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Dynamics of wave-number spectrum of plasma turbulence

O. D. Giircan,* P. Hennequin, and L. Vermare

Laboratoire de Physique des Plasmas, FEcole Polytechnique,
CNRS, 91128 Palaiseau Cedex, France

A. Casati, X. Garbet, G. L. Falchetto, and C. Bourdelle
CFEA, IRFM, F-13108 Saint Paul Lez Durance, France

P. H. Diamond
WCI, Center for Fusion Theory, NFRI, Daejeon, Republic of Korea and
CMTFO, UCSD, San Diego, CA, USA

Nonlinear dynamics of a family of reduced plasma turbulence models has been
formulated using dimensonal analysis and simple shell models. The steady state
solutions of these simple models give power law-like solutions for the wave-number
spectrum of plasma fluctuations. Albeit its simplicity in terms of linear physics, such
models can be applied to a real plasma in the range of wave-numbers where the
linear drive is negligible. It is shown that the simple analytical solution representing
the steady state where non-local interactions dominate over the local cascade process,
agrees reasonably well with the measured wave-number spectrum from the Tore Supra

tokamak.

I. INTRODUCTION

A significant ratio of the energy and particle loss in fusion devices is due to anomalous
transport processes. Small scale turbulence, supplied by some form of drift instability is
usually the primary cause of such transport. These instabilities are driven unstable by the
inevitable inhomogeneities in a confinement device (i.e. “profiles”, of temperature, particle
density etc.). Focusing at ion scales, the drift instabilities are driven unstable by the free
energy source from background gradients from the profiles coupled with either energy dy-
namics (e.g. ion temperature gradient driven -ITG- mode) or non-adiabaticity in the electron
response (e.g. collisional drift instabilities or trapped electron modes -TEM-). Whether the
non-adiabaticity is due to collisions or not, collisions in modern fusion devices are sufficiently
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rare that the transport due to collisions is ineffective in getting rid of the inhomogeneities
in profiles rapidly. This being the case, the only way the plasma can dispose of the in-
homogeneities due to localized deposition and confinement, and thus increase entropy, is
by sacrificing some of this free energy to drive certain collective particle motions that can,
on average, cause transport. This happens when the collective motion of particles and the
associated oscillating fields lead to an imbalance between the number of particles (or their
energies) going in one direction than the other. Since many kinds of collective motions
are possible in a plasma, one can think of the micro-instabilities as being “selected” due
to their efficiency in removing the inhomogeneity in heat and particle deposition imposed
by the confinement and heating schemes. In particular, the most unstable mode under a
given plasma profile, corresponds roughly to the collective motion that is the most efficient
in transporting the quantity whose inhomogeneity acts as the free energy source, among all
the possible collective motions that the plasma dynamics permit.

Nonlinear interactions limit the efficiency of anomalous transport due to collective mo-
tions. This is natural since the energy can not simply keep accumulating at the most unstable
mode: it gets transferred to modes that are less efficient in transporting particles and en-
ergy via mode coupling. This can be viewed as a transfer of energy (or another conserved
quantity) in k-space. The fact that the plasma turbulence reaches steady state, implies that
the mode coupling and linear instability drive become roughly comparable. This is true in
particular near the most-unstable mode, where the turbulence energy is “injected”.

Since the turbulence decorrelation rate is a functional of the intensity of turbulent fluc-
tuations, the turbulence can grow until the local effective decorrelation rate on the scales
corresponding to the most unstable mode becomes approximately equal to the linear growth
rate. In this stage, the energy injected at that scale at the rate given by the linear instability
drive is decorrelated at approximately the same rate, leading to a steady state. While this
picture allows us to describe qualitatively the nonlinear dynamics near the most unstable
mode, it fails to describe the turbulent energy transfer (i.e. cascade) dynamics far from the
scale of the instability drive.

In this paper, we study this nonlinear transfer process far from the energy injection scale
which we take roughly to correspond to the scale of the most unstable mode. We will
propose simple spectral cascade models that can be used to study the nonlinear dynamics of
the spectral transfer. This allows us to describe the temporal evolution of the wave number
spectrum of density or electrostatic potential fluctuations under certain assumptions. Wave
number spectrum is an important observable, which is widely used in the modelling of
similar kinds of nonlinear mode coupling processes in neutral fluid turbulence. It can be
directly measured in a tokamak using various different methods. It allows probing the
characteristics of the underlying micro-turbulence [1] and gives information about transport
and its anomalous nature. In principle this also permits direct comparison to numerical
simulations. It was shown recently that when diagnostics are carefully interpreted, direct
gyrokinetic simulations can be shown to agree with experimental observations [2|, which
roughly give an isotropic spectrum in the wave-number range where the measurements were
made. (i.e. 0.5 < kyps < 3.0).

Wave number spectrum is also important for validation, in that it provides detailed
information [3| that can be compared to numerical simulations. Today, direct numerical
simulations of gyro-kinetic Vlasov equation appear as the main tools for studying anomalous
transport. These simulations are used either directly or as part of multi-scale modelling, for
predictions of the transport in parameter regimes that are inaccessible by existing devices.
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These predictions affect policy decisions. Therefore it is rather critical that we are sure
that these numerical simulations describe the same kind of micro-turbulence as observed in
tokamaks. While direct comparisons between experiment and theory is essential in order
to increase our confidence in these models ( as done in Ref. 2), phenomonological study
of the experimental measurements from a theoretical point of view, with an eye on the
synthesis of the foremost dynamical mechanisms is also crucial for understanding. Such an
approach is useful, in particular when a direct comparison between experiment and numerical
simulation is not possible due to various underlying assumptions and limited resolution in
direct numerical simulations by contracting the vast amount of observed data in the form
of simple physical concepts.

II. WAVE NUMBER SPECTRUM OF DRIFT WAVE TURBULENCE
A. Dimensional Analysis

The simplest way to derive the wave-number spectrum of turbulence is dimensional anal-
ysis. The formulation involves finding a conserved quantity, and assuming that there exists
a range of scales, for which it is reasonable to assume the production and dissipation of this
conserved quantity can be neglected. Such a range is generally called an inertial range, and
usually named after the conserved quantity which is transferred indicating also the direction
of the transfer (e.g. “energy inverse cascade range”, “enstrophy forward cascade range” etc.).

In fusion plasmas, existence of such an inertial range is questionable. This is so, because
the injection is not really localized and there exists a multitude of linear instabilities each of
which injecting turbulence energy in the vicinity of the spatial scale corresponding to their
most-unstable modes. Furthermore, the injection scale itself is not well-localized and it is
common to have multiple linear instabilities overlaping in a given region. Dissipation is not
truly localized in fusion plasmas either, since the main processes that dissipate turbulence
energy are Landau damping and the existance of linearly damped large scale structures that
feed on turbulence. Both of these may extract energy from micro-turbulence over a wide
range of spatial scales.

Albeit these complications (and others such as intrinsic anisotropy of energy injection), it
is nevertheless important to study the non-linear dynamics of turbulence at a basic level in
order to develop an understanding of its behaviour. For instance the question, “what would
we expect as the wave-number spectrum if we had a well-defined inertial range?” is a valid
and an important one.

The potential vorticity (PV) defined as

han— Vo (1)

is approximately conserved by the nonlinear dynamics of fusion plasmas|4]. This means that
we can write:
0 0

W (k) = =Dy (k) + P (k) = 2w (k) (2)

where W (k) = [ kdoy, f:f: hihed?k’ is the potential enstrophy (PE) density at wave-
number k, Iy (k) is the k-space flux, Py (k) is the production (due to drive) and ey (k)

is the dissipation of potential enstrophy. For the forward potential enstrophy cascade,
P(k) =0 for k > k; and e (k) = 0 for k < k4 (i.e. k; is the “injection” and ky is the
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“dissipation” wave-numbers). In other words, in the potential enstrophy inertial range (i.e.
k; < k < k), the only non-vanishing term on the right hand side is the nonlinear transfer.

1.  Forward Potential Enstrophy Cascade

If we integrate (2) from k to oo, (where k is in the intertial range), we find that in steady
state, the flux in k-space is constant [i.e. Iy (k) = 8 where 3 = [ ey (k) dk]. In general,
the flux of PE can be estimated using dimensional analysis as:

Iy (k) < W (k) Ex (k)" K5/ (3)

Note that, in order to write (3) one has to assume that both the flux and the interactions
are local in k-space, since the expression involves a single spatial scale k. Here Eg (k) =

[ kdoy, :f: d’k’ [(k - k') @, Py/] is the kinetic energy density at wave-number k.

ﬁkf5/2
m e —
for the forward cascade range where Il = ( is constant. Note that the above expression
works equally for the 2D Euler turbulence, where Ex (k) = E (k) = k72W (k) where we get
the simple result W (k) oc 3%3k~!, for enstrophy or the familiar expression F (k) = 3*3k~3
for energy|5]. However this implies for instance that f:f; PP [Py D] — {|Pi|*) ox B¥36

W (k) (4)

2. Nonlocal interactions

Nonlocal interactions with a single dominant mode can be added to (2) in a simple way

as:
0 0 by 0
—W (k) =—=11I k,q) — =11}y (k) + Pw (k) — k
W () = = TG (k,0) — 2T ) + Py () — 2w ()
where Hg,l[; (k) is the local k-space flux as in the previous section, and Hgﬁl) (k,q) is the nonlo-
cal flux, driven by the dominant mode, which is now a function of both £ , the wavenumber
of the scale we look at, and ¢, the wave-number of the dominant mode . We can write the
nonlocal flux in the form:

. o
1 (k,q) = — /0 ARK (2 @ K) [Fghicrahi, + Bahi gl -

Using dimensional analysis (noting that E (q) = q2531 does not have the same dimensions,
in real units, as Fy (k)):
I (k.q) = E (@2 W (k) 12

And for Hgﬁl) > Hg}, we get a limiting form for the enstrophy spectrum given by:

b k2.

WUC)O(W
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This means that the density fluctuation spectrum far from the dominant mode can be

expressed as
]{Z_?’

)72 (1 k)’

2 B
() o 2

under the adiabatic electron assumption.

Note that, here the dominant mode corresponds to the mode that is most efficient in
terms on nonlinear interactions. It is assumed that even the non-local interactions with
this single, discrete mode is more effective than the local interactions with the neighbouring
modes. This could be due to the fact that the spectrum is dominated by a single discrete
mode. We expect this mode to correspond to a large scale flow mode such as a zonal flow
or a geodesic acoustic mode (GAM).

3. Inverse Energy Cascade

If the PV equation is invertable [i.e. under certain assumptions, we can solve for @y (t) =
Lihy|, an equation for energy can be written. As in the above case, we can write

Mg (k) ~ Ex (k)W (k)" 12
from dimensional analysis. This gives

2].—3

W (k) oc ——
Ey (k)

or W (k) = €2/3k'/3 for enstropy, and E (k) = ¢*3k=/3 for energy for 2D Euler turbulence.

Note that the well-known Kraichnan-Kolmogorov spectra that we recover here, i.e. F (k)

~ 2
{k=3,k=5/3}, actually imply ’@k’ oc {k76, k714/3} respectively. As can be seen in Figure 3,
these don’t correspond to the experimental measurements.

B. Shell model approach

Shell models are used in neutral fluid and magnetohydrodynamic (MHD) turbulence
to describe the nonlinear dynamics of the wave-number spectrum in a cascade process.
They correspond to a severe reduction of the initial physics model to a system of ordinary
differential equations that can be treated as a simple dynamical system. They respect the
initial conservation laws of the physics model, and thus possess similar characteristics with
it. In particular, they have fixed points associated with the power-law spectra of the original
physics model.

The shell models have not been very popular for fusion plasmas historically. In fact, the
simple Hasegawa-Mima shell model as derived by Ottinger and Carati [6] is the first example
of a shell model for fusion plasmas that the current authors are aware of. Here we present
a generalization of this model to the case with non-local interactions (see [7, 8]):

0%, _ qk,® -
ot i &1q‘|— k2 9 (1 + 92]{;721 - q2) q>n+1 - (1 + g Qki - q2) (I)nfl =C ((I)m (I)n> (5)
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Figure 1: Schematic description of energy injection, enstrophy dissipation and predator-prey dy-
namics between meso-scale flows and the drift-wave spectrum.

0

o7 (€°®) =a Y akig (¢° = 1) Py — vp*® (6)
where
_ k(=D 4 2 -3 3
C (D, ®,) = e |9 Dy 5P — (6" +1) g1 Prgt + ¢ P 1 Prsa

This is a coupled system, describing the evolution of drift wave turbulence undergoing local
cascade and interacting with a large scale mode evolving self-consistently with drift wave
turbulence.

1. Stationary spectrum with disparate scale interactions

We can obtain the steady state fluctuation spectrum when disparate scale interactions
dominate using (5) and considering only the second term on the left hand side. This gives:

(9 (1—¢*+ k%) @ryr — (1 — >+ g °k2) @,4] =0

which has the solution:
jo1/2

(1—-¢*+k7)

or when written in terms of the fluctuation intensity, this implies (for ¢ < k):

D, ~

2 k=3 k=3 .
RO TR "

5

This is the steady state spectrum when there is a large scale mode and the disparate scale
interactions with this mode are dominant. Note that large scale here is effectively defined
as a k) = 0 with a |k| smaller compared with the range for which we observe the turbulence.
Generally these are zonal flows. However other meso-scale modes or external mean flows
may become dominant if zonal flows are weak or artificially suppressed.
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Figure 2: Predator-prey oscillations between zonal flows and the drift wave spectrum. Here the
green line in b) is the zonal flow level, and colored points are the drift-wave amplitude, colored in
such a way that time advances from dark red for the initial state to dark blue in the final state.
The same colors are used in a), so that the oscillations of the spectrum can be seen as we go from
dark red to dark blue.

2. Predator-Prey Oscillations

Since the model in its general form (e.g. Eqns 5-6) incorporates coupling between zonal
flows and drift-wave turbulence, it displays a character of predator prey oscillations|9, 10].
However in the shell model formulation the drift wave level is not reduced to a single variable
(the amplitude) and is treated as a spectrum. An example of such oscillations that saturate
to a fixed point and the change in the spectrum during these oscillations can be seen in
Figure In fact, since the zonal flow regulates turbulence by refracting large scale structures
to smaller scales the qualitative picture is better represented in a model with two or more
drift wave scales. In such a model the low-k drift waves would be driven by the background
gradients, they would transfer their enstrophy to high-k drift waves as they interact with
the zonal flow and the high-k drift waves would dissipate potential enstrophy. The system
might reach a quasi-steady state if the zonal flow damping is relatively low, and otherwise
would oscillate with a frequency linked to zonal flow damping. In the limit where drive and
damping can be neglected, an exact analytical solution of these oscillations can be given in
terms of the Jacobi elliptic functions.

C. Comparison with Tore-Supra measurements

The turbulence spectrum in tokamaks can be measured using different methods. Here,
we demonstrate a standard, ohmic, L-mode shot from Tore-Supra tokamak measured using
the Doppler reflectometer system, DifDop. The figure shows a reasonably good agreement
between the measured spectrum and the analytical expression k=3/ (1 + k2)2. Of course,
one can find better fits, with different functional forms. For instance, as one goes to higher
k, the spectrum will ultimately take the form of an exponential, which suggests that we
observe a “dissipation” range. For instance in the case of disparate scale interactions and
a physical mechanism of damping that goes as 74 (k) ~ —A\gk?, one does indeed recover a
scaling: [7]([7ig]*) o< &3¢~/ (1 4 k2)*. One can also simply use an exponential function.
However, the expression k—3/ (1 + k2)2, does not have any fitting parameters (apart from the
fluctuation level), and can be linked to the physical process of disparate scale interactions.
Therefore its agreement with experiment is remarkable and maybe more informative than a
fit with an exponential function.
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Figure 3: Measurement of density fluctuation spectrum in a standard Ohmic discharge in Tore
Supra tokamak. Note that since there is no absolute calibration of the experimental setup for the
fluctuation level, the y axis is in arbitrary units.

III. RESULTS & DISCUSSIONS

It was shown that simple intuitive modelling of the strongly nonlinear wave-number
spectrum of density fluctuations in tokamak plasmas is possible by the use of shell models,
or turbulence cascade models. When the disparate scale interactions are dominant a simple
analytical form <|ﬁk\2> x k3/ (1+ k2)? is shown to be possible, which agrees reasonably
well with the experimental results from Doppler reflectometry measurements. It was also
shown that predator-prey oscillations can be described by shell models that include nonlocal
interactions with a single dominant mode, which can be a zonal flow, GAM or a similar
meso scale structure with a well defined wave-number. Direct comparison of the fluctuation
measurements, gyrokinetic models and the simple cascade model presented here, suggest
that the strongly nonlinear nearly isotropic high-k part of the spectrum can be described by
the physical picture of a cascade among different scales either by local processes or mediated
by nonlocal interactions to meso scale flow structures.
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