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Abstract. A low flow δf gyrokinetic formulation to obtain intrinsic rotation profiles is presented. The
momentum conservation equation in the low flow ordering contains new terms, neglected in previous
first principles formulations, that may explain the intrinsic rotation observed in tokamaks. The intrinsic
rotation profile depends on the ion and electron temperature profiles, the up-down symmetry and the
type of heating.

1 Introduction

Experimental observations have shown that tokamak plasmas rotate spontaneously with-
out momentum input [1]. This intrinsic rotation has been the object of recent work [1, 2].
It is important because rotation in ITER [3] will be mostly intrinsic, as the projected
momentum input from neutral beams is small.

The origin of the intrinsic rotation is still unclear. The momentum pinch due to the Cori-
olis drift [4] has been argued to transport momentum generated in the edge. It has also
been argued that up-down asymmetry generates intrinsic rotation [5, 6]. However, neither
of these explanations are able to account for all experimental observations. The up-down
asymmetry is only large in the edge, generating rotation in that region that then needs to
be transported inwards by the Coriolis pinch. Thus, intrinsic rotation in the core could
only be explained by the pinch. The pinch of momentum is not sufficient because it does
not allow the toroidal rotation to change sign in the core as is observed experimentally [7].
The new model presented in this article, implementable in δf flux tube simulations, based
on the low flow ordering of Ref. [6], includes self-consistently higher order contributions.
As a result, new effects appear that depend on the gradients of the background profiles
of density and temperature and on the heating mechanisms.

In the remainder of this article we present the model, developed originally in [6], in a form
more suitable for δf flux tube simulation. In Section 2 we give the complete model, and
in Section 3 we discuss its implications for intrinsic rotation.

2 Transport of toroidal angular momentum

The derivation of the transport of toroidal angular momentum in the low flow regime,
including both turbulence and neoclassical effects, is described in detail in Ref. [6]. To
simplify the derivation, the extra expansion parameter Bp/B ¿ 1 was employed, with B
the total magnetic field and Bp its poloidal component. In this section, we review the
results of Ref. [6], recast them in a more convenient form and add a collisional term and
a term that depends on the heating mechanisms that were previously neglected.
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We assume that the turbulence is electrostatic and that the magnetic field is axisymmet-
ric, i.e., B = I∇ζ + ∇ζ × ∇ψ, where ψ is the poloidal magnetic flux, ζ is the toroidal
angle, and we use a poloidal angle θ as our third spatial coordinate. With an axisymmet-
ric magnetic field, in steady state and in the absence of momentum input, the equation

that determines the rotation profile is 〈〈Rζ̂·
↔
Pi ·∇ψ〉ψ〉T = 0, where

↔
Pi=

∫
d3v′ fiMv′v′ is

the ion stress tensor, R is the major radius, ζ̂ is the unit vector in the toroidal direction,
〈. . .〉ψ = (V ′)−1

∫
dθ dζ (...)/(B · ∇θ) is the flux surface average, V ′ =

∫
dθ dζ (B · ∇θ)−1

is the the flux surface area, and 〈. . .〉T is the coarse grain or “transport” average over
the time and length scales of the turbulence, much shorter than the transport time scale
δ−2
i a/vti and the minor radius a. Here δi = ρi/a ¿ 1 is the ion gyroradius ρi over the

minor radius a, and vti is the ion thermal speed. Note that we use the prime in v′ to
indicate that the velocity is measured in the laboratory frame. Later we will find the
equations in a convenient rotating frame where the velocity is v = v′ −RΩζ ζ̂.

In Ref. [6] we derived a method to calculate 〈〈Rζ̂·
↔
Pi ·∇ψ〉ψ〉T to order (B/Bp)δ

3
i piR|∇ψ|,

with pi the ion pressure. We present the method again in different form to make it easier
to compare with previous work in the high flow regime [8, 9]. In addition, instead of using
the simplified ion Fokker-Planck equation dfi/dt ≡ ∂fi/∂t + v′ · ∇fi + (Ze/M)(−∇φ +
c−1v′ × B) · ∇v′fi = Cii{fi} of Ref. [6], where Cii is the ion-ion collision operator, φ is
the electrostatic potential, Ze and M are the ion charge and mass, and e and c are the
electron charge magnitude and the speed of light, in this article we use the more complete
equation

dfi

dt
≡ ∂fi

∂t
+ v′ · ∇fi +

Ze

M

(
−∇φ +

1

c
v′ ×B

)
· ∇v′fi = Cii{fi}+ Cie{fi}+ Sht, (1)

where Sht ∼ δ2
i fivti/a is a source that models the different heating mechanisms, and

Cie{fe} = [(Fei−nemνeiVi)/niM ] ·∇v′fi +(nem/niM)νei∇v′ · [(Te/M)∇v′fi +v′fi] is the
ion-electron collision operator, with Fei = m

∫
d3v Ceiv the electron-ion friction force, Cei

the electron-ion collision operator, νei the electron-ion collision frequency, ni and Vi the
ion density and average velocity, ne and Te the electron density and temperature, and m
the electron mass. Applying the procedure in Ref. [6] to Eq. (1) we find two additional
terms that were not considered in Ref. [6].

In subsection 2.1 we explain how we split the distribution function and the electrostatic
potential into different pieces, and we present the equations to self-consistently obtain

them. In subsection 2.2 we evaluate 〈〈Rζ̂·
↔
Pi ·∇ψ〉ψ〉T employing the pieces of the

distribution function and the potential obtained in subsection 2.1. Before presenting all
the results, we emphasize that our results and order of magnitude estimates are valid for
Bp/B ¿ 1 and for collisionality in the range δ2

i ¿ qRνii/vti <∼1 [6], where νii is the ion-ion
collision frequency and q the safety factor.

2.1 Distribution function and electrostatic potential

The electrostatic potential is composed to the order of interest by the pieces in Table I
[6]. The axisymmetric, long wavelength pieces φ0(ψ, t), φnc

1 (ψ, θ, t) and φnc
2 (ψ, θ, t) are the

zeroth, first and second order equilibrium pieces of the potential. The lowest order compo-
nent φ0 is a flux surface function. The corrections φnc

1 and φnc
2 give the electric field parallel

to the flux surface, established to force quasineutrality at long wavelengths (the super-
script nc refers to neoclassical, even though turbulence affects its final value). We need not
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TABLE I: PIECES OF THE POTENTIAL.
Potential Size Length scales Time scales
φ0(ψ, t) Te/e ka ∼ 1 ∂/∂t ∼ δ2

i vti/a
φnc

1 (ψ, θ, t) (B/Bp)δiTe/e ka ∼ 1 ∂/∂t ∼ δ2
i vti/a

φnc
2 (ψ, θ, t) (B/Bp)

2δ2
i Te/e ka ∼ 1 ∂/∂t ∼ δ2

i vti/a
φtb(r, t) φtb

1 ∼ δiTe/e k⊥ρi ∼ 1 ∂/∂t ∼ vti/a
φtb

2 ∼ (B/Bp)δ
2
i Te/e k||a ∼ 1

calculate φnc
2 because it will not appear in the final expression for 〈〈Rζ̂·

↔
Pi ·∇ψ〉ψ〉T. The

piece φtb(r, t) is turbulent and includes both axisymmetric components (zonal flow) and
non-axisymmetric fluctuations. It is small in δi but it has strong perpendicular gradients,
i.e., k⊥ρi ∼ 1. Its parallel gradient is small, i.e., k||a ∼ 1. The function φtb is calculated
to order (B/Bp)δ

2
i Te/e, i.e., φtb = φtb

1 + φtb
2 with φtb

1 ∼ δiTe/e and φtb
2 ∼ (B/Bp)δ

2
i Te/e,

and both φtb
1 and φtb

2 are calculated. It is more convenient to keep both pieces together
as φtb as we do hereafter.

To write the distribution function it will be useful to consider the reference frame that
rotates with toroidal angular velocity Ωζ = −c ∂ψφ0 − (c/Zeni)∂ψpi, where ni(ψ, t) and
pi(ψ, t) are the lowest order ion density and pressure. In this new reference frame it
is easier to compare with previous formulations [8, 9]. In Ref. [6] we used as gyroki-
netic variables the gyrocenter position R = r + R1 + R2 + . . ., the gyrokinetic kinetic
energy E = E0 + E1 + E2 + . . . and the magnetic moment µ = µ0 + µ1 + . . ., with
E0 = (v′)2/2, µ0 = (v′⊥)2/2B, R1 = Ω−1

i v′ × b̂ and the rest of the parameters defined
in [10]. Here Ωi = ZeB/Mc is the ion gyrofrequency. To change to the new reference

frame, where the velocity is v = v′ − RΩζ ζ̂, the distribution function has to be writ-
ten as a function of the new gyrokinetic variables R, ε and µ. The new kinetic energy
variable ε is related to the old kinetic energy variable by E = ε + (I/B)Ωζu, where

u = ±
√

2[ε− µB − (I/B)2Ω2
ζ/2] is the parallel velocity in the rotating frame. It is easy

to check that u′ = ±
√

2(E − µB) = u + (I/B)Ωζ . In what follows we rewrite the results

in Ref. [6] using the new gyrokinetic kinetic energy ε.

Using the gyrokinetic variables R, ε and µ, the different pieces of the ion distribution
function are given in Table II [6]. The functions fMi, Hnc

i1 , Hnc
i2 , Htb

i2 and Hht
i2 are axisym-

metric long wavelength contributions. The Maxwellian fMi(ψ(R), ε) is uniform in a flux
surface. The first and second order corrections Hnc

i1 and Hnc
i2 are neoclassical corrections,

and they are not the functions F nc
i1 and F nc

i2 in Ref. [6] because we are now working in the
rotating frame. The function Htb

i2 is an axisymmetric piece of the distribution function
that originates from collisions acting on the ions transported by turbulent fluctuations
into a given flux surface [6]. The function Hht

i2 that was not included in Ref. [6] depends on
the heating mechanism. The function f tb

i is the turbulent contribution. It will be deter-
mined self-consistently up to order (B/Bp)δ

2
i fMi, i.e., f tb

i = f tb
i1 +f tb

i2 with f tb
i1 ∼ δifMi and

f tb
i2 ∼ (B/Bp)δ

2
i fMi, and both f tb

i1 and f tb
i2 are self-consistently determined. It is more con-

venient to combine both pieces of the turbulent distribution function into one function f tb
i .

The electron distribution function is very similar to the ion distribution function. It will
have its own gyrokinetic variables that can be easily deduced from the ion counterparts.
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TABLE II: PIECES OF THE ION DISTRIBUTION FUNCTION.
Distrib. function Size Length scales Time scales
fMi(ψ(R), ε, t) fMi ka ∼ 1 ∂/∂t ∼ δ2

i vti/a
Hnc

i1 (ψ(R), θ(R), ε, µ, t) (B/Bp)δifMi ka ∼ 1 ∂/∂t ∼ δ2
i vti/a

Hnc
i2 (ψ(R), θ(R), ε, µ, t) (B/Bp)

2δ2
i fMi ka ∼ 1 ∂/∂t ∼ δ2

i vti/a
Htb

i2 (ψ(R), θ(R), ε, µ, t) (B/Bp)(vti/qRνii)δ
2
i fMi ka ∼ 1 ∂/∂t ∼ δ2

i vti/a
Hht

i2 (ψ(R), θ(R), ε, µ, t) (B/Bp)(vti/qRνii)Shta/vti ka ∼ 1 ∂/∂t ∼ δ2
i vti/a

f tb
i (R, ε, µ, t) f tb

i1 ∼ δifMi k⊥ρi ∼ 1 ∂/∂t ∼ vti/a
f tb

i2 ∼ (B/Bp)δ
2
i fMi k||a ∼ 1

TABLE III: PIECES OF THE ELECTRON DISTRIBUTION FUNCTION.
Distrib. function Size Length scales Time scales
fMe(ψ(R), ε, t) fMe ka ∼ 1 ∂/∂t ∼ δ2

i vti/a
Hnc

e1 (ψ(R), θ(R), ε, µ, t) (B/Bp)δifMe ka ∼ 1 ∂/∂t ∼ δ2
i vti/a

f tb
e (R, ε, µ, t) f tb

e1 ∼ δifMe k⊥ρi ∼ 1 ∂/∂t ∼ vti/a
f tb

e2 ∼ (B/Bp)δ
2
i fMe k||a ∼ 1

To the order of interest in this calculation, the electron distribution function is determined
by the pieces in Table III. The long wavelength, axisymmetric pieces fMe and Hnc

e1 are the
lowest order Maxwellian and the first order neoclassical correction. The second order long
wavelength neoclassical correction is not needed for transport of momentum. The piece
f tb

e is the short wavelength, turbulent component that will be self-consistently calculated
to order (B/Bp)δ

2
i fMe.

We know proceed to describe how to find the different pieces of the distribution function
and the potential. We use the equations in Ref. [6] but we change to the new gyrokinetic
kinetic energy ε.

2.1.1 First order neoclassical distribution function and potential

The equation for Hnc
i1 is

ub̂ · ∇R

[
Hnc

i1 +
Zeφnc

1

Ti

fMi +
(

Mε

Ti

− 5

2

)
IufMi

ΩiTi

∂Ti

∂ψ

]
− C

(`)
ii {Hnc

i1 } = 0. (2)

The correction Hnc
i1 gives the parallel component of the velocity [11, 12] V nc

i|| =
∫

d3v v||Hnc
i1 =

(kcIB/Ze〈B2〉ψ)(∂Ti/∂ψ), where k is a constant that depends on the collisionality and
the magnetic geometry. Interestingly, the density perturbation due to Hnc

i1 is small for
qRνii/vti ¿ 1, i.e.,

∫
d3v Hnc

i1 ∼ (B/Bp)(qRνii/vti)δini ¿ (B/Bp)δini [6]. This will be
important when determining φnc

1 below.

The lowest order solution for Hnc
e1 is the Maxwell-Boltzmann response (eφnc

1 /Te)fMe ∼
(B/Bp)(qRνii/vti)δifMe. The rest of the terms are small because δe = ρe/a ¿ δi, where
ρe is the electron gyroradius.

Finally the poloidal variation of the potential is determined by quasineutrality,

Z
∫

d3v Hnc
i1 + Z

∫
d3v Htb

i2 =
eφnc

1

Te

ne, (3)
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giving that eφnc
1 /Te ∼ (B/Bp)(qRνii/vti)δi. We have included the density

∫
d3v Htb

i2 ∼
(B/Bp)(vti/qRνii)δ

2
i ni because it becomes important for qRνii/vti <∼(f tb

i /fMi)
√

a/ρi ¿ 1

with f tb
i /fMi ∼ ρi/a.

2.1.2 Turbulent distribution function and potential

The turbulent piece of the ion distribution function is obtained using the gyrokinetic
equation

Df tb
i

Dt
+

(
ub̂ + vM + vC + vtb

E

)
· ∇Rf tb

i −
〈
C

(`)
ii {fi(R, ε, µ, t)− fMi(ψ(r), ε0)}

〉

= −vtb
E · ∇Rψ

[
1

ni

∂ni

∂ψ
+

(
Mε

Ti

− 3

2

)
1

Ti

∂Ti

∂ψ
+

MIu

BTi

∂Ωζ

∂ψ

]
fMi − vtb

E · ∇RHnc
i1

−ZefMi

Ti

(
ub̂ + vM + vC

)
· ∇R〈φtb〉+

Ze

M

∂Hnc
i1

∂ε

(
ub̂ + vM

)
· ∇R〈φtb〉, (4)

where D/Dt = ∂/∂t + RΩζ ζ̂ · ∇R ' ∂/∂t + (I/B)Ωζb̂ · ∇R is the time derivative in the

rotating frame, u = ±
√

2[ε− µB − (I/B)2Ω2
ζ/2] ' ±

√
2(ε− µB) is the parallel velocity

in the rotating frame, vM = (µ/Ωi)b̂ × ∇RB + (u2/Ωi)b̂ × (b̂ · ∇Rb̂) are the ∇B and

curvature drifts, vC = (2uΩζ/Ωi)b̂ × [(∇R × ζ̂) × b̂] ' (2uIΩζ/BΩi)b̂ × (b̂ · ∇Rb̂) is

the Coriolis drift, vtb
E = −(c/B)∇R〈φtb〉 × b̂ is the turbulent E×B drift and C

(`)
ii is the

linearized ion-ion collision operator. Here 〈. . .〉 is the gyroaverage holding R, ε, µ and
t fixed. In the collision operator we use fi(R, ε, µ, t) − fMi(ψ(r), ε0) ' f tb

ig + [Ze(φtb −
〈φtb〉)/M ][−(MfMi,0/Ti)+(∂Hnc

i1,0/∂ε0)+B−1(∂Hnc
i1,0/∂µ0)]. To obtain this expression we

have Taylor expanded R = Rg + . . ., ε = ε0 + E1 + . . . and µ = µ0 + µ1 + . . . around

Rg = r + Ω−1
i v × b̂, ε0 = v2/2 and µ0 = v2

⊥/2B, and we have only kept terms that
have short wavelengths. The subscript g in f tb

ig = f tb
i (Rg, ε0, µ0, t) indicates that we

have replaced the variables R, ε and µ by Rg, ε0 and µ0; similarly, the subscript 0 in
fMi,0 = fMi(ψ(r), ε0) and Hnc

i1,0 = Hnc
i1 (ψ(r), θ(r), ε0, µ0) indicates that we have replaced

the variables R, ε and µ by r, ε0 and µ0.

The equation for electrons is equivalent to the one for the ions, giving

Df tb
e

Dt
+

(
ub̂ + vM + vtb

E

)
· ∇Rf tb

e −
〈
C(`)

e {fe(R, ε, µ, t)− fMe(ψ(r), ε0)}
〉

= −vtb
E · ∇Rψ

[
1

ne

∂ne

∂ψ
+

(
Mε

Te

− 3

2

)
1

Te

∂Te

∂ψ

]
fMe +

efMe

Te

(
ub̂ + vM

)
· ∇R〈φtb〉, (5)

where C(`)
e = C(`)

ee + C
(`)
ei are the linearized electron-electron and the electron-ion collision

operators. If we can neglect the effect of the trapped electrons, the solution to this equa-
tion is simply the adiabatic response f tb

e ' (e〈φtb〉/Te)fMe.

Finally, the electrostatic potential φtb is obtained from the quasineutrality equation

Z
∫

d3v
Ze(φtb − 〈φtb〉)

M

[
−MfMi,0

Ti

+

(
∂Hnc

i1,0

∂ε0

+
1

B

∂Hnc
i1,0

∂µ0

)]
+ Z

∫
d3v f tb

ig =
∫

d3v f tb
eg .

(6)
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TABLE IV: CONTRIBUTIONS TO TRANSPORT OF MOMENTUM.
Π Size [(B/Bp)δ

3
i piR|∇ψ|] Dependences

Πtb
−1 (Bp/B)∆udδ

−1
i for ∆ud >∼(B/Bp)δi ∂ψΩζ , Ωζ , ∆ud, ∂ψTi, ∂ψne, ∂ψTe, ∂

2
ψTi

1 for ∆ud <∼(B/Bp)δi

Πtb
0 1 ∂ψTi, ∂ψne, ∂ψTe, ∂

2
ψTi, ∂

2
ψne, ∂

2
ψTe

Πnc
−1 ∆ud(qRνii/vti)δ

−1
i for ∆ud >∼(B/Bp)δi ∂ψΩζ , ∆ud, ∂ψTi, ∂ψne, ∂

2
ψTi,Fei

(B/Bp)(qRνii/vti) for ∆ud <∼(B/Bp)δi

Πnc
0 (B/Bp)(qRνii/vti) ∂ψTi, ∂ψne, ∂

2
ψTi

Πht δ−2
i (Shta/vtifMi) Heating

Πie (Bp/B)(qRνii/vti)δ
−2
i

√
m/M Ti − Te

2.1.3 Second order, long wavelength distribution function and potential

The long wavelength pieces Hnc
i2 , Htb

i2 and Hht
i2 are given by

ub̂·∇RHα
i2−C

(`)
ii {Hα

i2} = Sα−
〈∫

d3v Sα +
(

2Mε

3Ti

− 1
) ∫

d3v Sα
(

Mε

Ti

− 3

2

)〉

ψ

fMi

ni

, (7)

where α = nc, tb, ht, and

Snc = −MIufMi

BTi

∂Ωζ

∂ψ
vM · ∇Rψ −

(
vC − c

B
∇Rφnc

1 × b̂
)
· ∇Rψ

(
Mε

Ti

− 5

2

)
fMi

Ti

∂Ti

∂ψ

−vM · ∇RHnc
i1 +

I

niMΩi

∂pi

∂ψ
b̂ · ∇RHnc

i1 −
ZefMi

Ti

(
ub̂ · ∇Rφnc

2 + vM · ∇Rφnc
1

)

+
Ze

M

(
ub̂ · ∇Rφnc

1 − 1

Zeni

∂pi

∂ψ
vM · ∇Rψ

)
∂Hnc

i1

∂ε
+ C

(n`)
ii {Hnc

i1 , Hnc
i1 }

−ufMi

pi

b̂ · (Fei − nemνeiVi) +
nemνei

niM
〈CB{Hnc

i1 }〉, (8)

where the ion-electron collisions have been added to the result in Ref. [6] and CB{fi} =
∇v · [(Te/M)∇vfi + vfi] is the Brownian motion operator, and

Stb = −|u|
B
∇R ·

(
B

|u|
〈
f tb

i vtb
E

〉
T

)
+

Ze

M

|u|
B

∂

∂ε

(
B

|u|
〈
f tb

i

(
ub̂ + vM

)
· ∇R〈φtb〉

〉
T

)
. (9)

2.2 Calculation of the momentum transport

We obtain an equation for 〈〈Rζ̂·
↔
Pi ·∇ψ〉ψ〉T similar to Eq. (39) of Ref. [6] by employing

the same procedure that was used in that reference with the more complete Fokker-Planck
equation (1). The final result is as in Eq. (39) of Ref. [6] plus the new terms

−M2c

2Ze

〈〈 ∫
d3v′ Cie{fi}R2(v′ · ζ̂)2 +

∫
d3v′ Sht(r,v′)R2(v′ · ζ̂)2

〉

ψ

〉

T

. (10)

With the expression (39) in Ref. [6] and these new terms, we find

〈〈Rζ̂·
↔
Pi ·∇ψ〉ψ〉T = Πtb

−1 + Πtb
0 + Πnc

−1 + Πnc
0 + Πht + Πie +

Mc〈R2〉ψ
2Ze

∂pi

∂t
, (11)
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with

Πtb
−1 = −

〈〈
c

B
(∇φtb × b̂) · ∇ψ

∫
d3v f tb

ig

(
IMv||

B
+ MRΩζ

)〉

ψ

〉

T

, (12)

Πtb
0 = −M2c

2Ze

1

V ′
∂

∂ψ
V ′

〈〈
c

B
(∇φtb × b̂) · ∇ψ

∫
d3v f tb

ig

I2v2
||

B2

〉

T

〉

ψ

+

〈〈
cI

B
b̂ · ∇φtb

∫
d3v f tb

ig

IMv||
B

〉

ψ

〉

T

− M2c

2Ze

〈∫
d3v C

(`)
ii {Htb

i2,0}
I2v2

||
B2

〉

ψ

, (13)

Πnc
−1 = −M2c

2Ze

〈∫
d3v

(
C

(`)
ii {Hnc

i1,0 + Hnc
i2,0}+ C

(n`)
ii {Hnc

i1,0, H
nc
i1,0}

) I2v2
||

B2

〉

ψ

, (14)

Πnc
0 = −M3c2

6Z2e2

1

V ′
∂

∂ψ
V ′

〈∫
d3v C

(`)
ii {Hnc

i1,0}
I3v3

||
B3

〉

ψ

−nemMcνei

2Zeni

〈∫
d3v CB{Hnc

i1,0}
I2v2

||
B2

〉

ψ

,

(15)

Πht = −M2c

2Ze

〈∫
d3v C

(`)
ii {Hht

i2,0}
I2v2

||
B2

〉

ψ

− M2c

2Ze

〈∫
d3v Sht

I2v2
||

B2

〉

ψ

(16)

and

Πie =
nimc〈R2〉ψνei

Ze
(Ti − Te). (17)

Recall that the subscript g indicates that R, ε and µ have been replaced by Rg, ε0

and µ0, and the subscript 0 that they have been replaced by r, ε0 and µ0. In Ta-
ble IV we summarize the size of all these contributions compared to the reference size
(B/Bp)δ

3
i piR|∇ψ|, and we write what they depend on. To obtain these dependences, we

simply use Eqs. (2), (3), (4), (5), (6), (7) and (17). Most of the size estimates are taken
from Ref. [6], except for Πht and Πie that are trivially found from the results here. We
use ∆ud to denote a measure of the flux surface up-down asymmetry. It ranges from zero
for perfect up-down symmetry to one for extreme asymmetry. Notice that for extreme
up-down asymmetry, Πtb

−1 and Πnc
−1 clearly dominate. The contribution Πie is formally

very large for qRνii/vti ∼ 1, but since the ion energy conservation equation requires that

(Ti−Te)/Ti ∼ (B/Bp)(vti/qRνii)δ
2
i

√
M/m, it will be comparable to the rest of the terms.

3 Discussion

We finish by showing how this new formalism gives a plausible model for intrinsic rotation.
Until now, models have only considered the contribution Πtb

−1, with f tb
i and φtb obtained

by employing Eqs. (4) and (6) without the terms that contain Hnc
i1 . This is acceptable

for RΩζ ∼ vti or high up-down asymmetry ∆ud ∼ 1. As a result, Πtb
−1(∂ψΩζ , Ωζ) '

−νtb∂ψΩζ − ΓtbΩζ + Πtb
ud, where to obtain this last expression we have linearized around

∂ψΩζ = 0 and Ωζ = 0 for RΩζ/vti ¿ 1. Here νtb is the turbulent diffusivity, Γtb is
the turbulent pinch of momentum and Πtb

ud ∼ ∆udδ
2
i piR|∇ψ| is the value of Πtb

−1 at
Ωζ = 0 and ∂ψΩζ = 0, and is zero for perfect up-down asymmetry when Eqs. (4)
and (6) are solved without the terms that contain Hnc

i1 . Notice then that imposing

〈〈Rζ̂·
↔
Pi ·∇ψ〉ψ〉T ' Πtb = −νtb∂ψΩζ − ΓtbΩζ + Πtb

ud = 0 gives intrinsic rotation only
for up-down asymmetry or if momentum is pinched into the core from the edge.
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The complete model described in this article includes contributions that have not been
considered before. On the one hand, the gyrokinetic equations (4) and (6) have new terms
with Hnc

i1 , giving Πtb
−1 ' −νtb∂ψΩζ−ΓtbΩζ +Πtb

ud+Πtb
−1,0, where Πtb

−1,0 ∼ (B/Bp)δ
3
i piR|∇ψ|

is a new contribution due to the new terms in the gyrokinetic equation. On the other
hand, there are the new terms Πnc

−1, Πnc
0 , Πht and Πie. As we did for Πtb

−1, we can linearize
Πnc
−1(∂ψΩζ) around ∂ψΩζ = 0 to find Πnc

−1 ' −νnc∂ψΩζ + Πnc
ud + Πnc

−1,0, where Πnc
ud ∼

∆ud(B/Bp)(qRνii/vti)δ
2
i piR|∇ψ| and Πnc

−1,0 ∼ (B/Bp)
2(qRνii/vti)δ

3
i piR|∇ψ|. Combining

all these results and imposing that 〈〈Rζ̂·
↔
Pi ·∇ψ〉ψ〉T = 0, we obtain

Ωζ = −
∫ ψa

ψ
dψ′

Πint

νtb + νnc

∣∣∣∣∣
ψ=ψ′

exp




∫ ψ′

ψ
dψ′′

Γtb

νtb + νnc

∣∣∣∣∣
ψ=ψ′′




+Ωζ |ψ=ψa exp




∫ ψa

ψ
dψ′

Γtb

νtb + νnc

∣∣∣∣∣
ψ=ψ′


 , (18)

where ψa is the poloidal flux at the edge, Ωζ |ψ=ψa is the rotation velocity in the edge and
Πint = Πtb

ud + Πtb
−1,0 + Πtb

0 + Πnc
ud + Πnc

−1,0 + Πnc
0 + Πht + Πie. Notice that this equation

gives a rotation profile that depends on Πint that in turn depends on the gradients of the
temperatures, the geometry and the heating mechanism. The typical size of the rotation
is Ωζ ∼ (B/Bp)δivti/R, being larger, O(∆udvti/R), if ∆ud >∼(B/Bp)δi.
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