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Abstract: Tokamak microturbulence is shown to saturate by transferring energy to damped eigenmodes in the 
wavenumber range of the instability rather than by the usual energy cascade to dissipated small scales.  This is 
established for the gyrokinetic formulation of ion temperature gradient turbulence by projecting the saturated 
nonlinear state onto complete basis sets, including the linear eigenmodes of the gyrokinetic operator and the 
basis of a proper orthogonal decomposition.  These projections are applied to nonlinear initial value simulations 
of the gyrokinetic code GENE.  For the CYCLONE base case hundreds of damped eigenmodes are excited to 
significant levels.  Calculation of energy dissipation rates shows that the modes excited produce an energy sink 
in the wavenumber range of the instability that at certain scales dissipates energy faster than the instability 
injects energy.  Proper orthogonal decomposition establishes that prompt access to dissipation in the form of 
weakly interacting dissipative eigenstates creates an equipartition of a form of dissipation rate in each 
orthogonal mode. There are indications that damped eigenmodes impart their frequencies to the frequency 
spectrum at fixed wavenumber and account for the large linewidth observed in simulation and experiment.  
Zonal flows, while excited to large amplitude, dissipate little energy compared to other damped eigenmodes. 
Analysis of energy flow shows that damped eigenmodes provide the energy sink for saturation, but fluctuation 
levels are lower when the energy passes through zonal flows to the damped eigenmodes than when energy 
bypasses zonal flows. The secondary Kelvin-Helmholtz instability that breaks up the structure of the electron 
temperature gradient instability is found to be a dissipative structure through excitation of damped eigenmodes.  
Damped eigenmodes also saturate turbulence in other models of plasma microturbulence, including trapped 
electron mode, Rayleigh-Taylor, resistive interchange mode, and collisional drift wave turbulence. 

1. Introduction 

The physics of saturation of plasma microturbulence in tokamaks is an open and unresolved 
issue, and unlike hydrodynamic turbulence, has an important effect on energy containing 
scales.  In high Reynolds number hydrodynamic turbulence the physics of the viscous energy 
sink that enables a steady state has negligible effect on dynamics in the inertial range, 
because the dissipation is confined to a highly separated small-scale range.  Dynamics at 
large scales is dominated by conservative, scale-independent spectral transfer.  This para-
digm has been assumed to apply to plasma turbulence as well, leading to the notion that 
transport and other properties dominated by the energy containing scales are not sensitive to 
the physics of saturation.  We show here that fluctuation levels, transport, and other observ-
able consequences of the turbulence are governed, not just by the driving instability, but by 
the mechanism that saturates the instability and dissipates the fluctuation energy.   

The preceding statement is based on evidence, presented here, that saturation of plasma 
instabilities does not occur primarily through an energy transfer to small scales where it is 
dissipated but by nonlinearly exciting eigenmodes that are damped for every wavenumber in 
the spectrum.  Damping of these eigenmodes for wavenumbers in the instability range 
dissipates most of the energy of the instability before it reaches small scales.  This is a novel 
process relative to standard paradigms.  Driving and dissipation ranges completely overlap, 
with dissipation peaking in the driving range although it extends outside.  In place of the 
conventional cascade in wavenumber space, with scale invariance in inertial scales, there is 
transfer to a hyperspace of damped eigenmode manifolds.  This hyperspace is infinite in the 
gyrokinetic formalism and becomes finite only under discretization of the gyrokinetic 
operator.  
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This type of saturation mechanism applies to turbulence that is thought to govern tokamak 
core transport, including ion and electron temperature gradient turbulence (ITG and ETG) 
[1]-[2], and trapped electron mode turbulence [3].  It also applies to a variety of other types 
of turbulence, including Rayleigh-Taylor turbulence, resistive interchange turbulence, colli-
sional drift wave turbulence, scrape-off layer turbulence, and microtearing turbulence [4].  
This paper provides a summary of what is presently known about this type of saturation 
mechanism, including how gyrokinetic and fluid descriptions affect the overall picture. 

2. Gyrokinetic Modeling of Ion Temperature Gradient Turbulence  

Gyrokinetic simulation of ITG turbulence saturates to a converged spectrum even when 
scales beyond the region of positive growth are not well resolved.  This is in contrast to high-
Reynolds-number hydrodynamic turbulence, in which the range of dynamically important 
scales beyond the scales of energy input is so large that no simulation can resolve it.  This 
difference, which has had no prior explanation, is consistent with saturation by damped 
eigenmodes in the wavenumber range of the instability.  To examine the role of damped 
eigenmodes in saturation of ITG turbulence, an eigenmode solver developed for the gyro-
kinetic code GENE [5] has been used to project the saturated turbulent state as evolved   
from initial value simulation onto the 
compete linear basis set of the discretized 
gyrokinetic operator.  The standard 
resolution of the CYCLONE base case 
yields over 104 damped eigenmodes, of 
which there are at least several hundred that 
are excited to significant amplitudes.  Figure 
1 shows the frequency, growth rate, and 
amplitude of a selection of eigenmodes, all 
with the same wavevector, in the unstable 
range.  The single unstable mode is 
included.  The modes selected are nearly 
orthogonal.  The amplitude, in conjunction 
with the damping rate, gives a sense of the 
magnitude of energy dissipated by each 
mode.  It is clear from Fig. 1 that many 
damped eigenmodes contribute to the 
saturation of the instability. 

 
Fig. 1.  Amplitude (color) as a function of 
growth rate and frequency for 315 of the 
least damped eigenmodes of the linearized 
gyrokinetic operator for a Fourier 
wavenumber ky = 0.3 and kx = 0.0 in the 
region of instability.   

To determine the rate at which damped eigenmodes dissipate energy, the dissipative (non 
conservative) terms of the gyrokinetic operator are used to construct a finite-amplitude-
induced fluctuation dissipation rate shown in Fig. 2.  The “dissipation” rate of the most 
unstable eigenmode (blue curve) is positive, indicating energy input over the wavenumber 
range of the instability (0 < kyρs<0.7).  The total dissipation rate (black curve), which 
includes the effect of damped eigenmodes, becomes negative for kyρs < 0.1 and kyρs

 > 0.4, 
indicating that damped eigenmodes remove energy in those scales faster than it is injected by 
the instability.  Damped eigenmodes also remove energy in the scales 0.1 < kyρs

 < 0.4, but at 
a rate that is slower than the instability input rate.  In the range 0.15 < kyρs

 < 0.25 there is a 
second linearly unstable eigenmode.  There is also subcritical instability associated with the 
excitation of stable eigenmodes. These increase the energy input rate above that of the most 
unstable eigenmode.  The dissipation rate attributable to everything but the most unstable 
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eigenmode (red curve) is thus slightly positive for 0.15 < kyρs

 < 0.25, is strongly negative 
everywhere else, and becomes constant above kρs

 = 0.4.   

 
Fig. 2. Energy input rate of the unstable 
eigenmode (blue), stable eigenmodes (red) 
(whose mostly negative value corresponds 
to energy damping) and net rate of the two 
combined (black) across the wavenumber 
range of the instability. 

It is instructive to determine how the rates 
represented in Fig. 2 are apportioned into 
contributions from the cross correlation of 
the heat flux, collisions, and numerical 
dissipation.  Under such a breakdown the 
energy evolves according to  

€ 

∂Ek

∂t NC

= Ck + Dk + Nk  , (1) 

where NC indicates that only non 
conserving terms are included in the 
evolution (the conservative nonlinearity is 
excluded).   Here   

€ 

Ck = d∫ v||dµ π n0T0B0  × 

€ 

(v||
2 + µB0)ωT g* ikyφ  is a correlation of 

potential and gyro-center ion distribution 
function g that is proportional to heat flux, 
Dk represents collisional dissipation, and Nk 

is numerical dissipation. The energy is given by 

€ 

E = d∫ v||dµB0

€ 

(n0T0 /F0) g
2

+ H(k⊥ )φ
2 , 

where H is a function of perpendicular wavenumber.  For the Cyclone base case the 
contributions to Eq. (1) have been evaluated for each mode of a proper orthogonal 
decomposition (POD) [6]. The mode with the largest singular value (largest contribution to 
the turbulent dynamics) is essentially the unstable eigenmode.  It has Ck positive and much 
larger than Dk + Nk.  This is consistent with the ITG instability drive.  The remaining modes 
are damped.  Those with larger singular values can have sizable Ck, but Ck can be either 
positive or negative depending on the mode.  Averaged over singular values, Ck is very 
small.  This is consistent with earlier work on the cross phase, which showed that its mean 
value did not deviate significantly from the linear value (given by the unstable eigenmode) 
but the standard deviation was very large [1].  In contrast Dk + Nk is systematically negative 
for the damped modes and large compared to the average value of Ck.  We conclude that for 
the Cyclone base case of ITG turbulence, the damped eigenmodes saturate the instability 
primarily through collisional damping.  This damping is concentrated in large scales for x 
and y (small values of kx and ky).  In contrast the damping occurs in both large and small 
values of kx and for parallel velocities that are both small and large. 

The damped modes satisfy a condition that asymptotically corresponds to equipartition of a 
form of dissipation rate of each orthogonal mode.  This is consistent with a gas of weakly 
interacting eigenstates in which dissipation rates balance equipartitioned energy transfer 
rates.  This condition, which can be formulated statistically using a Gibbs distribution, 
replaces the scale invariance of large-Reynolds-number hydrodynamic turbulence as the 
organizing principal for excitation among available states in plasma microturbulence. 
Analysis of dissipation range spectra for constant damping under advective nonlinearities 
yields power law spectra, as observed in simulation.  There is also some evidence that 
anomalously broad frequency spectra at fixed k, as observed in simulation and experiment 
[7], reflect frequencies of damped eigenmodes [1].  Zonal flows are excited to finite levels 
but dissipate little energy relative to damped eigenmodes that are not zonal flows. While 
analysis of energy flow shows that damped eigenmodes provide the energy sink for 
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saturation, fluctuation levels are lower when the energy passes through zonal flows to the 
damped eigenmodes than when energy bypasses zonal flows. This is quite different from the 
role postulated in the zonal flow paradigm, which assumes that transfer to small scales 
enhanced by zonal flow shear saturates the turbulence [8]. 

3. Damped Eigenmodes in Electron Temperature Gradient Turbulence  

Eigenmode projection has been used in analysis of the numerical solution of ETG turbulence 
saturation.  We consider an electromagnetic model for ETG turbulence that includes 
evolution equations for vorticity, electron pressure, and the parallel component of the 
magnetic vector potential [9].  The ETG instability is known to undergo transition to the 
turbulent state through a process that involves a secondary Kelvin-Helmholtz (KH) 
instability that breaks up the primary ETG structure [10].  It is found that the secondary 
instability and the ensuing nonlinear evolution are associated with strong excitation of 
damped eigenmodes and strong energy dissipation.  Figure 3 shows the nonconservative 
energy evolution  rates.   In Fig. 3a,  the rates are normalized by energy to yield growth rates.  

   
Fig. 3.  Energy evolution rates showing contributions from unstable and stable eigenmodes. 

The growth rate γL represents the total energy input summed over wavenumber.  It is positive 
during the linear growth phase when tvT/Ln < 60.  In saturation it oscillates around zero 
because it includes both instability drive and the damping that produces saturation, which 
must balance for a steady state.  The total energy input is closely matched by the energy 
input of the unstable eigenmodes during the linear phase.  Energy input by damped eigen-
modes is zero during this phase, but after saturation it is negative and roughly opposite the 
still positive energy input by unstable eigenmodes.  This indicates that damped eigenmodes 
saturate the instability.  Saturation is not accomplished by transfer to the large viscously 
damped wavenumbers of the unstable mode.  Were this the case, the red trace would drop to 
zero after tvT/Ln < 60, and the blue trace would never reach negative values.  Figure 3b, 
which has energy evolution rates Γ that have not been normalized to yield growth rates, 
shows that it is the damped eigenmodes in the wavenumber range of the instability that 
provide saturation.  The green trace represents damped eigenmodes in small scales beyond 
the instability range, while the blue trace represents damped modes in the instability range.  
There is a transient at the onset of the nonlinear state in which small scales dissipate 
fluctuation energy, but thereafter the damping in small scales is nearly zero and damping is 
concentrated in large scales.  From analysis of individual nonlinearities, it is found that the 
transient corresponds to a brief period of strong vorticity advection associated with the KH 
instability.  After the transient vorticity advection is weak compared to pressure advection.  
We conclude that the KH secondary instability is not solely an inertial structure that conducts 
instability energy to small scales where it can be viscously dissipated.  Instead it is a 
dissipative structure whose large scales access the damping of damped eigenmodes.  
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Moreover, whereas the KH instability operates transiently, damped eigenmodes through 
pressure advection operate continuously to provide saturation throughout the nonlinear state. 

  
Fig. 4.  Contribution to energy evolution from cross phase and collisions. 

Figure 4 breaks energy evolution rates into the components associated with cross phase (C) 
and collisional dissipation (D).  In Fig. 4a, collisional damping associated with damped 
eigenmodes, represented by the green trace, is significant only during the transient.  After the 
transient the energy injected by the instability is balanced by fluctuation dissipation from the 
cross phase associated with damped eigenmodes (blue trace) and collisional dissipation in the 
unstable eigenmode (red trace).  The latter is seen from Fig. 4b to be intrinsic to the mode 
structure of the unstable eigenmode.  In this figure, the collisional dissipation in the unstable 
eigenmode is normalized to the unstable cross correlation that drives instability.  The trace is 
nearly constant, indicating a residual collisional damping that is overcome by the unstable 
cross phase.  Figure 4 illustrates a striking difference between damped mode saturation in 
ETG and the Cyclone base case of ITG.  In the latter damped modes saturate the linear 
instability primarily though collisions, while in the former it is through the cross correlation.  
As shown in the next section, damped eigenmodes in other types of fluid turbulence also 
saturate the instability, principally through the cross correlation. 

4. Damped Eigenmodes in Fluid Turbulence  

The preceding sections and prior work [1]-[3] have dealt with core turbulence in tokamaks.  
We show that saturation by damped eigenmodes is widespread in unstable plasmas and not 
peculiar to some restricted set of physical processes, parameter regimes, or models.  To do 
this we study saturation in two-fluid models for trapped electron turbulence (TEM) [3], 
Hasegawa-Wakatani turbulence [11], Rayleigh-Taylor turbulence [12], ITG [13], 
microtearing turbulence [14], thermally driven microtearing turbulence [15], thermally 
driven drift waves [16], and ionization driven drift waves [17].  These models include 
electrostatic and magnetic fluctuations, they span regimes in temperature from hot to cold, in 
trapping physics from trapped to untrapped, in field line configuration from closed to open, 
and in discharge locale from core to scrape-off layer.  

All of these models have regimes in which damped eigenmodes provide the dominant satura-
tion mechanism.  For TEM and Hasegawa-Wakatani turbulence this regime is the weakly 
collisional regime (sometimes labeled collisionless) and the hydrodynamic regime respec-
tively.  In these regimes dissipative processes in the diagonal terms of the original model are 
weak compared to off-diagonal terms.  The diagonal terms enter the energy as squared 
amplitudes, while the off-diagonal terms enter as amplitude cross correlations. The off-
diagonal terms are complex because of diamagnetic frequencies or similar physics associated 
with equilibrium gradients.  This is true for most of the models – saturation is dominated by 
damped eigenmodes when gradient instability drive from cross correlations is strong.  



 
 

 TH-C/P4-27 6 
However, the scrape-off layer models are driven by negative dissipation in the diagonal 
terms and are therefore quite different.  Nonetheless they too have regimes where the 
damped eigenmode saturates the instability.  A feature of quadratic dispersion (which does 
not carry over to higher order) is that very near instability threshold the damped eigenmodes 
are so heavily damped that saturation is accomplished through the conventional cascade to 
small scales.   

The dominance of the damped eigenmode in saturating the instability in all of these models 
is well predicted by an eigenmode activity threshold parameter [17] given by 

€ 

Pt =
D1(C2 + C3)
C1
2(2 − γ 2 /γ1)

 , (2) 

where γ2  is a damping rate of the damped eigenmode, γ1  is the growth rate of the instability, 
C1 is the coupling strength for transfer to high k on the manifold of the unstable eigenmode, 
D1 is the coupling strength for transfer to a damped mode from two unstable modes, and C2 + 
C3 are coupling strengths for transfer away from the unstable mode to damped eigenmodes.  
All quantities in Pt depend on wavenumber and are evaluated in the wavenumber range of 
the instability.  Pt is intended as a rough measure of the importance of damped eigenmodes in 
saturation.  When its value is order unity damped eigenmodes are important in saturation.  
When it is much smaller than unity, it is expected that saturation will occur through transfer 
on the unstable manifold to collisionally damped wavenumbers at high k.  The parameter Pt 
is strongly sensitive to the ratio γ2/γ1.  When the ratio becomes much larger than unity, the 
parameter value decreases.  Simulations show that damped eigenmode activity weakens as Pt 
decreases.  However, even when γ2/γ1 becomes quite large, the damped eigenmode continues 
to be the primary saturation energy sink.  Figure 5 shows the ratio of the rate of energy 
dissipation in the damped mode to the rate of energy injection by the unstable mode as a 
function of γ2/γ1.  The simulation is for trapped electron mode turbulence.  This ratio remains 
close to order unity as γ2/γ1 ranges between 1 and several hundred. Only when γ2/γ1 becomes 
larger several hundred does energy dissipation by the damped mode begin to fall out of 
balance with energy input.  This is due in part to the fact that the coupling ratio D1(C2 + 
C3)/C1

2 is larger than unity.  However it is also the case that the damped mode remains 
important as γ2  increases because the damped eigenmode is directly accessed in every triad, 
whereas the damping on the unstable manifold requires a cascade through a series of triads.   

 
Fig. 5.  Ratio of energy dissipation to 
injection rate as a function of damping to 
growth rate ratio for trapped electron mode 
turbulence.   

Fig. 6.  Attribution of energy rate (injection 
or dissipation) to cross-correlation and 
collisional terms associated with unstable 
and damped modes in ITG turbulence. 
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Like ETG, damped eigenmodes in the two-field fluid models have a significant and 
systematic effect on the cross correlation, which provides the largest single sink of energy for 
saturation.  This is shown in Fig. 6, which breaks the energy rate of change into components 
that depend on the cross correlation between unstable mode amplitudes (Cu), components 
that depend on the cross correlation with stable mode amplitudes (Cs), and components that 
depend on collisional dissipation (Du and Ds).  The simulation is for ITG turbulence.  Like 
ETG, Cs is the largest offset to the instability drive. 

5. Conclusions 

We have shown that damped eigenmodes are a pervasive and significant player in the 
saturation of instability-driven plasma turbulence.  This has been verified for many types of 
turbulence and is true whether there are many damped eigenmodes or one.  The statement 
applies to both kinetic and fluid systems.  Indeed, it appears that when there is a single 
damped eigenmode the system channels fluctuation energy to that mode.  When there are 
many it si channeled to all modes under an equipartition arrangement.  Reduced fluid models 
thus behanve qualitatively like low resolution kinetic models in the saturation by damped 
eigenmodes.  Damped eigenmodes dissipate fluctuation energy through cross correlations 
that relate to transport fluxes and through collisional terms.  For fluid models the former 
dominate, while for CYCLONE-base-case ITG the latter dominate.  The origin of this 
difference, which has bearing on the goodness of the quasilinear transport approximation, is 
not understood but will be studied in future work.  In both fluid models and CYCLONE-
base-case ITG the damped eigenmodes provide a sink of energy in the same scales as the 
fluctuation drive.  With no scale separation between drive and damping in instability-driven 
plasma turbulence, fluctuation levels and transport can only be properly treated if the 
saturation mechanism is as well understood as the driving instability. 

A number of key aspects of damped eigenmode saturation have been studied only cursorily.  
These include the mechanism by which zonal flows lower fluctuation levels fixed by damped 
eigenmode saturation.  They include the mode coupling process responsible for observed 
equipartition of a form of dissiption rate across a POD spectrum.  They include study of the 
effect of damped eigenmodes on the frequency spectrum at fixed k, the parallel parity 
properties of damped eigenmode fluctuation structures and their effect on stochasticity, and 
phase-space characteristic of energy transfer to damped eigenmodes.  These processes are all 
under study and will be described in greater detail in the future.  
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