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s of wave-number spe
trum of plasma turbulen
eÖ. D. Gür
an,∗ P. Hennequin, and L. VermareLaboratoire de Physique des Plasmas, E
ole Polyte
hnique,CNRS, 91128 Palaiseau Cedex, Fran
eA. Casati, X. Garbet, G. L. Fal
hetto, and C. BourdelleCEA, IRFM, F-13108 Saint Paul Lez Duran
e, Fran
eP. H. DiamondWCI, Center for Fusion Theory, NFRI, Daejeon, Republi
 of Korea andCMTFO, UCSD, San Diego, CA, USANonlinear dynami
s of a family of redu
ed plasma turbulen
e models has beenformulated using dimensonal analysis and simple shell models. The steady statesolutions of these simple models give power law-like solutions for the wave-numberspe
trum of plasma �u
tuations. Albeit its simpli
ity in terms of linear physi
s, su
hmodels 
an be applied to a real plasma in the range of wave-numbers where thelinear drive is negligible. It is shown that the simple analyti
al solution representingthe steady state where non-lo
al intera
tions dominate over the lo
al 
as
ade pro
ess,agrees reasonably well with the measured wave-number spe
trum from the Tore Supratokamak. I. INTRODUCTIONA signi�
ant ratio of the energy and parti
le loss in fusion devi
es is due to anomaloustransport pro
esses. Small s
ale turbulen
e, supplied by some form of drift instability isusually the primary 
ause of su
h transport. These instabilities are driven unstable by theinevitable inhomogeneities in a 
on�nement devi
e (i.e. �pro�les�, of temperature, parti
ledensity et
.). Fo
using at ion s
ales, the drift instabilities are driven unstable by the freeenergy sour
e from ba
kground gradients from the pro�les 
oupled with either energy dy-nami
s (e.g. ion temperature gradient driven -ITG- mode) or non-adiabati
ity in the ele
tronresponse (e.g. 
ollisional drift instabilities or trapped ele
tron modes -TEM-). Whether thenon-adiabati
ity is due to 
ollisions or not, 
ollisions in modern fusion devi
es are su�
iently
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 TH-Crare that the transport due to 
ollisions is ine�e
tive in getting rid of the inhomogeneitiesin pro�les rapidly. This being the 
ase, the only way the plasma 
an dispose of the in-homogeneities due to lo
alized deposition and 
on�nement, and thus in
rease entropy, isby sa
ri�
ing some of this free energy to drive 
ertain 
olle
tive parti
le motions that 
an,on average, 
ause transport. This happens when the 
olle
tive motion of parti
les and theasso
iated os
illating �elds lead to an imbalan
e between the number of parti
les (or theirenergies) going in one dire
tion than the other. Sin
e many kinds of 
olle
tive motionsare possible in a plasma, one 
an think of the mi
ro-instabilities as being �sele
ted� dueto their e�
ien
y in removing the inhomogeneity in heat and parti
le deposition imposedby the 
on�nement and heating s
hemes. In parti
ular, the most unstable mode under agiven plasma pro�le, 
orresponds roughly to the 
olle
tive motion that is the most e�
ientin transporting the quantity whose inhomogeneity a
ts as the free energy sour
e, among allthe possible 
olle
tive motions that the plasma dynami
s permit.Nonlinear intera
tions limit the e�
ien
y of anomalous transport due to 
olle
tive mo-tions. This is natural sin
e the energy 
an not simply keep a

umulating at the most unstablemode: it gets transferred to modes that are less e�
ient in transporting parti
les and en-ergy via mode 
oupling. This 
an be viewed as a transfer of energy (or another 
onservedquantity) in k-spa
e. The fa
t that the plasma turbulen
e rea
hes steady state, implies thatthe mode 
oupling and linear instability drive be
ome roughly 
omparable. This is true inparti
ular near the most-unstable mode, where the turbulen
e energy is �inje
ted�.Sin
e the turbulen
e de
orrelation rate is a fun
tional of the intensity of turbulent �u
-tuations, the turbulen
e 
an grow until the lo
al e�e
tive de
orrelation rate on the s
ales
orresponding to the most unstable mode be
omes approximately equal to the linear growthrate. In this stage, the energy inje
ted at that s
ale at the rate given by the linear instabilitydrive is de
orrelated at approximately the same rate, leading to a steady state. While thispi
ture allows us to des
ribe qualitatively the nonlinear dynami
s near the most unstablemode, it fails to des
ribe the turbulent energy transfer (i.e. 
as
ade) dynami
s far from thes
ale of the instability drive.In this paper, we study this nonlinear transfer pro
ess far from the energy inje
tion s
alewhi
h we take roughly to 
orrespond to the s
ale of the most unstable mode. We willpropose simple spe
tral 
as
ade models that 
an be used to study the nonlinear dynami
s ofthe spe
tral transfer. This allows us to des
ribe the temporal evolution of the wave numberspe
trum of density or ele
trostati
 potential �u
tuations under 
ertain assumptions. Wavenumber spe
trum is an important observable, whi
h is widely used in the modelling ofsimilar kinds of nonlinear mode 
oupling pro
esses in neutral �uid turbulen
e. It 
an bedire
tly measured in a tokamak using various di�erent methods. It allows probing the
hara
teristi
s of the underlying mi
ro-turbulen
e [1℄ and gives information about transportand its anomalous nature. In prin
iple this also permits dire
t 
omparison to numeri
alsimulations. It was shown re
ently that when diagnosti
s are 
arefully interpreted, dire
tgyrokineti
 simulations 
an be shown to agree with experimental observations [2℄, whi
hroughly give an isotropi
 spe
trum in the wave-number range where the measurements weremade. (i.e. 0.5 < k⊥ρs < 3.0).Wave number spe
trum is also important for validation, in that it provides detailedinformation [3℄ that 
an be 
ompared to numeri
al simulations. Today, dire
t numeri
alsimulations of gyro-kineti
 Vlasov equation appear as the main tools for studying anomaloustransport. These simulations are used either dire
tly or as part of multi-s
ale modelling, forpredi
tions of the transport in parameter regimes that are ina

essible by existing devi
es.2
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 TH-CThese predi
tions a�e
t poli
y de
isions. Therefore it is rather 
riti
al that we are surethat these numeri
al simulations des
ribe the same kind of mi
ro-turbulen
e as observed intokamaks. While dire
t 
omparisons between experiment and theory is essential in orderto in
rease our 
on�den
e in these models ( as done in Ref. 2), phenomonologi
al studyof the experimental measurements from a theoreti
al point of view, with an eye on thesynthesis of the foremost dynami
al me
hanisms is also 
ru
ial for understanding. Su
h anapproa
h is useful, in parti
ular when a dire
t 
omparison between experiment and numeri
alsimulation is not possible due to various underlying assumptions and limited resolution indire
t numeri
al simulations by 
ontra
ting the vast amount of observed data in the formof simple physi
al 
on
epts.II. WAVE NUMBER SPECTRUM OF DRIFT WAVE TURBULENCEA. Dimensional AnalysisThe simplest way to derive the wave-number spe
trum of turbulen
e is dimensional anal-ysis. The formulation involves �nding a 
onserved quantity, and assuming that there existsa range of s
ales, for whi
h it is reasonable to assume the produ
tion and dissipation of this
onserved quantity 
an be negle
ted. Su
h a range is generally 
alled an inertial range, andusually named after the 
onserved quantity whi
h is transferred indi
ating also the dire
tionof the transfer (e.g. �energy inverse 
as
ade range�, �enstrophy forward 
as
ade range� et
.).In fusion plasmas, existen
e of su
h an inertial range is questionable. This is so, be
ausethe inje
tion is not really lo
alized and there exists a multitude of linear instabilities ea
h ofwhi
h inje
ting turbulen
e energy in the vi
inity of the spatial s
ale 
orresponding to theirmost-unstable modes. Furthermore, the inje
tion s
ale itself is not well-lo
alized and it is
ommon to have multiple linear instabilities overlaping in a given region. Dissipation is nottruly lo
alized in fusion plasmas either, sin
e the main pro
esses that dissipate turbulen
eenergy are Landau damping and the existan
e of linearly damped large s
ale stru
tures thatfeed on turbulen
e. Both of these may extra
t energy from mi
ro-turbulen
e over a widerange of spatial s
ales.Albeit these 
ompli
ations (and others su
h as intrinsi
 anisotropy of energy inje
tion), itis nevertheless important to study the non-linear dynami
s of turbulen
e at a basi
 level inorder to develop an understanding of its behaviour. For instan
e the question, �what wouldwe expe
t as the wave-number spe
trum if we had a well-de�ned inertial range?� is a validand an important one.The potential vorti
ity (PV) de�ned as
h ≈ n −∇2Φ (1)is approximately 
onserved by the nonlinear dynami
s of fusion plasmas[4℄. This means thatwe 
an write:

∂

∂t
W (k) = −

∂

∂k
ΠW (k) + PW (k) − εW (k) (2)where W (k) =

´

kdαk

´ k+ǫ

k−ǫ
hkhk′d2k′ is the potential enstrophy (PE) density at wave-number k, ΠW (k) is the k-spa
e �ux, PW (k) is the produ
tion (due to drive) and εW (k)is the dissipation of potential enstrophy. For the forward potential enstrophy 
as
ade,

P (k) = 0 for k > ki and ε (k) = 0 for k < kd (i.e. ki is the �inje
tion� and kd is the3
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ki < k < kd), the only non-vanishing term on the right hand side is the nonlinear transfer.1. Forward Potential Enstrophy Cas
adeIf we integrate (2) from k to ∞, (where k is in the intertial range), we �nd that in steadystate, the �ux in k-spa
e is 
onstant [i.e. ΠW (k) = β where β =

´

ǫW (k) dk℄. In general,the �ux of PE 
an be estimated using dimensional analysis as:
ΠW (k) ∝ W (k) EK (k)1/2 k5/2 (3)Note that, in order to write (3) one has to assume that both the �ux and the intera
tionsare lo
al in k-spa
e, sin
e the expression involves a single spatial s
ale k. Here EK (k) =

´

kdαk

´ k+ǫ

k−ǫ
d2k′ [(k · k′) ΦkΦk′ ] is the kineti
 energy density at wave-number k.

W (k) ∝
βk−5/2

EK (k)1/2
(4)for the forward 
as
ade range where ΠW = β is 
onstant. Note that the above expressionworks equally for the 2D Euler turbulen
e, where EK (k) = E (k) = k−2W (k) where we getthe simple result W (k) ∝ β2/3k−1, for enstrophy or the familiar expression E (k) = β2/3k−3for energy[5℄. However this implies for instan
e that ´ k+ǫ

k−ǫ
d2k′ [ΦkΦk′ ] →

〈
|Φk|

2〉 ∝ β2/3k−6. 2. Nonlo
al intera
tionsNonlo
al intera
tions with a single dominant mode 
an be added to (2) in a simple wayas:
∂

∂t
W (k) = −

∂

∂k
Π

(nl)
W (k, q) −

∂

∂k
Π

(l)
W (k) + PW (k) − εW (k)where Π

(l)
W (k) is the lo
al k-spa
e �ux as in the previous se
tion, and Π

(nl)
W (k, q) is the nonlo-
al �ux, driven by the dominant mode, whi
h is now a fun
tion of both k , the wavenumberof the s
ale we look at, and q, the wave-number of the dominant mode . We 
an write thenonlo
al �ux in the form:

Π
(nl)
W (k, q) = −

ˆ k

0

dk′k′ (ẑ × q · k′)
[
h
∗

qh̃k+qh̃
∗
k + Φqh̃

∗
k+qh̃k

] .Using dimensional analysis (noting that E (q) = q2Φ
2

q does not have the same dimensions,in real units, as EK (k)):
Π

(nl)
W (k, q) = E (q)1/2 W (k) k2And for Π

(nl)
W ≫ Π

(l)
W , we get a limiting form for the enstrophy spe
trum given by:

W (k) ∝
β

E (q)1/2
k−2 .

4
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 TH-CThis means that the density �u
tuation spe
trum far from the dominant mode 
an beexpressed as
〈
|nk|

2〉 ∝
β

E (q)1/2

k−3

(1 + k2)2under the adiabati
 ele
tron assumption.Note that, here the dominant mode 
orresponds to the mode that is most e�
ient interms on nonlinear intera
tions. It is assumed that even the non-lo
al intera
tions withthis single, dis
rete mode is more e�e
tive than the lo
al intera
tions with the neighbouringmodes. This 
ould be due to the fa
t that the spe
trum is dominated by a single dis
retemode. We expe
t this mode to 
orrespond to a large s
ale �ow mode su
h as a zonal �owor a geodesi
 a
ousti
 mode (GAM).3. Inverse Energy Cas
adeIf the PV equation is invertable [i.e. under 
ertain assumptions, we 
an solve for Φk (t) =
Lkhk℄, an equation for energy 
an be written. As in the above 
ase, we 
an write

ΠE (k) ∼ EK (k)W (k)1/2 k3/2from dimensional analysis. This gives
W (k) ∝

ε2k−3

EK (k)2or W (k) = ε2/3k1/3 for enstropy, and E (k) = ε2/3k−5/3 for energy for 2D Euler turbulen
e.Note that the well-known Krai
hnan-Kolmogorov spe
tra that we re
over here, i.e. E (k) ∝
{
k−3, k−5/3

}, a
tually imply ∣∣∣Φ̃k

∣∣∣
2

∝
{
k−6, k−14/3

} respe
tively. As 
an be seen in Figure 3,these don't 
orrespond to the experimental measurements.B. Shell model approa
hShell models are used in neutral �uid and magnetohydrodynami
 (MHD) turbulen
eto des
ribe the nonlinear dynami
s of the wave-number spe
trum in a 
as
ade pro
ess.They 
orrespond to a severe redu
tion of the initial physi
s model to a system of ordinarydi�erential equations that 
an be treated as a simple dynami
al system. They respe
t theinitial 
onservation laws of the physi
s model, and thus possess similar 
hara
teristi
s withit. In parti
ular, they have �xed points asso
iated with the power-law spe
tra of the originalphysi
s model.The shell models have not been very popular for fusion plasmas histori
ally. In fa
t, thesimple Hasegawa-Mima shell model as derived by Ottinger and Carati [6℄ is the �rst exampleof a shell model for fusion plasmas that the 
urrent authors are aware of. Here we presenta generalization of this model to the 
ase with non-lo
al intera
tions (see [7, 8℄):
∂Φn

∂t
+ α

qknΦ

1 + k2
n

[
g

(
1 + g2k2

n − q2
)
Φn+1 −

(
1 + g−2k2

n − q2
)
Φn−1

]
= C (Φn, Φn) (5)5
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Figure 1: S
hemati
 des
ription of energy inje
tion, enstrophy dissipation and predator-prey dy-nami
s between meso-s
ale �ows and the drift-wave spe
trum.
∂

∂t

(
q2Φ

)
= α

∑

n

qk3
ng

(
g2 − 1

)
ΦnΦn+1 − νF q2Φ , (6)where

C (Φn, Φn) ≡ α
k4

n (g2 − 1)

1 + k2
n

[
g−7Φn−2Φn−1 −

(
g2 + 1

)
g−3Φn−1Φn+1 + g3Φn+1Φn+2

]This is a 
oupled system, des
ribing the evolution of drift wave turbulen
e undergoing lo
al
as
ade and intera
ting with a large s
ale mode evolving self-
onsistently with drift waveturbulen
e. 1. Stationary spe
trum with disparate s
ale intera
tionsWe 
an obtain the steady state �u
tuation spe
trum when disparate s
ale intera
tionsdominate using (5) and 
onsidering only the se
ond term on the left hand side. This gives:
[
g

(
1 − q2 + g2k2

n

)
Φn+1 −

(
1 − q2 + g−2k2

n

)
Φn−1

]
= 0whi
h has the solution:

Φn ∼
k
−1/2
n

(1 − q2 + k2
n)or when written in terms of the �u
tuation intensity, this implies (for q ≪ k):

∣∣∣Φ̃k

∣∣∣
2

∼
k−3

(1 − q2 + k2)2 ∼
k−3

(1 + k2)2 . (7)This is the steady state spe
trum when there is a large s
ale mode and the disparate s
aleintera
tions with this mode are dominant. Note that large s
ale here is e�e
tively de�nedas a k‖ ≈ 0 with a |k| smaller 
ompared with the range for whi
h we observe the turbulen
e.Generally these are zonal �ows. However other meso-s
ale modes or external mean �owsmay be
ome dominant if zonal �ows are weak or arti�
ially suppressed.
6
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Figure 2: Predator-prey os
illations between zonal �ows and the drift wave spe
trum. Here thegreen line in b) is the zonal �ow level, and 
olored points are the drift-wave amplitude, 
olored insu
h a way that time advan
es from dark red for the initial state to dark blue in the �nal state.The same 
olors are used in a), so that the os
illations of the spe
trum 
an be seen as we go fromdark red to dark blue. 2. Predator-Prey Os
illationsSin
e the model in its general form (e.g. Eqns 5-6) in
orporates 
oupling between zonal�ows and drift-wave turbulen
e, it displays a 
hara
ter of predator prey os
illations[9, 10℄.However in the shell model formulation the drift wave level is not redu
ed to a single variable(the amplitude) and is treated as a spe
trum. An example of su
h os
illations that saturateto a �xed point and the 
hange in the spe
trum during these os
illations 
an be seen inFigure In fa
t, sin
e the zonal �ow regulates turbulen
e by refra
ting large s
ale stru
turesto smaller s
ales the qualitative pi
ture is better represented in a model with two or moredrift wave s
ales. In su
h a model the low-k drift waves would be driven by the ba
kgroundgradients, they would transfer their enstrophy to high-k drift waves as they intera
t withthe zonal �ow and the high-k drift waves would dissipate potential enstrophy. The systemmight rea
h a quasi-steady state if the zonal �ow damping is relatively low, and otherwisewould os
illate with a frequen
y linked to zonal �ow damping. In the limit where drive anddamping 
an be negle
ted, an exa
t analyti
al solution of these os
illations 
an be given interms of the Ja
obi ellipti
 fun
tions.C. Comparison with Tore-Supra measurementsThe turbulen
e spe
trum in tokamaks 
an be measured using di�erent methods. Here,we demonstrate a standard, ohmi
, L-mode shot from Tore-Supra tokamak measured usingthe Doppler re�e
tometer system, DifDop. The �gure shows a reasonably good agreementbetween the measured spe
trum and the analyti
al expression k−3/ (1 + k2)
2. Of 
ourse,one 
an �nd better �ts, with di�erent fun
tional forms. For instan
e, as one goes to higher

k, the spe
trum will ultimately take the form of an exponential, whi
h suggests that weobserve a �dissipation� range. For instan
e in the 
ase of disparate s
ale intera
tions anda physi
al me
hanism of damping that goes as γd (k) ∼ −λdk
2, one does indeed re
over as
aling: [7℄〈|ñk|

2〉 ∝ k−3e−λk/ (1 + k2)
2. One 
an also simply use an exponential fun
tion.However, the expression k−3/ (1 + k2)

2, does not have any �tting parameters (apart from the�u
tuation level), and 
an be linked to the physi
al pro
ess of disparate s
ale intera
tions.Therefore its agreement with experiment is remarkable and maybe more informative than a�t with an exponential fun
tion. 7
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Figure 3: Measurement of density �u
tuation spe
trum in a standard Ohmi
 dis
harge in ToreSupra tokamak. Note that sin
e there is no absolute 
alibration of the experimental setup for the�u
tuation level, the y axis is in arbitrary units.III. RESULTS & DISCUSSIONSIt was shown that simple intuitive modelling of the strongly nonlinear wave-numberspe
trum of density �u
tuations in tokamak plasmas is possible by the use of shell models,or turbulen
e 
as
ade models. When the disparate s
ale intera
tions are dominant a simpleanalyti
al form 〈
|ñk|

2〉 ∝ k−3/ (1 + k2)
2 is shown to be possible, whi
h agrees reasonablywell with the experimental results from Doppler re�e
tometry measurements. It was alsoshown that predator-prey os
illations 
an be des
ribed by shell models that in
lude nonlo
alintera
tions with a single dominant mode, whi
h 
an be a zonal �ow, GAM or a similarmeso s
ale stru
ture with a well de�ned wave-number. Dire
t 
omparison of the �u
tuationmeasurements, gyrokineti
 models and the simple 
as
ade model presented here, suggestthat the strongly nonlinear nearly isotropi
 high-k part of the spe
trum 
an be des
ribed bythe physi
al pi
ture of a 
as
ade among di�erent s
ales either by lo
al pro
esses or mediatedby nonlo
al intera
tions to meso s
ale �ow stru
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