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Abstract. The generation of intrinsic toroidal and poloidal flows in the background of ion temperature

gradient driven microturbulence has been studied using quasilinear theory. It is shown that the dynamics

of mean toroidal and poloidal flows is coupled. The radial fluxes of toroidal and poloidal momenta are

calculated. The polarization drift driven toroidal momentum flux is found to be independent of mean E×B

flow shear and can become comparable to E × B shear driven flux in weak pressure gradient region and

hence complements the E ×B shear induced 〈k‖〉 symmetry breaking mechanism [O. D. Gurcan etal., Phys.

Plasmas 14, 042306 (2007)] of intrinsic rotation.

1. Introduction

The intrinsic rotation[1], which is a manifestation of anomalous momentum transport in

many present day tokamaks, is an important unresolved issue since its first observation in

early 1990s [2]. Observation of toroidal rotation and its shear in determining the power

threshold for L-H transition[4], in stabilizing resistive wall modes (RWMs) and “Rice scal-

ing” prediction of ∼ 250 km/s of intrinsic rotation speed of ITER plasma which appears to be

sufficient to stabilize RWMs[3], has accelerated the theoretical and experimental studies on

intrinsic rotation. Mean field generation by turbulent Reynolds stresses is now well studied.

For adiabatic electron response the mean parallel momentum flux is solely determined by the

Reynolds stress which in the spirit of mean field electrodynamics[5], is shown to be decom-

posed as[6] 〈ṽrṽ‖〉 ≈ −χ‖
∂〈v‖〉
∂r

+ Vc〈v‖〉+ S, where the first term is diffusive, the second term

is convective (or pinch) and the third term known as residual stress is independent of mean

parallel flow and its shear and is the most crucial component in generating intrinsic rotation.

Momentum diffusivity χφ ∼ χi(thermal diffusivity) is claimed in Refs.[2, 8, 9], but some

recent work[10] show departure from this. Turbulent momentum pinch has been treated in

Refs.[11] and residual stress has been shown to arise due to asymmetry of fluctuation spectra

induced by mean radial electric field shear[6, 9], which has been confirmed by perturbation

experiments carried out on JT60U [12], due to up-down symmetry breaking of equilibrium

magnetic topology[13] and from parallel nonlinearity in gyrokinetic framework [14].

However so far to the best of our knowledge little attention has been paid to simultane-

ous mean poloidal flow generation. Again in the same spirit of mean field electrodynamics

we can write the poloidal turbulent Reynolds stress as 〈ṽrṽy〉 ≈ −χy ∂〈vy〉
∂r

+ Vr〈vy〉+Sy, Here

the residual stress term Sy is independent of mean poloidal flow 〈vy〉 and its shear 〈v′y〉 but
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may depend on mean toroidal flow 〈v‖〉 and its shear 〈v′‖〉. In other words, the off-diagonal

part for one type of stress may serve as the diagonal part for the other, hence providing a cou-

pling between toroidal and poloidal flow generation mechanisms. This is the prime focus of

the present paper. In this article we have performed a systematic calculation of toroidal and

poloidal Reynolds stresses for electrostatic ITG turbulence with adiabatic electron response,

within the fluid theoretical framework, and found that toroidal and poloidal flow generation

mechanisms and their evolutions are naturally coupled. We also find that the polarization

drift can generate parallel residual stress even in the absence of a “seed” poloidal flow. While

turbulent E ×B drift induced poloidal stress requires assymetric eigen spectrum with radial

outgoing wave nature[15], polarization drift found not to drive poloidal stress at all.

2. Flow Generation and Amplification: Momentum Conservation

We separate the temporal and perpendicular spatial scales into a set of “fast” variables,(~x⊥, t),

associated with the microturbulence and a set of “slow” variables ( ~X⊥, T ), typical of slowly

evolving equilibrium profiles[16]. Write ~∇⊥ → ~∇(0)
⊥ + ε~∇(1)

⊥ ,
∂
∂t
→ ε ∂

∂t
+ ε2 ∂

∂T
,∇‖ → ε∇‖

where ε ∼ (ρs/Ln) ∼ (ω/ωci) ∼ (k‖/ky) � 1 in drift wave ordering. Here ~∇(0)
⊥ corresponds

to a derivative with respect to ~x⊥ and ~∇(1)
⊥ corresponds to a derivative with respect to

~X⊥. Furthermore, for any field f and it’s fluctuation δf(x, t,X, T ), we may define a space-

time average over the fast scales such that 〈δf(x, t,X, T )〉 = 0, but functions of only slow

variables are left unaltered, i.e., 〈f(X,T )〉 = f(X,T ). Similarly, averages over the fast scales

annihilate derivatives of fast variables as well as derivatives along magnetic field lines but

commute with slow derivatives, i.e., 〈~∇(0)
⊥ f〉 = 〈∇‖f〉 = 0, but 〈~∇(1)

⊥ f〉 = ~∇(1)
⊥ 〈f〉. We,

thus, obtain the evolution equation for mean toroidal and poloidal flows from standard ion

momentum equation upto order ε4 as

∂〈V‖〉
∂T

+
∂

∂X
〈δvExδv‖〉+

∂

∂X
〈δvpolxδv‖〉 = 0 (1)

and
∂〈Vy〉
∂T

+
∂

∂X
〈δvExδvEy〉+

∂

∂X
〈δvpolxδvEy〉 = 0 (2)

which are coupled through the radial force balance equation

〈Vy〉 = −Ex
Bz

+
1

n0eBz

dP0

dX
+
〈Vz〉By

Bz

(3)

where δvE is fluctuating E × B drift velocity and δvpol is the fluctuating polarization

drift velocity. Note that, though the third term in the above mean toroidal and poloidal

momentum equation is nominally one order higher it will be shown in Section 5 that under

certain conditions the second and third terms can become comparable.

3. Radial Eigenmode Analysis

In a sheared slab configuration of magnetic field ~B = B(ẑ+(x−x0)/Lsŷ) in the neighborhood

of a rational surface at x0, and for fluctuations localized on a particular rational surface at
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x = x0, expanding the mean ion flow velocity ~Vi0 as ~Vi0(x) = ~Vi0(x0) + (x − x0)
(
∂~Vi0

∂x

)
+ ...

and taking adiabatic electron response δne/n0 = eδφ/Te. the perturbed linearized continuity,

momentum and pressure equation for ions describing fluid ITG instability is

(
∂

∂t
+ xV̂ ′E0∇y)(1−∇2

⊥)φ+ (1 +K∇2
⊥)∇yφ+∇‖v = 0 (4)

(
∂

∂t
+ xV̂ ′E0∇y)v − V̂ ′‖0∇yφ+∇‖(p+ φ) = 0 (5)

(
∂

∂t
+ xV̂ ′E0∇y)p+K∇yφ+ Γ∇‖v = 0 (6)

where the normalizations are x = (x − x0)/ρs, y = y/ρs, z = z/Ln, t = tcs/Ln,

φ = (eδφ/Te)(Ln/ρs), ni = (δni/n0)(Ln/ρs), v = (δv‖i/cs)(Ln/ρs), p = (τiδpi/Pi0)(Ln/ρs),

Ln∇‖ ≡ ∇‖ = ∂
∂z

+xs ∂
∂y

and the nondimensional parameters are ηi = Ln/LT , K = τi(1+ηi) =

τiαi, Γ = γτi, s = Ln/Ls ,τi = Ti/Te, V̂
′
E0 = (Ln/cs)V

′
E0, V̂

′
‖0 = (Ln/cs)V

′
‖0, ρs = cs/ωci. Now

considering the perturbation of the form f = fk(x)exp(ikyy − iωt) , where ky and ω are

normalized as ky = kyρs, ω = ω/(cs/Ln), and assuming that the flow shear frequency is much

smaller than the mode frequency, the above set of Eqs.(4-6) form an eigenvalue problem in

x direction in φk

d2φk
dx2

+
(
A1 + A2x+ A3x

2
)
φk = 0 (7)

where

A1 =
ky − ω

τiαiky + ω
− k2

y, A2 =
ky

τiαiky + ω

(
V̂ ′E0 − kys

V̂ ′‖0
ω

)
, A3 =

(
kys

ω

)2

(8)

The solution of equation(7) for the most dominant l = 0 mode is shifted off the mode rational

surface as shown bellow

φk = φ0 exp

[
−1

2
i
√
A3

(
x+

A2

2A3

)2
]

(9)

and the corresponding eigenmode dispersion relation is

ω2
(
1 + k2

y

)
+ ωky

(
−1 + k2

yτiαi + is
)

+ isτiαik
2
y = −

ωk2
y

[
ω
sky
V̂ ′E0 − V̂ ′‖0

]2
4 (τiαiky + ω)

(10)

In the limit V̂ ′E0 = V̂ ′‖0 = 0 and s� 1 and for long wavelength mode satisfying |k2
yτiαi| � 1

we get a purely a growing mode ω = isτiαiky, called the slow mode

When V̂ ′E0 = V̂ ′‖0 = 0 and under the assumption that |1−k2
yτiαi| . s� 1 the fastest growing

mode occurs at k2
y = (τiαi)

−1 which is given by ω = (−1 + i)
√

s
2(1+k2

y)
The corresponding

slow and fast eigenfunctions are

φk = φ0ks exp

[
−1

2

(
x− ξks

∆ks

)2
]

exp

[
i
V̂ ′‖0

2τiαi
x

]
, ∆ks =

√
τiαi (11)
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where the mode shift from the mode rational surface is given by ξk = τiαiV̂
′
E0/2. Fast growing

eigenfunction turns out to be

φk = φ0kf exp

[
−1

2

(
x− ξkf

∆kf

)2
]

exp

[
i

2

(
x+ ξkf

∆kf

)2
]

(12)

where ξkf = τiαiV̂
′
E0/2s (τiαi + 1) is the mode shift off the rational surface and ∆−2

kf =√
s(τiαi + 1)/2(τiαi)2 where ∆kf is half-width of the mode. In the following we will be using

the slow and fast mode frequencies in the absence of flow for flux calculations.

4. Momentum Flux

In this section we calculate the toroidal and poloidal quasilinear momentum fluxes due to

E ×B drift and polarization drift assuming the flow shear frequency much smaller than the

mode frequency.

4.1. E ×B Flux

From linear responses for δv‖,k from Eq.(5) and for δvEx we obtain a quasilinear toroidal

Reynolds stress

〈δvExδv‖〉 = Re

(
csρs
Ln

)2∑
~k

i
k2
y

ω

[
−V̂ ′‖0 +

k‖
ky

[
1− ω∗pi

ω

]]
|φk|2 (13)

where ω∗pi = −τiαiky , kx = −i∂lnφk/∂x and Re(f) means real part of (f). The first term is

diffusive and the second term, being independent of V‖ and V ′‖ , is the non-diffusive residual

flux. Since k‖ = kysx so, 〈k‖/ky〉 survives when scalar potential φk has odd parity about a

mode-rational surface and poloidal stress is

〈δvExδvy〉 = −Re
∑
~k

(
csρs
Ln

)2 [
1− ω∗pi

ω

]
kykx|φk|2 (14)

where the first term is due to E × B drift and the second term is due to ion diamagnetic

drift. It is obvious that poloidal flux survives only if kx 6= 0. In case of standing eigenmodes

kx is imaginary and hence mean flow can not be generated. If kx is linear in x, as happens to

be for electrostatic drift waves, another turbulence characteristic necessary for poloidal flow

generation is that of radial asymmetry of fluctuation spectrum about mode-rational surface.

This is analogous to 〈k‖〉 symmetry breaking and hence may be termed as 〈kx〉 symmetry

breaking. In the following we calculate toroidal and poloidal stresses explicitly for slow and

fast modes making use of
∑

~k ≡
∑

ky

∫ +∞
−∞ dxkys.

Slow mode: Using slow mode frequency and eq.(11) in eq.(13) gives

〈δvExδv‖〉 =
∑
ky

(
csρs
Ln

)2

k2
y

[
−V̂ ′‖0 + sξks

]√
π/∆ks|φ0ks|2 (15)
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and eq.(14) gives

〈δvExδvy〉 = −
∑
ky

(
csρs
Ln

)2

k2
ys
(
V̂ ′‖0/2∆ks

)
|φ0ks|2 (16)

which is a purely non-diffusive flux, and hence is capable of producing intrinsic mean poloidal

rotation.

Fast mode: The fast mode frequency and eq.(12) in (13) gives

〈δvExδv‖〉 =
∑
ky

(
csρs
Ln

)2 k3
ys

2γf

[
−V̂ ′‖0 + (1 + ω∗pi/γf )sξkf

]
∆kf

√
π|φ0kf |2 (17)

Poloidal stress due to E ×B drift for fast mode is

〈δvExδvy〉 = −
∑
ky

(
csρs
Ln

)2

k2
ys

[
1 +

ω∗pi
2γf

] [
2
ξkf
∆kf

]√
π|φ0kf |2 (18)

From the above analysis of E×B flux a few points may be noted. The residual toroidal flux

is proportional to mean electric field shear, and hence to mean pressure gradient, and so this

mechanism of flow generation is active in the high pressure gradient region, typical of the

edge region of H-mode plasmas.

4.2. Polarization Drift Driven Flux

From linear responses for δv‖,k from equations(5) and (6) and δvpolx = −cs (ρs/Ln)2 ∂t∂xφ we

obtain a quasilinear form of toroidal stress

〈δvpolxδv‖〉 = −c2s
(
ρs
Ln

)3
∂

∂T
〈∂φ
∂x
δv‖〉+c2s

(
ρs
Ln

)3

Re
∑
~k

[
V̂ ′‖0k

∗
xky − k∗xk‖

[
1− ω∗pi

ω

]]
|φk|2(19)

and poloidal stress

〈δvpolxδvy〉 = −c2s
(
ρs
Ln

)3
∂

∂T

[
1

2
〈
(
∂φ

∂x

)2

〉+ 〈∂φ
∂x

∂p

∂x
〉

]
(20)

Eq.(19) reveals that the time assymptotic polarization drift induced residual stress survives

when the spectral average 〈k‖kx〉 6= 0 which is always satisfied because k‖ ∝ x and kx ∝ x in

general, and due to the shifted gaussian structure of the fluctuation spectrum. Eq.(20) sug-

gests that the time assymptotic poloidal momentum flux due to polarization drift vanishes.

Moreover the time derivatives in equations(19) and (20) are of ε4 order and so they are not

considered in our further discussions. Now we calculate toroidal stresses due to polarization

drift explicitly for slow and fast modes.

Slow mode: From (11) and (19) we obtain toroidal stress

〈δvpolxδv‖〉 =
∑
ky

c2s

(
ρs
Ln

)3

k2
ys

[
V̂ ′‖0ky

2τiαi
V̂ ′‖0∆ks

√
π +

∆ks

2

√
π

]
|φ0ks|2 + ε4term (21)
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where it is clearly seen that the diffusive component of flux is modulated by the propagating

wave nature of the eigenmode. The term independent of V̂ ′‖0 and ξks is a “seedless” residual

stress contribution to the total toroidal momentum flux.

Fast mode: Similarly from (12) and (19) we obtain toroidal stress

〈δvpolxδv‖〉 =
∑
ky

c2s

(
ρs
Ln

)3

(kys)
2

[
2
ξkf
s∆kf

V̂ ′‖0 −
(

1 +
ω∗pi
γf

)
∆kf

2

]√
π|φ0kf |2 + ε5term (22)

The diffusive flux shown in the above expression is of ε4 order and hence will not be considered

in momentum flux budget. We strongly emphasize that in the limit of vanishing “seed flows”

the polarization drift driven toroidal momentum fluxes are residual in nature which we term

here as “seedless” residual flux which, being independent of mean radial electric field shear, is

likely to be active in wide parameter regime and may complement the toroidal flow generation

mechanism in weak mean electric field shear region or flat pressure profile region.

5. Coupled Toroidal and Poloidal Flow Equations

Using expressions for toroidal and poloidal stresses obtained in the previous section we obtain

coupled toroidal and poloidal flow equations, from eqs.(1,2) as

∂〈V‖〉
∂T

+
∂

∂X

[
−
(
χ
‖
‖E + χ

‖
‖pol

) ∂V‖
∂X
− χ‖y

∂Vy
∂X

+ S‖E + S‖pol

]
= 0 (23)

and

∂〈Vy〉
∂T

+
∂

∂X

[
−
(
χy‖E + χy‖pol

) ∂V‖
∂X
− χyy

∂Vy
∂X

+ SyE + Sypol

]
+ νneoVy = 0 (24)

where the various transport coefficients χ‖, χy and residual stresses S‖, and Sy for slow

and fast modes are obtained in Appendix A. Note that a neoclassical damping term νneoVy
is included in the poloidal flow eq.(24) for saturation of flow. The coupling of toroidal

and poloidal flow dynamics is appreciable in the following limits. a) For slow mode: when

ky ≈ s(By/B)(τiαi)/2 in eq.(A.1) and V ′y ∼ V ′‖(By/B) ∼ V ′∗pi in eq.(23). b) For fast mode:

when (1 +
ω∗pi

γf
)(By/B)(τiαi)/(2(1 + τiαi)) ∼ 1 in eq.(A.4) and V ′y ∼ V ′‖(By/B) ∼ V ′∗pi in (23).

Similarly from poloidal flow eq.(24) and the expressions following eq.(A.9), for fast mode,

the flow coupling is appreciable when V ′y ∼ V ′‖(By/B) ∼ V ′∗pi.

We next determine under what condition is the contribution due to polarization drift im-

portant. Estimating the magnitude of radial electric field shear by diamagnetic term in the

radial force balance equation i.e, V̂ ′E0 ≈ (ρs/Ln)τiαi, we get from residual component in

eq.(15) and “seedless” residual component in eq.(21) and from residual component in eq.(17)

and “seedless” residual component in eq.(22), respectively

|
S‖,pol,slow
S‖,E,slow

| ≈ 1

τiαi
, and |

S‖,pol,fast
S‖,E,fast

| ≈
√

2s

(
s

τiαi

)1/2

for τiαi � 1 (25)
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It immediately follows from eq.(25) that the polarization drift driven toroidal momentum

flux increasingly gains relative importance in weak temperature gradient region where radial

electric field shear driven flux becomes vanishingly small. Above comparison also shows that

the polarization driven flux is more active for slow mode.

6. Conclusion

The principal results of this paper are as follows. A coupled set of equations for evolution

of mean toroidal and poloidal flows have been derived (see eqs.(23) and (24)). Next

a novel polarization drift driven non-diffusive residual component to the radial flux of

toroidal momentum is obtained. Though nominally it is higher order in expansion in

ε ∼ ω/ωci ∼ ρs/Ln, detailed analysis in Section 5 shows that the polarization drift driven

flux can become comparable to mean electric field shear driven flux in the weak pressure

gradient region and hence complements the E × B shear driven flow generation mechanism

in that region. This mechanism for toroidal flow generation does not require a mean electric

field shear and it is due to 〈k‖kx〉 6= 0 which is fundamentally different from 〈k‖〉 symmetry

breaking mechanism. Polarization drift is found not to drive any poloidal momentum flux.
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Appendix A. Derivation of χ‖, χy, S‖ and Sy in Eqns.(23) and (24)

From the exact expressions for momentum fluxes in Section 4 and using the radial force

balance equation in the form
∂VEy

∂X
= ∂Vy

∂X
− ∂V∗y

∂X
− ∂

∂X

(
By

B
V‖

)
various transport coefficients

and residual stresses appearing in Equation (23) are obtained as follows. For slow mode

χ
‖
‖E =

∑
ky

(
csρs
Ln

)2

k2
y

√
π

∆ks

Ln
cs
|φ0ks|2 +

∑
ky

(
csρs
Ln

)2

kys
By

B

τiαi
2

√
π

∆ks

Ln
cs
|φ0ks|2 (A.1)

χ
‖
‖pol =

∑
ky

c2s

(
ρs
Ln

)3

k2
ysV̂

′
‖0

√
π

2∆ks

Ln
cs
|φ0ks|2, χ‖y = −

∑
ky

(
csρs
Ln

)2

kys
τiαi

2

√
π

∆ks

Ln
cs
|φ0ks|2 (A.2)

S‖E = −
∑
ky

(
csρs
Ln

)2

k2
ys
τiαi

2

√
π

∆ks

V ′∗pi
Ln
cs
|φ0ks|2, S‖pol =

∑
ky

c2s

(
ρs
Ln

)3

k2
ys∆ks

√
π

2
|φ0ks|2 (A.3)

and for fast mode

χ
‖
‖E =

∑
ky

(
csρs
Ln

)2 k3
ys

2γf

[
1 +

(
1 +

ω∗pi
γf

)
By

B

τiαi
2 (1 + τiαi)

]√
π∆kf

Ln
cs
|φ0ks|2 (A.4)
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χ‖y = −
∑
ky

(
csρs
Ln

)2 k3
ys

2γf

[
1 +

ω∗pi
γf

]
τiαi

2 (1 + τiαi)

√
π∆kf

Ln
cs
|φ0ks|2, χ‖‖pol = 0 (A.5)

S‖E = −
∑
ky

(
csρs
Ln

)2 k3
ys

2γf

[
1 +

ω∗pi
γf

]
τiαi

2 (1 + τiαi)
V ′∗pi
√
π∆kf

Ln
cs
|φ0ks|2 (A.6)

S‖pol = −
∑
ky

c2s

(
ρs
Ln

)3

(kys)
2 (1 + ω∗pi/γf )∆kf

√
π

2
|φ0ks|2 (A.7)

Similarly transport coefficients and residual stresses appearing in Equation (24) are obtained

as follows. For slow mode

χy‖E = −
∑
ky

(
csρs
Ln

)2

kys

√
π

2∆ks

Ln
cs
|φ0ks|2, Sypol = 0, χyy = 0, SyE = 0, χy‖pol = 0 (A.8)

and for fast mode

χy‖E =
∑
ky

(
csρs
Ln

)2

k2
ys

[
1 +

ω∗pi
2γf

]
By

B

τiαi
2s (1 + τiαi)

2
√
π

∆kf

Ln
cs
|φ0ks|2 (A.9)

χy‖pol = 0, χy = −
∑
ky

(
csρs
Ln

)2

k2
ys

[
1 +

ω∗pi
2γf

]
τiαi

2s (1 + τiαi)

2
√
π

∆kf

Ln
cs
|φ0ks|2 (A.10)

SyE =
∑
ky

(
csρs
Ln

)2

k2
ys

[
1 +

ω∗pi
2γf

]
τiαi

2s (1 + τiαi)
V ′∗pi

2
√
π

∆kf

Ln
cs
|φ0ks|2, Sypol = 0 (A.11)
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