
1 
 

Equilibria with Stochastic Regions Having Non-zero Pressure Gradient 
 

A. Reiman1, J. Krommes1, M. Zarnstorff1, D. Monticello1, 
A. Weller2, J. Geiger2 and the W7- AS Team2 

1. Princeton Plasma Physics Laboratory, Princeton, NJ  08543 USA 
2. Max-Planck Institute for Plasma Physics, EURATOM Assoc., 

D-17491 Greifswald, Germany 
email address of main author: reiman@pppl.gov 

 
Abstract. The nature of plasma equilibria in a magnetic field with stochastic regions is examined.  We show that 
the magnetic differential equation along chaotic field line trajectories that determines the equilibrium pressure-
driven currents in the stochastic regions can be cast in a form similar to various nonlinear equations for a 
turbulent plasma, allowing application of the mathematical methods of statistical turbulence theory.  In 
particular, resonance broadening theory has been applied to obtain a solution.  Two difficulties must be 
surmounted in applying resonance-broadening theory in the context of 3D equilibria: 1) Resonance broadening 
theory makes use of causality, but causality does not hold in the context of equilibrium calculations; 2)  The 
equilibrium solution in a torus must be periodic in the two angular variables, unlike the time-dependent 
equations to which resonance broadening theory is usually applied. In addition, we must also deal with the issue 
that a plasma having finite pressure gradients in stochastic regions cannot satisfy the MHD equilibrium 
equations. There is an extensive literature on the theory of plasma transport in the presence of stochastic 
magnetic field lines, and our work addresses the issue of the nature of the equilibrium solution in that context.  
Equilibria with stochastic regions are important for understanding fusion plasma confinement in tokamaks with 
ergodic limiters or resistive wall modes, or with nonaxisymmetric fields imposed for stabilizing ELMs.  They are 
also of interest in contemporary stellarator experiments at their highest achievable values of beta, where there is 
evidence of the formation of a large region of stochastic field lines in the outer region of the plasma, with a finite 
pressure gradient in that region. The solution for the current in the stochastic region has been incorporated into 
the PIES 3D Equilibrium code, and has been applied to the calculation of equilibria for the W7AS stellarator.  
The calculated equilibrium solutions are consistent with the experimental observations, including a strong 
dependence of the achievable beta on the current in the divertor control coils, differences in pressure profiles 
between different shots in the regions calculated to be stochastic, and consistency with the Rechester-Rosenbluth 
estimate for the contribution of the field line stochasticity to energy transport. 
 
I. Introduction 
 
The work described in this paper was initially motivated by a puzzling observation on the 
W7AS stellarator experiment.  Figure 1 shows the maximum achievable value of 〈β〉 in a set 

FIG. 1.  Variation of 
peak-ۃβۄ versus the 
divertor control-coil 
current ICC normalized by 
the modular coil current, 
for B=1.25 T, PNB = 2.8 
MW absorbed and ιvac= 
0.44. 
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of shots as a function of the current in the divertor control coils.  These coils affect the 
resonant component of the magnetic field near the plasma edge.  It was found that the 
achievable ۃβۄ could be increased by about 50% by energizing these coils.  These intriguing 
results motivated calculations using the PIES code, a 3D equilibrium code that can handle 
islands and stochastic regions. 
 
Figure 2 shows the results of a set of PIES calculations.  The code finds a region of stochastic 
field lines which increases in width as the value of ۃβۄ is increased.  The width of the 
stochastic region is strongly affected by the current in the divertor control coils, and this 
provides a plausible explanation for the observed affect on the achievable ۃβۄ.  There was no 
method available for directly verifying the existence of the stochastic region in the W7AS 
experiments.  The calculated equilibria were, however, consistent with the experimental 
observations, including an observed difference in the pressure profiles in the region 
predicted to be stochastic, and a Rechester‐Rosenbluth estimate of the enhancement in 
ransport due to field line stochasticity.ሾ1ሿ  ሺBut the Rechester‐Rosenbluth thermal t
diffusivity scales as Te5/2, so the error bars are large.ሻ 
 
The W7AS diagnostics indicated that there was a non‐zero pressure gradient in the 
region calculated to be stochastic.  In order to do the calculations for W7AS, it was 

stic regions.  That is the subject of necessary to develop a theory for equilibria in stocha
this paper. 

  
II. Equilibrium in stochastic regions. 
 
We will use the form of the equilibrium equation

ൈ ۰ ൌ                                                               ,ሺ۰ሻܒ

s that has been adopted for the PIES 

          ሺ1ሻ 
by, 
ଶ,                                                                    ሺ2ሻ 

code: 
׏

Where j is a nonlinear function of B determined 
ୄܒ ൌ ۰ ൈ ܤ/݌׏

and 
۰ · Bሻ/צሺ݆׏ ൌ െ׏ ·ܒ ୄ.                                                      (3) 

Eq. (2) follows from ∇⋅j=0.  These equations can be solved numerically by standard methods, 

FIG. 2.  Fraction of good 
flux surfaces versus β as 
predicted by the PIES code 
for two different values of 
the control coil current for 
the W7AS stellarator. The 
circles indicate the PIES 
calculations done for the 
experimentally achieved 
value of β. 
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such as Picard iteration or Newton-Krylov. 
 
In solving the equilibrium equations in a stochastic region, the first difficulty we need to face 
is that an MHD equilibrium cannot have a nonzero pressure gradient in the stochastic region.  
It follows from j × B = ∇p that B⋅∇p = 0 in a stochastic region, so that ∇p = 0 in that region.  
We must retain the small terms that have been discarded in the MHD equilibrium equation, 

ܒ ൈ ۰ െ ૉܞ · સܞ െ સ · ૈ ൌ  સ݌

۰ · p׏ ൌ െ۰ · ሺ ૉܞ · સܞ ൅ સ · ૈሻ. 

ୄܒ ൌ ۰ ൈ
݌׏
ଶܤ

.                                              (4) 
It follows from this equation that 

If the radial diffusion of the field lines is weak, then B⋅∇p is small, and it can be balanced by 
the small terms that are neglected in the MHD equilibrium equation. 
 
It also follows from Eq. (4) that 

൅  ۰ ൈ ܞሺૉ׏ · સܞ ൅ સ · ૈሻ. 

ୄܒ ൎ ۰ ൈ ଶܤ

The second term on the right hand side of this equation is small compared to the first and can 
be neglected.  We have to be careful in making this argument, as we will be particularly 
interested in resonant Fourier components, and we will require that the resonant Fourier 
components of the neglected term be small relative to the resonant Fourier components of the 
retained term.  This can be verified self-consistently.  We thus arrive at the equation 

݌׏
. 

0  Letting צ ୄ , a 0 0

 
We can now see the advantage of writing the equilibrium equations in the form of Eqs. (1-3). 
The parallel and perpendicular components of force balance decouple.  The perpendicular 
components of force balance determine the self-consistent equilibrium field.  The parallel 
component of force balance can be regarded as part of the transport problem rather than the 
equilibrium problem.  We can imagine that a finite pressure gradient along the field lines 
produces a weak flow velocity along the field lines, and that this leads to weak viscous and 
convective forces which balance B⋅∇p. 
 
Another advantage of writing the equations in this form is that the field line stochasticity 
enters only through Eq. (3).  We must solve a magnetic differential equation along the chaotic 
field line trajectories. 
 
III. Solution of Magnetic Differential Equations Along Chaotic Field Line Trajectories 
 
To solve our magnetic differential equation, we will cast it in the same form as some 
equations that arise in the theory of plasma turbulence.[2]  We assume that we can write the 
field as B = B0+δB, where B0 has good flux surfaces and δB is a small perturbation that 
causes the field lines to be stochastic.  We work in a magnetic coordinate system for B0, that 
is a coordinate system ሺ߰, ,ߠ ߶ሻ such that B0⋅∇ψ = 0 and B0⋅∇ ߠ / B0⋅∇φ ≡ι(ψ) is constant on 
the flux surfaces of B ߤ  . ؠ ݆ ݃ and ܤ/ ؠ െસ · ܒ ssuming B ܤ/ φ >> B θ, and 
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assuming that ι is a monotonic function of ߰ in the region of interest so that we can adopt it as 
our radial variable, we get  
 

డఓሺఐ,ఏ,థሻ
డథ

൅ ߡ డఓ
డఏ
൅ ఋ஻ഈ

஻బ
ഝ
డఓ
డఐ
൅ ఋ஻ഇ

஻బ
ഝ
డఓ
డఏ
ൌ ݃

డ௙ሺ௫,௩צ,௧ሻ
డ௧

.                               (5) 

 
Compare this with the drift-kinetic equation with a strong toroidal field, fluctuating E×B 
velocity δVE, neglecting the parallel nonlinearity: 
 

൅ צݒ
డ௙
డ௭
൅ ߜ ாܸ,௫

డ௙
డ௫
൅ ߜ ாܸ,௬

డ௙
డ௬
ൌ 0

צ

ߤ

he causality issue can be addressed by working in terms of Green’s functions.  We can 
The 

sion 

here remains an issue of periodicity in the torus with respect to θ and φ.  The solution for ߤ 

e 

tation 
(ballooning representation). 

.                     (6) 

 
The similarity in form suggests that we can apply mathematical techniques developed in the 
context of statistical turbulence theory to the magnetic differential equation.  In particular, we 
are interested in applying resonance broadening theory.  Resonance broadening theory allows 
us to replace terms containing turbulent fields with effective diffusion terms, and it gives an 
expression for the effective diffusivity in terms of the autocorrelation function of the turbulent 
variable.  It is intuitively plausible that the primary effect of the turbulent fields will be to 
produce diffusion.  Resonance broadening theory places this intuition on a sounder footing, 
and provides a quantitative measure of the effect.  
 
When we try to apply resonance broadening theory to Eq. (5) we encounter the problem that 
resonance broadening theory assumes causality.  Eq. (6) determines the time-evolution of f, 
and it therefore satisfies a causality condition.  Impulses do not propagate backwards in time.  
This causality requirement becomes manifest when we replace the turbulent terms by 
diffusion terms.  In that case, time-reversal changes diffusion to anti-diffusion, so that 
changing the sign of t changes the nature of the solution.  However the physics for ݆  must 
look the same whether we integrate backwards or forwards along the field lines.  So  cannot 
satisfy a diffusion equation. 
 
T
express the Green’s function for ߤ as a sum of causal and anti-causal Green’s functions.  
causal Green’s function satisfies a diffusion equation.  The anti-causal Green’s function 
satisfies an anti-diffusion equation, that is, a diffusion equation with the signs of the diffu
terms reversed. 
 
T
must satisfy this periodicity condition.  Periodic functions are not spatially causal, so the 
causal and anti-causal Green’s functions cannot satisfy this periodicity condition.  To solv
this problem, we use a ballooning transformation.  The causal and anticausal Green’s 
functions are solved for in the infinite covering space of the flux surfaces for B0, with 
 ߠ ՜ േ∞,߶ ՜ േ∞.  Periodic solutions are constructed by using a shifted-sum represen
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ution in the limit that the radial diffusion of the chaotic magnetic 
eld line trajectories is weak.  In that limit, the diffusion coefficients are small, and the 

m, 

 
 

ilibria having nonzero pressure gradients in stochastic regions, we work with 
e equations in the form ׏ ൈ ۰ ൌ ୄܒ ሺ۰ሻ, withܒ ൌ ۰ ൈ ଶ and ۰ܤ/݌׏ · Bሻ/צሺ݆׏ ൌ െ׏ ·   .ୄܒ

 has the virtue that the stochasticity enters entirely through the 

rd 
quations of turbulence theory.  This suggests the application of resonance broadening theory.  

, 

he code has been 
pplied to calculate reconstructed W7AS equilibria.[  The code finds that there is a threshold 
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We can obtain an explicit sol
fi
diffusion terms in the equations can be neglected , except near rational surfaces, where radial 
derivatives can be large.  This allows us to solve the equation as a boundary layer proble
with boundary layers at the rational surfaces.  In the boundary layers, the equation further 
simplifies because the radial derivatives of the metric elements and of the Jacobian can be 
neglected relative to the radial derivatives of the Green’s function.  That allows us to obtain
an explicit solution in terms of Airy functions in the boundary layers.  Outside the boundary
layers, the solution is just that for δB = 0. 
 
IV. Summary 
 
To solve for equ
th
This form of the equations allows us to decouple the perpendicular and parallel force balance 
equations.  This form also
solution of the magnetic differential equation along the chaotic field line trajectories. 
 
To solve the magnetic differential equation, we cast it in the same form as some standa
e
In applying resonance broadening theory there is an issue that the theory assumes causality
and we handle that by working in terms of causal and anti-causal Green’s functions.  There 
remains a periodicity issue, and we handle that by using the ballooning representation.  We 
can obtain an analytic solution to the magnetic differential equation in the limit that the 
chaotic field line trajectories diffuse only weakly in the radial direction. 
 
This model has been incorporated in the PIES 3D equilibrium code, and t
a
in β above which a stochastic region appears at the plasma edge, and that the width of the 
stochastic region increases with further increase in β.  The calculated differences in the size of
the stochastic region and in the field line diffusion coefficient provide a plausible explanation 
for the previously puzzling observations on the W7AS stellarator that the current in the 
divertor control coils has a large effect on the achievable β.  Although the presence of such a 
stochastic region in the experiment could not be verified directly, the calculations were 
consistent with the available experimental data.  The Rechester-Rosenbluth estimate for the 
contribution of the field-line stochasticity to the energy transport is consistent with the 
observations.  (This estimate is sensitive to the local temperature, so the error bars here are 
large.)  The difference in the pressure profiles observed in the presence of the divertor c
coil current in the region predicted to be stochastic is also consistent with this picture. 
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