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Abstract. In the tokamak edge, quasi-stationary zonal flows are strongly suppressed, and the turbulence
saturation is effected by several concurrent mechanisms including geodesic acoustic modes (GAMs).
GAMs could offer a tempting way to control the turbulence independent of the properties of the tur-
bulence modes themselves. However, at present they have been experimentally observed only at rather
weak displacement amplitudes compared to circular turbulence computations. It has been explored by
numerical turbulence studies in how far flux surface ellipticity and the very high gradients encountered
in the edge affect the GAM intensity. Since experimental flux surfaces have subtle interdependences be-
tween the various geometrical parameters, they are not well suitable to discriminate effects on the GAM
from the ones on the turbulence. Therefore, a geometry variation has been chosen which maintains the
turbulence properties (growth rate, structure) at the outboard midplane as constant as possible, while
varying the linear GAM properties through the global properties of the fluxsurfaces. That way, for the
variation of ellipticity a strong saturating effect mediated via the GAMs can be shown quite convincingly.
In the absence of diamagnetic effects, such as for pure resistive ballooning turbulence, the diamagnetic
GAM drive is switched off and the GAMs are suppressed. However forsufficiently high gradients, the
GAMs return because the ratio of turbulence free energy stored in the pressure fluctuations to the tur-
bulence kinetic energy rises, whereas the GAMs themselve maintain equal fractions of fluctuation and
kinetic energy. This results in a relative rise of the GAM kinetic energy in comparison to the turbulent
kinetic energy, which significantly reduces the turbulence to intensities well below the mixing length
estimate. In the limit of infinite gradients, a quasistationary flow pattern results, which completely sup-
presses the transport. Moreover, in the edge regime relevant to the GAMs, the plasma parameters change
so rapidly that radial drifts conveyed by the group velocity of the GAMs can become important. It is
shown that the turbulence itself can be responsible for the dominant part of that effect.

1. Introduction

While at present there is a tendency to ascribe the saturationof all forms of tokamak turbu-
lence to quasi-stationary zonal flows (ZF), this is not the case in edge turbulence, where the
ZFs are strongly suppressed due to the long connection length there [1]. In the edge there
are several concurrent saturation mechanisms whereby saturation by geodesic acoustic modes
(GAM), oscillating global flows, has some similarities to the one by core ZF and is the only
one experimentally detectable and susceptible to plasma parameters and geometry, independent
of the turbulence. Although GAMs potentially offer a way to control the local turbulence, ex-
perimental measurements of their amplitude so far seem to belimited to cases of rather weak
activity with displacement amplitudes of. 1cm [5, 6], which are unlikely to seriously reduce
the turbulence amplitudes as effectively as seen in turbulence simulations for the transitional
regime in [4].

One difference is the simplistic circular geometry used in those simulations, whence it has been
explored in how far flux surface ellipticity modifies GAM activity and its impact on the turbu-
lence. Studying moreover the effect of the (experimentallyuncertain) background gradients on
the GAM activity, it was found that very high gradients in particular can cause rather strong
GAMs with a substantial impact on the transport.
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Figure 1: Color coded GAM poloidal flow velocity forκ = 1.7 (top),κ = 1 (middle),κ = 0.5;
note the different scale lengths and frequencies.

Moreover, the rapid change of the parameters – in particularthat of the sound speed being
proportional to the linear GAM frequency – renders the radial interaction of the GAMs on
neighbouring flux surface [9, 10] quite important, and raises the question in what spatial pattern
the GAMs will organize themselves. This could involve reflection layers exhibiting a peaking
of the GAMs, radial propagation of GAM energy away from turbulent regions generating it, or
nonlinear changes of the GAM dispersion relation.

Numerical turbulence studies were performed with the NLET code [7] using two-fluid electro-
static Braginskii equations with modified parallel heat conduction coefficient implementing a
collisionless heat flux limit. The magnetic geometry was represented by local Miller-equilibria
[8].

2. Ellipticity

When simply using the experimental flux surface shape in turbulence simulations it is quite hard
to separate the geometry effect on the turbulence itself from the one on the GAMs, while on
the other hand experimentally neither the magnetic geometry nor the gradients in the plasma
are sufficiently accurately known to determine the correct turbulence regime. Changing the
magnetic geometry of computer turbulence studies in a straightforward manner thus usually
results in qualitatively different types of turbulence forthe different geometries, which cannot
be compared with each other. Empirically it turns out that fixing the ratio of gradient lengths,
magnetic curvature radii and the local shear length at the outboard midplane results in well
comparable scenarios.
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Figure 2: Time evolution of particle flux for isothermal resistive ballooning turbulence simula-
tion with Lp/R = 0.01 (top), 0.0025 (middle), 0 (bottom) in the respective mixing length units.
Particle flux becomes bursty and eventually dies out in the limit of large gradients.

Fig. 1 compares GAM flow-patterns for ellipticityκ = 0.5, 1, 1.7 and concomittantsκ ≡dlnκ/dlnr=
−0.5, 0, 0.7, respectively, with ratio of connection length to local shear length at the outboard
midplaneLc/Ls = 2π corresponding to total shears = 1 for circular concentric flux surfaces.
The total shear d lnq/dlnr (r is the Miller radius) was 0.47, 1.00, 2.95, respectively. The
other parameters were taken to be identical as in [4]. Apart from the change in frequency,
which follows the linear predicitions, the flow patterns arequalitatively identical. The turbu-
lent heat fluxes were, respectively,χ(ρ2

s cs/R) = 10, 1.0, 0.10, while the RMS flow levels are
〈|vθ|〉/vdi,e = 0.95, 1.64, 1.44. To clarify, whether the tenfold transport reduction foreach step
of increasing ellipticity is in part due to the GAMs, the turbulence simulations forκ = 1 and 1.7
have been restarted, while artificially suppressing the fluxsurface averaged poloidal flows. This
yielded the transport coefficientsχ(ρ2

s cs/R) = 10, 2.5, which are an order of magnitude larger
and also show less favourable influence from the ellipticitythan the runs with self-consistent
GAMs.

2. High gradient regime

In the absence of diamagnetic velocities, such as for pure resistive ballooning turbulence, the
diamagnetic drive [1] is completely switched off, whence for normal edge gradients GAM ac-
tivity is suppressed [4]. However, for sufficiently high gradients, the GAMs return. Fig. 2
shows the space-average particle flux for isothermal resistive ballooning turbulence at varying
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gradients in mixing length units as a function of time. The flux shows a marked decrease and
a transition from continuous transport to bursts due to the GAM oscillations, while it would be
constant due to the mixing length normalisation if the turbulence were saturating by a turbulent
cascade.

The reason for this change is the behavior of the ratio of turbulence kinetic energyEφ to fluctu-
ation free energyEp. It can be estimated order-of-magnitudewise in the mixing-length frame-
work as follows: During an eddy turn over time – one step in a random walk process for the pres-
sure fluctuations – a percentage∝ Lp/R (Lp is the pressure gradient length,R the curvature,i.e.
major, radius) of the fluctuation free energy is converted into kinetic energy by expansion of the
plasma in the inhomogeneous magnetic field, while the rest isdissipated. Therefore,

Eφ

Ep
∼

v2

δp2 ∝
Lp

R
≪ 1

whereδp andv are the typical pressure and velocity fluctuation amplitudes. For sufficiently
large gradientsLp ≪ R andv2 ≪ δp2, whence the Reynolds stress is negligible compared to the
GAM drive by asymmetric anomalous transport [4] via the Stringer-Winsor force (SW). Since
the average GAM amplitude is then in balance with the SW drive(and not the Reynolds stress),
it is scaled up in comparison to the turbulence velocities for increasing gradients, eventually
suppressing the turbulence.

In the limit Lp/R → 0 a quasistationary flow pattern results, which completely suppresses the
transport (in mixing length units).

3. Radial propagation at rapidly varying parameters

The rate of parameter variation can be described by the localratio of turbulence to background
gradient scale lengthsλ−1 = L⊥/Ln ∝ ρ∗ = ρs/R, with the turbulence scale lengthL⊥, whereby
λ ∼ 5−50 for typical edge scenarios.

Fig. 3 shows GAMs being excited by high gradient ITG modes in acase of still moderate pa-
rameter variation,λ = 200. From the flow pattern (a) it is obvious that the oscillation frequency
decreases towards the edge, which is due to the decreasing sound speed, otherwise apparently
rather unaffected by the parameter variation. As is seen in Boussinesq simulations [4], the
GAMs are excited with a preferred radial wavenumber, which together with the linear GAM
frequency sets the observed inward and outward phase velocities. The Fourier transform of the
poloidal flow velocity with respect to time (b) reveals that the frequency depends continuously
on the spatial variable. An asymmetry is however conspicuous in the spectrum: there is an
amplitude of the GAMs of a particular frequency even at somewhat larger radii than the one
corresponding to their linear frequency (blue line), but not the other way round. The GAMs
radiate outward from a given radius. The cause for this effect can be gleaned by transforming
selectively one frequency of the Fourier representation into real space, as shown in (c). The
particular GAM is seen to correspond to a wave travelling inward (to lower radii) and being
reflected by the surface corresponding tokr = 0. This can be comfirmed by comparison of the
shape of the waves close to the reflection with the one obtained from a generic GAM dispersion
relation. We approximate the GAM dispersion relation closeto kr = 0 by

ωGAM(r,kr) = ωGAM(r,0)(1+αk2
r ) = γcs(r)(1+αk2

r ), (1)

whereγ is the geometry dependent ratio of GAM frequency and sound speed andα sets the
strength of the dispersion (the linear term has to vanish forsymmetry reasons). (As it turns out
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(a)

(b)

(c)

Figure 3: (a) GAM poloidal flow velocity for linear density and temperature profile,ηi =
Ln/LT = 2.4,εn = .05,αd = 0.5 (for definitions see [7]). fGAM,0 is the GAM frequency at
r = 0. (b) Frequency spectrum versus radius up tot f0 = 157; linear GAM frequency (blue line).
Note the GAM activity atx = 300ρs at 140% of the linear frequency. (c) Filtered component
at f = 1.02fGAM,0; fit with r(t) = c(t − t0)2/3 (black), r ∝ (t − t0)1/2 (green),r ∝ (t − t0)4/5

(yellow).

α is much larger than expected from the linear dispersion.) Since the frequency is fixed in Fig. 3
(b), one obtains from a WKB argument

kr =

√

(

ωGAM

γcs(r)
−1

)

/α ≈

√

∂rωGAM

αωGAM(r0,0)
(r0− r), (2)

with cut-off/reflection occuring atr0 with ωGAM,0 = γcs(r0). Any curver(t) of constant phase
has to follow the equation

r′∂rφ = ∂tφ ⇒ r′kr(r) = ωGAM ⇒ r′
√

(∂rωGAM/(αωGAM,0))(r0− r) = ωGAM (3)

⇒
2
3

√

−∂rωGAM/(αωGAM,0)(r(t)− r0)
3/2 = ωGAM(t − t0) (4)

⇐⇒ r(t) = r0 +

[

−
9αω3

GAM(t − t0)2

4∂rωGAM

]1/3

. (5)
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Figure 4: GAM poloidal flow for strong parameter variation. Parameters at centerλ = 50,ηi =
2.5,εn = 0.3 (for details see [7] fig. 1b).

The predicted curve of formr(t) = r0 + c(t − t0)2/3 has been fitted to one of the wave fronts in
(c). A slightly different exponent results already in a misfit, corroborating the correctness of the
ansatz (1) for the nonlinear dispersion relation. The dispersion coefficientα ≈ 100ρ2

s extracted
from the fit is much larger than expected from linear GAM dispersion relations (∼ ρ2

s ) – it is
thus a predominantly nonlinear effect. (The sign ofα depends on the turbulence parameters.
E.g., for higherηi ∼ 5 and otherwise identical parameters, the reflection scenario of the GAMs
turns out to be exactly reversed.) The correspondingnonlinear group velocity [11] of the GAMs
selected by the turbulence of order∼ 10ρsωGAM is even significantly larger than the maximum
curvature drift velocitiesvd ∼ ρscs/R which limit the linear group velocity of the GAMs [9, 10].
In other words, the GAM frequency in the presence of turbulence differs from the linear GAM
frequency by a factor 1+αk2

r (∼ 30% here), whereby, owing to the observed reflection layers,
the actualkr will depend also on the radial profile of the sound speed.

For sufficiently strong parameter variation, the GAMs may begenerated only in a part of the
computational domain, as shown in Fig. 4 forλ = 50. The GAMs radiate outward from the
generation region atr ∼ 0, maintaining their frequency, which indicates a radial energy transfer.
The short radial decay length prohibits the straighforwardapplication of the WKB method. The
phase velocity is nevertheless directed outward from the point where the GAMs are generated,
i.e., in the direction of the energy flow. The fact that phase velocity and energy flow point in
the same direction is again consistent with (1) for positiveα. In contrast to the case of weak
parameter variation in the preceding section, the GAMs are damped by the turbulence away
from the generation region and can therefore not propagate significant distances.

4. Summary

Numerical turbulence studies pertaining to edge paramtersshow that turbulence driven GAMs
can control the transport – reducing it by a an order of magnitude – in situations where either
strong diamagnetic effects give rise to the diamagnetic GAMdrive due to fluctuating back-
ground profiles, or the free energy of pressure fluctuations (and with it the Stringe-Winsor driven
GAM fluctuations) is much larger than the turbulence kineticenergy, such as in the edge and
potentially in transport barriers. Due to the rapid parameter variation in the edge GAM regime,
its radial dispersion becomes important, whereby the turbulent effects completely dominate the
linear dispersive effects and greatly increase the radial group velocities. In the case of an ex-
tended region of GAM generating turbulence, propagation ofthe GAMs rather far away from
the point of their base frequency can be observed. In the opposite case only a weak propagation
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into regions where GAMs are damped occurs.
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