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Abstract. The confinement property in helical toroidal plasmas is clarified. The analysis is performed by use of the
one-dimensional transport equations with the effect of the radiative loss and the radial profile of the electric field. The
analytical results in the edge region show the steep gradient in the electron temperature, which indicates the transport
barrier formation. Because of the rapid increase of the radiative loss at the low electron temperature, the anomalous
heat diffusivity is reduced near the edge. Next, the efficiency of the heating power input in the presence of the radiative
loss is studied. The scaling of the critical density in helical devices is also derived.

1. Introduction

The study of the plasma confinement physics is the urgent task of nuclear fusion research. The
phenomena of the density limit control how the plasma performance is achievable. In tokamaks,
the properties of the confinement and the density limit are dictated, e.g. [1]. The importance of
the plasma dynamics and the critical density in the vicinity of the strong sources of impurities was
discussed [2]. In helical plasmas, attention has been paid to the phenomena of the density limit,
e.g. [3, 4]. The density limit phenomena in toroidal helical plasmas were examined with the analytic
point model [5]. The helical plasmas have an additional freedom in magnetic geometry, which is
utilized to investigate the transport mechanisms. Since the radial electric field determined by the
ambipolar condition in a non-axisymmetric system is known to affect the confinement property,
theoretical analysis of the density limit including the radiation loss in helical plasmas is necessary
with the effect of the ambipolar radial electric field in a set of transport equations. The study of the
density limit in helical plasmas is important specially in the case of an Internal Diffusion Barrier
(IDB) [6] observed with a strong density gradient in a super dense core plasma in the Large Helical
Device (LHD).

To examine the density limit for the thermal stability in helical plasmas, we add the term of
the radiation loss rate of the energy to the temporal equation of the electron temperature in a set
of one-dimensional transport equations. The radiative loss of the line emission from the impurity
ions depends on the electron temperature as the loss increases if the electron temperature gets
lower. The combined mechanism of the transport and the radiation loss of the energy is discussed.
The dependence of the electron temperature profile on the electron heating is studied when the
radiative loss is included in a set of the transport equations to examine the density limit in helical
plasmas. The sharp decrease of the electron temperature is shown near the edge. This is because
the radiative loss rate rapidly increases at the low electron temperature. The value of the anomalous
heat diffusivity is significantly reduced near the edge. The characteristic of the transport barrier is
shown. The efficiency ratio of the heating power input to the radiative loss is studied when we
change the electron heating power. The parameter dependence of the critical density is derived,
when the effect of the radial electric field is included.
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2. One-dimensional Model for Transport Equations

The one-dimensional transport model is employed. The cylindrical coordinate is used and r-axis is
taken in the radial cylindrical plasma in this article. The region 0 ≤ ρ ≤ 1 is considered, where a
is the minor radius and ρ = r/a. For simplicity, the density profile from [6] is used for the Internal
Diffusion Barrier (IDB) plasma as the temporally fixed density profile in the calculation here. This
density profile is approximated as n(ρ)IDB = 4.62 × 1020 + 2.89 × 1020ρ − 8.99 × 1021ρ2 + 9.43 ×
1022ρ3 − 4.68× 1023ρ4 + 1.12× 1024ρ5 − 1.39× 1024ρ6 + 8.66× 1023ρ7m−3. The temporal equations
for the electron temperature (Te) and the hydrogen ion temperature (Ti) are analyzed in this article.
The expression for the particle and heat neoclassical flux associated with helical-ripple trapped
particles are given by the symbols Γan

j and Qan
j for the species j, respectively. In the case of the

calculation about the IDB with the high density plasma, we use the form for the radial neoclassical
flux given in [7], which is available in the Pfirsch-Schlüter regime, because the plasma state of the
IDB plasma corresponds to the high collisional regime. The total heat flux for the species j is given
as Qt

j = Qna
j −nχaT ′j−5Dan′T j/2, where χa and Da are the anomalous heat and particle diffusivities,

respectively. In the calculation here, the convective energy flux term −5Dan′T j/2 in Qna
j becomes

the energy input flux except the energy heating source, because the energy input is necessary to
compensate the particle loss when the density profile is temporally fixed. A theoretical model for
the anomalous diffusivity is adopted. The equation for the electron temperature is given as
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where the term τe denotes the electron collision time and the second term on the right hand side
represents the heat exchange between ions and electrons. Here, the term pz represents the radiative
loss of the line emission from the impurity ions and the term pb shows the bremsstrahlung loss.
The form for pz in the article [8] is used. The term phe represents the absorbed power induced
by the electron heating. The radial profiles of the electron heating term, phe are assumed to be
proportional to exp(−(r/(0.2a))2) for the sake of the analytic insight. The temporal equation for the
ion temperature is
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We use the ambipolar condition
Γan

i = Γ
an
e (3)

with the hydrogen plasma to determine the radial profile of the electric field. The equations of the
temperatures and electric field are solved coupled under the appropriate boundary conditions. We
fix the boundary condition at the center of the plasma (ρ = 0) such that T ′e = T ′i = Er = 0. The
boundary conditions at the edge (ρ = 1), with respect to the temperature, are given by specifying
the gradient scale lengths. We employ those expected in LHD: −T ′e/Te = −T ′i /Ti = 0.01m in
this article. The machine parameters which are similar to those of LHD are set to be R = 3.6m,
a = 0.6m, B = 3T, ` = 2 and m = 10. In this article, we set the safety factor and the helical ripple
coefficient as q = 1/(0.4 + 1.2ρ2) and εh = 2

√
1 − (2/(mq(0)) − 1)2I2(mr/R), respectively. Here,

q(0) is the value of the safety factor at ρ = 0 and I2 is the second-order modified Bessel function.
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3. Model of Anomalous Transport Coefficients

We adopt the model for the anomalous heat diffusivity χa based on the theory of the self-sustained
turbulence due to the interchange mode [9] and the ballooning mode [10], both driven by the current
diffusivity. The anomalous transport coefficient for the temperatures is given as χa = χ0/(1+Gω2

E1)
(χ0 = F(s, α)α3/2c2vA/(ω2

peqR)), where ωpe is the electron plasma frequency. The factor F(s, α) is
the function of the magnetic shear s and the normalized pressure gradient α. The parameter ωE1

represents the effect of the reduction of the anomalous transport due to the shearing rate of the
radial electric field. The details about the parameters F and G were given in [9, 10]. The value for
the anomalous diffusivities of the particle is set as Da = χa. We have studied the establishment of
the electron Internal Transport Barrier (e-ITB) by the Er transition in helical device [11], when we
use this model for the anomalous heat diffusivity.

4. Results of the Analysis

4.1 Classification by the Ratio of the Radiative loss

To examine the density limit for the thermal stability in the case of the IDB, we add the term of the
radiation loss rate of the energy to the temporal equation of the electron temperature. The combined
mechanism of the transport and the radiation loss of the energy is discussed. The form of the radia-
tive loss rate was given in [8]. We classify the calculation results into the three states by the ratio of
the radiative loss: (i) When the heating power is high, the transport loss is dominant compared with
the radiative loss. (ii) When the heating power decreases, the radiative loss becomes substantial
and we have the partially-detached state in the electron temperature profile. (iii) When the heating
power decreases further, the radiative loss becomes dominant compared with the transport loss.
The fully-detached state characteristic is obtained in the profile of the electron temperature. The
profile of the radiative loss can be obtained as a temporally stable one in the wide region of the
electron heating power.

4.2 Radial Structure of the Radiative Loss

We take an oxygen plasma with noxygen = 0.01n, where noxygen is the density of the oxygen. For
simplicity, the density profile from [6] is used for the IDB plasma as the temporally fixed density
profile in the calculation here. This density profile is temporally fixed as a radial profile shown in
section 2. We examine the temporal evolutions of the electron and ion temperatures, and the profile
of the radial electric field from the ambipolar condition. The strong dependence of the radiative
loss on the electron temperature significantly changes the plasma state. An example of the results
is shown below. Stationary plasma profiles are obtained with electron heating power values of 6.7
MW (solid lines) and 12 MW (dashed lines) for 0.8 < ρ < 1.0 in figure 1. Figure 1(a) shows the
radial profiles of the radiative loss pz in the region 0.8 < ρ < 1.0. The radiative loss has a strong
peak at low temperature near ρ ' 0.935 and shows the fully-detached plasma state in the case of
6.7MW. The radiative loss strongly increases near ρ ' 1.0 and show the partially-detached state
in the case of 12MW. The case of 6.7MW corresponds to the state (iii) and the case of 12MW
corresponds to the state (ii) in the previous subsection, respectively. We obtain the temporally
stable profiles of the radiative loss in the cases of 6.7MW and 12MW. The radiative loss rate takes
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FIG. 1 Radial profiles in the region 0.8 < ρ < 1.0 for the electron heating power of 6.7MW (solid lines)
and 12MW (dashed lines). (a) The radiative cooling rate. (b) The electron temperature with the effect of the
radiative loss. (c) The radial electric field. (d) The anomalous heat diffusivity χa.

a peak at around Te = 20eV and has about a half value at around Te = 10eV and Te = 30eV,
compared with the value at Te = 20eV. The profiles of the electron temperature are also shown
in figure 1(b) with two cases of the electron heating in the region 0.8 < ρ < 1.0. In the case that
the electron heating is 6.7MW, the sharp decrease of the electron temperature is shown and the
rapid change of the electron temperature gradient is obtained, because there is a strong peak in the
radial profile of pz at ρ = 0.935. The characteristic of the transport barrier is studied. In the case
that the electron heating is 12MW, the strong change of the electron temperature gradient is not
obtained. It is found that the strong increase of pz at ρ = 1.0 is not enough to realize the transport
barrier. The radial profiles of the ambipolar radial electric field are shown in two cases the electron
heating are 6.7MW and 12MW in the region 0.8 < ρ < 1.0 in figure 1(c). The radial electric field
takes a large negative value in the region ρ < 0.935 in figure 1(c) because of the steep temperature
gradient in the case of 6.7MW. In the region ρ > 0.935, the value of Er radially changes to the
value which is close to zero near the edge because of the weak gradient of the temperature, when
the radial electric field is determined by the ambipolar condition here. The phenomena like the
transition at ρ = 0.935 in the Er profile is obtained only in the case that the electron heating power
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is 6.7MW. The value of the anomalous heat diffusivity is significantly reduced in figure 1(d) due
to the change of the electron temperature gradient near the edge in figure 1(b), when the electron
heating power is 6.7MW. This is because the model of the anomalous heat diffusivity used here has
the dependence on the pressure gradient as χa ∝ α3/2. This reduction of χa depends on the choice
of the model for the anomalous heat diffusivity. The shear of the radial electric field is not enough
to suppress the anomalous heat diffusivity in the edge region. If we set G = 0 and neglect the effect
of the radial electric field shear in the form of the anomalous heat diffusivity χa, the main point in
this article that the transport characteristic is shown does not alter. In the core region (ρ ∼ 0.2), the
reduction of the anomalous heat diffusivity is obtained due to the shear of the radial electric field
in the parameter region examined here. Therefore, the profile of the radial electric field affects the
confinement property. In the case of 12MW, no rapid reduction of the anomalous heat diffusivity
is shown in figure 1(d) because there is no large change of the electron temperature gradient near
the edge. The transport characteristic is studied in the edge region 0.8 < ρ < 1.0 from the rapid
increase of the radiative loss at the low electron temperature (10eV < Te < 30eV).

4.3 Access to the Fully-Detached Stable State

We discuss the dependence of the sum of the radiative loss and bremsstrahlung loss on the density
divided by the effective power. If the effective power decreases, we consider the situation that
the “effective” density increases. The effective power means the sum of the contribution from
the convective term, the heat exchange and the heating power in the temporal equation of the
electron temperature (1), because the energy input is needed to compensate the particle loss when
the density profile is temporally fixed. Here, we use the quantity Pz, Pb and Peff related with the
radiative loss, the bremsstrahlung loss and the effective power input, which are integrated in the
toroidal coordinate and the approximation r/R = 0 is used. In figure 2(a), the dependence of
the sum of the radiative loss and bremsstrahlung loss on the line-averaged density divided by the
effective power is shown. In the enclosed region of figure 2(a) labeled by parameter region (A), the
heating power is around 10MW. The heat exchange term plays a role of the power loss in the region
(A), because the electron temperature is higher than the ion temperature at all radial points. In this
region (A), the effective input power is lost by the radiative loss and bremsstrahlung loss with
the ratio 65%. We have the contribution from the conductive term in equation (1) , because the
electron temperature gradient at ρ = 1 has some value in the region (A). Therefore, we have a loss
by around 35% of the conductive loss due to the electron temperature gradient at ρ = 1, compared
with the effective input power in the parameter region (A). The power input which comes from the
convective term in the equation (1) is negligible in the parameter region (A). In this region (A),
the partially-detached plasma state is obtained. Therefore, the region (A) corresponds to the state
(ii) in the subsection 4.1. Next, we consider the case that the heating power is around 7MW in
the enclosed region of figure 2(a) labeled by parameter region (B). The heat exchange term plays
a role of the power input in the region (B), because the ion temperature is slightly higher than the
electron temperature at certain radial points. In this parameter region, the effective input power is
almost lost by the radiative loss and bremsstrahlung loss with the ratio (Pz + Pb)/Peff ∼ 1. We
have no contribution in the integrated quantity from the conductive term in equation (1), because
the electron temperature gradient at ρ = 0 is zero and T ′e at ρ = 1 is close to zero in the region (B).
In this region (B), we have the fully-detached plasma state. Therefore, the region (B) corresponds
to the state (iii) in the subsection 4.1. We obtain the fully-detached and partially-detached plasma
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FIG. 2 (a) The dependence of the sum of the radiative power and the bremsstrahlung loss on the line-averaged
density divided by the effective input power. (b) The electron temperature at ρ = 1 depending on the electron
heating power.

states which is temporally stable in the wide region of the electron heating input.
Figure 2(b) shows the dependence of the electron temperature at ρ = 1 on the electron heating

power Phe. The labeled regions by (A) and (B) in figure 2(b) corresponds to the regions labeled
by ‘parameter region (A)’ and ‘parameter region (B)’ in figure 2(a), respectively. The radiative
loss rapidly increases at the low electron temperature (10eV < Te < 30eV). The threshold heating
power is estimated as Pth ' 7.6MW for the boundary between the partial-detached and the fully-
detached plasma states. In the region Phe ≥ 7.6MW, the relation is approximatedly obtained as
Te − Te(Pth) ∝ (Phe − Pth)0.34±0.02. When the heating power Phe is less than Pth, the dependence of
the electron temperature on the heating power Phe gets weak. Therefore, even in the case of the low
heating power (Phe ≤ 6.5MW), the fully-detached plasma state is found to be achievable.

4.4 Density Limit

We determined the threshold heating power Pth for the boundary between the fully-detached and
the partially-detached stable plasmas in the previous subsection, when the radiative loss and the
transport loss are included using a set of temporal transport equations of the temperatures of elec-
trons and ions and the ambipolar radial electric field. We use temporally fixed density profiles,
where n(ρ) = γn(ρ)IDB and the parameter γ is chosen to take the value 0.6 ≤ γ ≤ 1.2 in this
calculation. The threshold electron heating power Pth is the function of the line-averaged critical
density n̄c. The condition Pe ≥ Pth, can be shown as n̄ ≤ n̄c, where Pe is the electron heating power.
The dependence of the critical density n̄c on the threshold electron heating power Pth is given in
figure 3. The solid line in figure 3 shows the critical density n̄c as the function of Pth, n̄c ∝ P0.65±0.01

th .
The Sudo scaling of the density limit was shown from the experimental results in helical plasmas
as nSudo ∝ P0.5, where P is the absorbed power [3]. The dependence of the critical density on the
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FIG. 3 The dependence of the line-averaged critical density n̄c on the threshold electron heating power Pth
in the logarithmic scales on both the horizontal and vertical axes. The solid line approximately follows the
relation n̄c ∝ P0.65

th .

threshold electron heating power derived in the case of the IDB here is slightly stronger than the
case of the Sudo scaling of the density limit. If we neglect the effect of E′r (set G = 0), we obtain
the close relation for the critical density to the case with the effect of the Er gradient for the choice
of χa in this article. This is because the mechanism of the radiative loss in the edge region mainly
determines the dependence of the critical density on the electron heating power for the density
limit.

5. Summary

The analysis is performed by use of the one-dimensional transport equations with the effect of
the radiative loss and the radial profile of the ambipolar electric field. The dependence of the
electron temperature on the electron heating was studied in the case of the IDB plasma with the
radiative cooling rate. The strong peak of the radiative loss is shown near the edge at the low
electron temperature. The analytical results in the edge region show the steep gradient in the profile
of the electron temperature, which indicates the characteristic of the transport barrier formation.
The ratio of the radiative and bremsstrahlung loss to the effective input power is examined when
we calculate the different cases of the electron heating power. The fully-detached and partially-
detached plasma states which are temporally stable are obtained in the wide parameter region. The
parameter dependence of the critical density on the electron heating power is shown. The large
improvement in the density limit scaling is not found due to the effect of the Er gradient. The
parameter dependence of the critical density changes because of the impurity species and needs to
be compared with the experimental results in detail. The dependence of the critical density on the
profile of the electron heating should be also studied. These are left for future studies.
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