially offer a way tntrol the local turbulence, ex-
perimental measurements of their amplitude so far seem tionited to cases of rather weak
activity with displacement amplitudes gf 1cm [5, 6], which are unlikely to seriously reduce
the turbulence amplitudes as effectively as seen in tuncelesimulations for the transitional
regime in [4].

One difference is the simplistic circular geometry usedse simulations, whence it has been
explored in how far flux surface ellipticity modifies GAM agty and its impact on the turbu-
lence. Studying moreover the effect of the (experimentatigertain) background gradients on
the GAM activity, it was found that very high gradients in fpaular can cause rather strong
GAMs with a substantial impact on the transport.
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Figure 1: Color coded GAM poloidal flow velocity far= 1.7 (top),k = 1 (middle),k = 0.5;
note the different scale lengths and frequencies.

Moreover, the rapid change of the parameters — in partidhkar of the sound speed being
proportional to the linear GAM frequency — renders the ragtiteraction of the GAMs on
neighbouring flux surface [9, 10] quite important, and raige question in what spatial pattern
the GAMs will organize themselves. This could involve rdfil@e layers exhibiting a peaking
of the GAMSs, radial propagation of GAM energy away from tudmi regions generating it, or
nonlinear changes of the GAM dispersion relation.

Numerical turbulence studies were performed with the NLBdec[7] using two-fluid electro-
static Braginskii equations with modified parallel heat aactébn coefficient implementing a
collisionless heat flux limit. The magnetic geometry wagespnted by local Miller-equilibria

[8].
2. Ellipticity

When simply using the experimental flux surface shape in tarnme simulations it is quite hard

to separate the geometry effect on the turbulence itseff fitee one on the GAMs, while on

the other hand experimentally neither the magnetic gegnmetr the gradients in the plasma
are sufficiently accurately known to determine the corradbulence regime. Changing the
magnetic geometry of computer turbulence studies in agstii@rward manner thus usually
results in qualitatively different types of turbulence tbe different geometries, which cannot
be compared with each other. Empirically it turns out thahfixhe ratio of gradient lengths,

magnetic curvature radii and the local shear length at thkboaud midplane results in well

comparable scenarios.
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Figure 2: Time evolution of particle flux for isothermal retsre ballooning turbulence simula-
tion with Lp/R=0.01 (top), 0.0025 (middle), O (bottom) in the respectiveing length units.
Particle flux becomes bursty and eventually dies out in thé bf large gradients.

Fig. 1 compares GAM flow-patterns for ellipticiky= 0.5, 1, 1.7 and concomittarg, = dInk /dInr=
—0.5, 0, 0.7, respectively, with ratio of connection length to locaéahlength at the outboard
midplaneL./Ls = 21 corresponding to total shear= 1 for circular concentric flux surfaces.
The total shear dinglinr (r is the Miller radius) was @7, 1.00, 2.95, respectively. The
other parameters were taken to be identical as in [4]. Aparhfthe change in frequency,
which follows the linear predicitions, the flow patterns grelitatively identical. The turbu-
lent heat fluxes were, respectivejyp3cs/R) = 10, 1.0, 0.10, while the RMS flow levels are
(|vel)/Vvdie = 0.95, 1.64, 1.44. To clarify, whether the tenfold transport reductiondach step
of increasing ellipticity is in part due to the GAMSs, the tulbnce simulations fox = 1 and 17
have been restarted, while artificially suppressing thediuface averaged poloidal flows. This
yielded the transport coefficienggp3cs/R) = 10, 2.5, which are an order of magnitude larger
and also show less favourable influence from the elliptittign the runs with self-consistent
GAMs.

2. High gradient regime

In the absence of diamagnetic velocities, such as for pwistiee ballooning turbulence, the
diamagnetic drive [1] is completely switched off, whenceriormal edge gradients GAM ac-
tivity is suppressed [4]. However, for sufficiently high drants, the GAMs return. Fig. 2
shows the space-average particle flux for isothermal resiballooning turbulence at varying
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gradients in mixing length units as a function of time. Thefhows a marked decrease and
a transition from continuous transport to bursts due to tAd@scillations, while it would be
constant due to the mixing length normalisation if the tlehae were saturating by a turbulent
cascade.

The reason for this change is the behavior of the ratio ollerice kinetic energg, to fluctu-
ation free energ¥,. It can be estimated order-of-magnitudewise in the mixemgth frame-
work as follows: During an eddy turn over time — one step imaloan walk process for the pres-
sure fluctuations — a percentagd_p /R (L is the pressure gradient lengfthe curvature,i.e.
major, radius) of the fluctuation free energy is converted kinetic energy by expansion of the
plasma in the inhomogeneous magnetic field, while the reisspated. Therefore,

Eo, V2 _Lp
wheredp andv are the typical pressure and velocity fluctuation amplisud€or sufficiently
large gradientsp < R andv? < dp?, whence the Reynolds stress is negligible compared to the
GAM drive by asymmetric anomalous transport [4] via ther&ter-Winsor force (SW). Since
the average GAM amplitude is then in balance with the SW dawel not the Reynolds stress),
it is scaled up in comparison to the turbulence velocitigsifioreasing gradients, eventually
suppressing the turbulence.

In the limit Lp/R — 0 a quasistationary flow pattern results, which completafypsesses the
transport (in mixing length units).

3. Radial propagation at rapidly varying parameters

The rate of parameter variation can be described by the tatialof turbulence to background
gradient scale lengtis ' = L, /L, 0 p* = ps/R, with the turbulence scale length , whereby
A ~ 5—50 for typical edge scenarios.

Fig. 3 shows GAMs being excited by high gradient ITG modes @ase of still moderate pa-
rameter variation) = 200. From the flow pattern (a) it is obvious that the oscitlatirequency
decreases towards the edge, which is due to the decreasind speed, otherwise apparently
rather unaffected by the parameter variation. As is seen ums8inesq simulations [4], the
GAMs are excited with a preferred radial wavenumber, whatether with the linear GAM
frequency sets the observed inward and outward phase tretocirhe Fourier transform of the
poloidal flow velocity with respect to time (b) reveals thia¢ frequency depends continuously
on the spatial variable. An asymmetry is however conspisunuhe spectrum: there is an
amplitude of the GAMs of a particular frequency even at sohevarger radii than the one
corresponding to their linear frequency (blue line), but the other way round. The GAMs
radiate outward from a given radius. The cause for this effect can be gleagddtabsforming
selectively one frequency of the Fourier representation ieal space, as shown in (c). The
particular GAM is seen to correspond to a wave travellingardv(to lower radii) and being
reflected by the surface correspondingte= 0. This can be comfirmed by comparison of the
shape of the waves close to the reflection with the one olutdinen a generic GAM dispersion
relation. We approximate the GAM dispersion relation cltusie = 0 by

weam (1 k) = weam (1, 0) (1+ok?) = yes(r) (1 +ak), (1)

wherey is the geometry dependent ratio of GAM frequency and souegd@andx sets the
strength of the dispersion (the linear term has to vanislByormetry reasons). (As it turns out
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Figure 3: (a) GAM poloidal flow velocity for linear density @riemperature profiler; =
Ln/Lt = 2.4,en = .05,04 = 0.5 (for definitions see [7]). fcam,0 iS the GAM frequency at

r = 0. (b) Frequency spectrum versus radius ugfge= 157; linear GAM frequency (blue line).
Note the GAM activity atx = 300ps at 140% of the linear frequency. (c) Filtered component
at f = 1.02fgam o0; fit with r(t) = c(t —to)%2 (black), r O (t —to)? (green),r O (t — to)*/®
(yellow).

o is much larger than expected from the linear dispersiomg¢eSihe frequency is fixed in Fig. 3
(b), one obtains from a WKB argument

_ | {weam - 0r WsAM B
ke = \/<Vcs(r) 1) ja= \/GwGAM(ro,O) (fo—r), (@)

with cut-off/reflection occuring aty with weam,0 = Ycs(ro). Any curver (t) of constant phase
has to follow the equation

r'or@=0i0=r'k:(r) = wgam = rl\/(arwGAM/(awGAM,O))(rO — 1) = WeAm )

= g\/_arwGAM/(awGAM,O)(r(t) —10)*% = weam(t —to) @)

(5)

9w (t —to)Z] 1/3

—r{t)=ro+ |-
(t)=ro [ 40, Weam
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Figure 4. GAM poloidal flow for strong parameter variatiorr&@meters at centar= 50,1; =
2.5,e, = 0.3 (for details see [7] fig. 1b).

The predicted curve of form(t) = ro+ c(t —to)%/3 has been fitted to one of the wave fronts in
(c). A slightly different exponent results already in a ntjgforroborating the correctness of the
ansatz (1) for the nonlinear dispersion relation. The disipa coefficientx ~ 100p2 extracted
from the fit is much larger than expected from linear GAM disjmn relations € p2) — it is
thus a predominantly nonlinear effect. (The signoofiepends on the turbulence parameters.
E.g., for highem; ~ 5 and otherwise identical parameters, the reflection sceoathe GAMs
turns out to be exactly reversed.) The correspondomijinear group velocity [11] of the GAMs
selected by the turbulence of orderlOpstwcanm is even significantly larger than the maximum
curvature drift velocitiesy ~ psCs/Rwhich limit the linear group velocity of the GAMs [9, 10].

In other words, the GAM frequency in the presence of turbeaediffers from the linear GAM
frequency by a factor 4 ak? (~ 30% here), whereby, owing to the observed reflection layers,
the actuak; will depend also on the radial profile of the sound speed.

For sufficiently strong parameter variation, the GAMs maygbeerated only in a part of the
computational domain, as shown in Fig. 4 foe= 50. The GAMs radiate outward from the
generation region at~ 0, maintaining their frequency, which indicates a radiargy transfer.
The short radial decay length prohibits the straighforvegrplication of the WKB method. The
phase velocity is nevertheless directed outward from tlet pdhere the GAMs are generated,
i.e., in the direction of the energy flow. The fact that phasksity and energy flow point in
the same direction is again consistent with (1) for positivdln contrast to the case of weak
parameter variation in the preceding section, the GAMs arapgd by the turbulence away
from the generation region and can therefore not propagatéisant distances.

4. Summary

Numerical turbulence studies pertaining to edge pararstes® that turbulence driven GAMs
can control the transport — reducing it by a an order of mageit- in situations where either
strong diamagnetic effects give rise to the diamagnetic GétiMe due to fluctuating back-
ground profiles, or the free energy of pressure fluctuatiand (ith it the Stringe-Winsor driven
GAM fluctuations) is much larger than the turbulence kinetiergy, such as in the edge and
potentially in transport barriers. Due to the rapid paraneariation in the edge GAM regime,
its radial dispersion becomes important, whereby the tartieffects completely dominate the
linear dispersive effects and greatly increase the rad@igvelocities. In the case of an ex-
tended region of GAM generating turbulence, propagatiothefGAMs rather far away from
the point of their base frequency can be observed. In thesiigpcase only a weak propagation
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into regions where GAMs are damped occurs.
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