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Abstract. The structure of the toroidal and poloidal momentum fluxes are discussed with an eye to-
ward elucidating mechanisms through which microturbulence drives mean flows. Particular emphasis is
placed on discussing the role of off-diagonal contributions to the momentum flux in determining toroidal
and poloidal rotation profiles.

1. Introduction

Toroidal rotation in Tokamak plasmas has recently garnered significant attention due to the
prominent role these flows play in determining plasma stability, as well as their influence on
the L to H power threshold [1, 2, 3, 4, 5, 6, 7]. Extensive experimental as well as numerical
studies have unambiguously demonstrated the critical role in which microturbulence plays in
determining toroidal flow profiles [8, 9]. Similarly, increasing evidence, both experimental as
well as numerical, has indicated that microturbulence may play an important role in determin-
ing poloidal rotation profiles in numerous confinement regimes [10, 11, 12, 13, 14]. Our focus
within this analysis will be on the identification of constraints on turbulent stresses, as well
as an elucidation of the current state of the mean field theory of turbulent flow generation in
strongly magnetized plasmas. In this regard, it is useful to consider explicit expressions for the
relevant turbulent stresses, which can be most concisely expressed in terms of their parallel and
perpendicular components, namely:

Πyr = mi
c

B
〈δEyδ (niuy)〉 , (1a)

Π‖r = mi
c

B

[〈
δEyδ

(
niu‖

)〉
+

〈
δE‖δ (niuy)

〉]
. (1b)

Here Πyr (note êy = b̂ × êr) is given simply by the perpendicular Reynolds stress, whereas
the parallel stress can be seen to be composed of two contributions. The former of these is
the parallel Reynolds stress, whereas the latter has been shown to be explicitly linked to po-
larization charge. This latter stress, which we will refer to as a parallel polarization stress, is
necessary in order to ensure the symmetry of the stress tensor with respect to the interchange of
its indices (i.e. Π‖r = Πr‖). These stresses, in conjunction with an appropriate edge boundary
condition as well as collisional stresses, can be shown to determine the mean flow profile of an
axisymmetric large aspect ratio plasma. It will thus be instructive to derive criteria under which
significant nondiffusive contributions from these stresses are present.

In the following, we will discuss our current understanding of the turbulent stresses noted in Eq.
(1) with particular emphasis on the physical mechanisms underlying nondiffusive momentum



2 THC/P4-18

transport contributions, and thus on mechanisms through which microturbulence may drive
mean toroidal and poloidal flows. In section 2, the theory of nondiffusive toroidal momentum
transport is reviewed. Both the physical origin, as well as general scaling trends of residual
stress and pinch terms are discussed. Section 3 provides a discussion of turbulence driven
poloidal flows, where emphasis is placed on determining regimes in which turbulence may drive
significant deviations from neoclassical predictions of poloidal rotation. Section 4 consists of a
brief summary.

2. Summary of Toroidal Turbulent Momentum Flux

This section provides a discussion of off-diagonal contributions to the toroidal momentum flux.
Namely, the toroidal stress can generally be decomposed as [15]

Πrϕ = −χϕ
∂vϕ

∂r
+ V vϕ + Πrϕ|resid , (2)

where χϕ is the turbulent momentum diffusivity induced by E×B scattering, V is the convec-
tive or "pinch" term, and Πrϕ|resid is the residual stress. Note that the pinch, which is strongly
suggested by several experiments [3, 4] reflects a ∇Ti, ∇n, or ∇Te driven flux of momentum,
in proportion to the existing mean flow. The pinch can be either turbulent equipartition (i.e. a
consequence of ∇ · δvE 6= 0 in toroidal geometry) or thermoelectric. Examples of recent work
include Refs. [16, 17, 18, 19, 20].

The residual stress in contrast, which is required to address the phenomenon of intrinsic ro-
tation, is a consequence of ∇P and ∇T driven stresses which act in the absence of a pre-
existing flow. This stress, which is conceptually different from a "pinch", is a consequence of
wave-mean flow momentum exchange [21]. The residual stress requires some form of symme-
try breaking. Examples discussed within the literature include E × B shear [22], fluctuation
intensity gradients [23], plasma current [24], plasma current poloidal asymmetry [25], or po-
larization stresses arising within a sheared magnetic topology [26]. These examples can be
recognized as generic traits of a magnetized plasma, suggesting that the residual stress is a far
more general concept than the simple paradigm of E ×B shear induced symmetry breaking.

Table 1: Residual stress contributions, their associated symmetry breaking mechanisms and
scaling forms

Turbulent Stress/Spectral Moment Symmetry Breaking ρs/Lresid

Parallel Reynolds Stress ŝIp 〈VE〉′ (∆ω/ω) (ωci/ω) (δx/Ls)〈
kyk‖ |δφk|2

〉
ŝIp∂ 〈N〉 /∂r (∆ω/ω) (ωci/ω) (∆2/LsLI)
for CDDW, Ip

Mean Radial Current Ip∂ 〈N〉 /∂r (Bθ/B) (τcωci) (ρ2
s/LnLI)

(Bθ/B)
〈
kykr |δφk|2

〉
Ip 〈VE〉′ (Bθ/B) τc 〈VE〉′

Parallel Polarization Stress ŝIp µ∆2 (ρs/Ls)〈
krk‖ |δφk|2

〉
2.1 Theory of Residual Stress

In the above, general expressions for the turbulent parallel and perpendicular stresses were
recorded [Eq. (1)]. Within this subsection our primary interest will be to determine the tur-
bulent toroidal stress, which can be written as a projection of the parallel and perpendicular
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stresses noted above. Hence, it is clear that three turbulent stresses are capable of affecting
toroidal rotation, namely the parallel Reynolds stress, the parallel polarization stress, as well
as the toroidal projection of the perpendicular Reynolds stress. It will be convenient to dis-
cuss residual stress contributions from these three stresses in turn. For convenience we have
summarized the various residual stress mechanisms discussed below in Table 1.

i.) Parallel Reynolds stress

The parallel Reynolds stress requires
〈
kyk‖

〉
6= 0 (here after referred to as k‖ symmetry break-

ing), which can be recognized as a consequence of un-balanced toroidally counter-propagating
acoustic wave populations. Broken symmetry can be produced by a spectral shift, as for the
oft-quoted case of E×B shear, or, by a spectral envelope intensity gradient, or by toroidal cur-
rent. Intensity profile gradients are ubiquitous, since fluctuation levels are usually observed to
increase with radius. Intensity profiles are intrinsic to confinement, since at constant heat flux,
negative temperature profile curvature (i.e. as for a pedestal) requires a decreasing intensity
profile, while positive profile curvature (i.e. as for an L-mode edge) implies a rising intensity
profile.

Proceeding in more detail, k‖ symmetry breaking can result from: a.) electric field shear, b)
current or c) intensity gradients.

Regarding a), the essential physics is that 〈VE〉′ converts poloidal flow shear into toroidal flow
shear via asymmetry in wave-particle momentum deposition [22]. The latter results from the
tendency of finite 〈VE〉′ – working together with generic drift-acoustic coupling – to produce
a shifted spectral envelope, so

〈
k‖

〉
6= 0. Here

〈
k‖

〉
= kθδx/Ls, where the spectral shift

δx ∼ 〈VE〉′. The broken symmetry and
〈
k‖

〉
6= 0 result in a directional imbalance of acoustic

wave population and thus in the profile of momentum dissipation by ion Landau damping.

Regarding b), asymmetric spectral shifts may be produced by current, as for the well known
case of resistivity gradient driven turbulence or rippling modes. These models, and others
like them, are intrinsically asymmetric about resonant surfaces. For current driven drift waves
(CDDW),

〈
k‖

〉
∼ vd/cs, where vd is the mean electron drift velocity [24].

Regarding c), it is not difficult to see that any intensity gradient results in effective k‖ symmetry
breaking. This follows from the fact that, (schematically) [23]

mi
c

B
〈δEyδ (niuy)〉

∣∣∣
resid

∼
〈
kyk‖ |δφk|2

〉
≈

〈
k2

y

r − r0

Ls

{
|δφk (r0)|2 + (r − r0)

∂

∂r
|δφk (r0)|2 + . . .

}〉
≈

〈
k2

y

(r − r0)
2

Ls

∂

∂r
|δφk (r0)|2

〉
. (3)

Here,
〈
(r − r0)

2〉 → 〈∆2〉, where ∆ is the spectral width. Note that an intensity gradient
is a very general phenomenon, which will occur whenever the temperature gradient has finite
curvature, for constant heat flux. This follows from Q = −χi∂ 〈Ti〉 /∂r, where χi = χi,turb +
χi,nc, so fixed heat flux gives ∂Q/∂r = 0 and

∂χi,turb/∂r

χi

= −∂2 〈T 〉 /∂r2

∂ 〈T 〉 /∂r
− ∂χi,nc/∂r

χi

. (4)
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Since χi,turb ∼ |δφk|2, the connection between intensity gradients and profile curvature follows.
Intensity gradients are especially likely to occur near transport barriers, where electric field
shear can be strong as well. Thus, there will likely be strong overlap and mutual reinforcement
between these two effects. In particular, since the electric field shearing rate has the form:

〈VE〉′ = − c

B

P ′′
i

nZe
+

c

B

P ′
in

′

n2Ze
− v′ϕ

Bθ

B
+ v′θ

Bϕ

B
,

we see that both 〈VE〉′ and intensity gradient I ′ are ultimately related to the temperature profile
curvature.

ii.) Parallel polarization stress

This stress is explicitly linked to polarization charge, and emerges via the parallel nonlinearity
within the gyrokinetic formulation. In order to demonstrate this link more explicitly it is useful
to note the relation (written here in simplified geometry) [26]〈∑

s

qs

∫
d3v̄δFsb̂ · ∇J0(k⊥ρ⊥)δφ

〉
=

∂

∂x

〈
mi

c

B
δE‖δ (niuy)

〉
, (5)

where J0 is a Bessel function and
∫

d3v̄ ≡ 2π
∫

dµdv‖B. The left hand side of this expres-
sion can be recognized as the v‖ moment of the gyrokinetic parallel nonlinearity summed over
all particle species, whereas the right hand side is the divergence of the second stress in Eq.
(1b) above. The relevant spectral moment of this stress can be identified via a straightforward
quasilinear analysis, yielding

mi
c

B

〈
δE‖δ (niuy)

〉
=

∑
k

vgr

k‖
ωk

Ek ∼
〈
krk‖

〉
, (6)

where Ek is the energy density of the fluctuation spectrum and vgr is the radial group velocity.
We note that while, typically, the spectral average of the parallel phase velocity is approximately
zero (i.e.

〈
k‖/ωk

〉
≈ 0), its radial distribution about a rational surface is asymmetric in the

presence of magnetic shear [i.e. k‖ (−x) = −k‖ (x)]. Similarly, the radial group velocity
is also asymmetric [i.e. vgr(−x) = −vgr(x)] [27, 28], such that a straightforward eigenmode
analysis demonstrates that the spectral moment given by Eq. (6) will generally be nonvanishing
in a sheared magnetic topology within the small amplitude limit considered here. Note that the
sign of the magnetic shear and plasma current ultimately determine the direction of the mean
flow driven by this stress.

iii.) Mean radial current

As noted above, the perpendicular Reynolds stress possesses a finite toroidal projection, and
is thus capable of driving toroidal flows. The relevant spectral moment for this stress can be
identified via a straightforward quasilinear analysis, yielding

mi
c

B
〈δEyδ (niuy)〉 =

∑
k

vgr
ky

ωk

Ek ∼ 〈krky〉 . (7)

We note that ky/ωk is typically a positive or negative definite quantity for ITG or TEM modes,
and thus this stress will vanish in the absence of a finite spectrally averaged radial group veloc-
ity, i.e. 〈vgr〉 6= 0 [29]. Alternatively, this stress can be seen to be linked to a J × B torque via
the relation

Bθ

B

∂

∂x

[
mi

c

B
〈δEyδ (niuy)〉

]
= −

〈
J

(pol)
r

〉
Bθ

c
, (8)
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where J
(pol)
r is a radial polarization current (see Ref. [29], or Ref. [30] for its gyrokinetic

equivalent). We note that a finite Reynolds stress requires either a diffusive flux of poloidal
wave momentum or modulation instability feedback amplifier based on E × B shear-induced
wave refraction, as is the case for zonal flow growth. These mechanisms work via spectral
symmetry breaking in either real space (∂ 〈N〉 /∂r 6= 0) or spectral space (∂ 〈N〉 /∂kr 6= 0,
often induced by E × B shear). Here N refers to the wave action density. Due to the fragility
of k‖ symmetry breaking mechanisms, and the likely modest contribution from the parallel

polarization stress,
〈
J

(pol)
r

〉
-driven stresses correspond to an attractive candidate for driving

intrinsic rotation.

2.2 Theory of Parallel Velocity Pinch

While residual stress is required to drive intrinsic rotation, a momentum pinch will contribute
to rotation profile formation and peaking. The turbulent angular momentum flux carried by
ions resonant with ITG turbulence has been calculated via quasilinear theory using a lab frame,
phase space conserving gyrokinetic equation. Results near ITG marginality indicate that the in-
ward turbulent equipartition (TEP) momentum pinch emerges as the robust pinch process. Re-
garding thermoelectric effects, results for typical parameters characteristic of the near marginal
regime indicate that the ion ∇T -driven momentum flux is usually inward, while the ∇n-driven
momentum flux is usually outward. Thus, these two fluxes tend to negate each other, leaving
the TEP pinch as the robust survivor. Note that since tokamak plasma dynamics is not Galilean
invariant (i.e. pinches are curvature driven), the issue of Galilean invariance constraints on the
momentum pinch is moot.

Proceeding in more detail, we can in general write the momentum pinch velocity V as:

V = VTEP + VTh. (9)

The TEP part is a consequence of compressibility of the E × B velocity in toroidal geometry
(i.e. ∇ · δvE 6= 0) and thus represents the irreducible minimum of turbulent inward pinches.
Note, however, that the TEP momentum pinch is rather modest in that:

RVTEP /χφ = −α, (10)

where α ≈ 3 for the definitions in the present analysis, or α ≈ 4 if the transport coefficients in
Eq. (2) are defined with respect to the toroidal angular frequency [18]. In addition to the basic
and unavoidable TEP pinch, the momentum convection velocity also contains thermoelectric
contributions, driven by ∇T and ∇n (note, here we discuss ITG only). Thus,

VTh =
∑

k

|δvr,k|2 τc,k

{
g1 (k)

∇Ti

Ti

+ g2 (k)
∇n

n

}
. (11)

Here, g1 (k) and g2 (k) can each be positive or negative and reflect complex parameter depen-
dencies. Note that superficially, RVTh/χφ ∼ O (1/ε) so the thermoelectric pinch may appear
more robust than the TEP pinch. However, reality is not so simple. Detailed gyrokinetic analy-
sis reveals that close to ITG threshold (i.e. the relevant regime for stiff profiles), the∇T -driven
thermoelectric flow is inward (i.e. a pinch) but the ∇n-driven thermoelectric flux is outward.
Thus, the two tend to compete with one another and cancel, so the TEP pinch is, in fact, the
most robust momentum pinch process. The complex interplay and dependencies are summa-
rized in Table 2.
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Table 2: Analytic predictions on momentum pinch. Note that the∇Ti-driven momentum pinch
is similar to the ∇Ti-driven particle pinch. See Ref. [20] for relevant references and notation.

For ITG: Vpinch/χϕ ∇n driven ∇Ti driven ∇B driven
fluid regime in torus −1/Ln Inward 0 −4/R, for τ = 1

Inward
kinetic regime near
marginality in a torus

1/Ln Outward −
(

5
2
− αc (ωk)

)
/LTi

Inward
−8

5
αc (ωk) /R

Inward

3. Summary of Poloidal Turbulent Momentum Flux

Within this section we will be interested in developing a framework for describing poloidal
rotation which incorporates both neoclassical as well as turbulent stresses. For a small inverse
aspect ratio plasma, an expression for the poloidal flow may be written as

∂

∂t
(nimiruθ) +

〈
∇ ·

(
rêθ ·Πturb

)〉
= −nimirµii (uθ − uneo

θ ) , (12)

where µii ∼ τ−1
ii and uneo

θ is the neoclassical rotation off-set. The perpendicular Reynolds stress
(likely the dominant contribution for Bθ � Bϕ), has been directly evaluated in Ref. [29]. It
was found that the relevant spectral moment is given by 〈vgr (ky/ωk)〉 ∼ 〈vgr〉 6= 0, where
vgr is the radial group velocity, and thus some form of symmetry breaking (i.e. anisotropy)
is required in order to render the stress nonvanishing. Later work demonstrated that either
parallel flow shear or E × B shear are capable of inducing the necessary anisotropy in the
turbulence spectrum to drive a finite perpendicular stress [31]. Recent experimental work on
the basic plasma experiment CSDX has observed the formation of an azimuthal flow driven by
a nondiffusive, residual contribution to the turbulent stress, further reinforcing the critical role
of off-diagonal transport contributions to mean flow formation [32].

The above observations, while providing useful criteria for when turbulent flow generation is
possible, are not sufficient for determining regimes in which turbulent stresses are likely strong
enough to drive experimentally relevant rates of poloidal rotation. Within this section, we
will utilize an additional constraint on the perpendicular Reynolds stress with the motivation
of providing an alternate perspective on poloidal flow generation. In particular, we will be
interested in exploiting a Taylor identity, which allows the perpendicular stress to be expressed
in terms of the flux of potential vorticity. In perhaps its simplest form, a Taylor identity may be
written as [33]

∂

∂x

〈
δuE

y δuE
x

〉
= −

〈
δuE

x δq
〉
, (13)

where δuE = (b̂ × ∇⊥δφ), δq ≡ (1 − ∇2
⊥)δφ can be identified as the potential vorticity for

idealized plasma models such as the Hasegawa-Mima equation, we have normalized length and
time scales by ρs and ωci, respectively, and the electrostatic potential by e/Te. Note that while
Eq. (13) requires translational invariance in the zonal direction, no small amplitude assumption
of the fluctuation intensity was necessary.

Equation (13), while useful for the treatment of highly idealized fluid models, is not sufficient
for the present analysis. An analogous form to Eq. (13), appropriate to an electrostatic gyroki-
netic formulation, can be shown to have the form [30]∑

s

qs

∫
d3v̄δFs (êϕ ×∇⊥J0δφ)r = − 1

r2

∂

∂r

[
r2mi

c

B
δEθδ (niuy)

]
, (14)
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where δFs is the gyrocenter distribution function. Thus, for the limit Bθ � Bϕ, it is clear that
the perpendicular stress divergence can be linked to the flux of gyrocenter charge. This latter
quantity can be easily estimated via the gyrokinetic equation. A systematic quasilinear calcula-
tion utilizing a phase space conserving gyrokinetic equation was performed in Ref. [30]. It was
found that at stationarity, deviations from neoclassical predictions of poloidal rotation can be
explicitly linked to the spatial growth/dissipation profile of the underlying fluctuations, consis-
tent with the small amplitude limit of a Charney-Drazin theorem [34, 35]. Here, however, we
will be interested in discussing a different perspective on this result. Namely, it will be useful
to consider a simplified fluid description, where the ion gyrocenter center evolves according to

d

dt

(
Ni

B2

)
= b̂ ·

(
∇Pi ×∇B

miωciB2

)
+

ν

B2
∇2
⊥Ni. (15)

Here we have we have assumed b̂ · ∇ → 0, taken the long wavelength limit, and approximated
∇ × b̂ ≈ b̂ × ∇⊥ ln B for simplicity. From Eqs. (15), (14) and (12), assuming adiabatic
electrons, a straightforward calculation in the small amplitude limit yields at stationarity

uθ = uneo
θ − ωci

µii

[
DPV

B2

n0

∂

∂r

(
N i

B2

)
+ V Th

PV

N i

n0

]
, (16a)

with

DPV ≡ c2
sρ

2
sRe

∑
k

i
(
b̂× k⊥

)2

r

Ωk + iνk

∣∣∣∣eδφk

Te

∣∣∣∣2 , V Th
PV ≡ −2Re

∑
k

iωd∇B

Ωk + iνk

δuEB
r,−k

δTi,k

Ti

, (16b)

and we note that in physical coordinates the mean gyrocenter density can be written

N i ≈ ni +∇⊥ ·
(

nimi
c2

eB2
E⊥

)
− 1

2
∇⊥ ·

(
niρ

2
i∇⊥ ln P i

)
+ . . . . (17)

Here Ωk ≡ ωk − ωdκ − ωd∇B, ωdκ and ωd∇B are curvature and grad-B drifts, νk ≡ νk2
⊥, and

we have utilized the inequality Bθ � Bϕ. From Eq. (16), turbulence driven deviations from
neoclassical rotation levels can be seen to be linked to the flux of the ion gyrocenter density Ni,
which can be seen to be composed of diffusive, TEP and thermoelectric contributions. From
Eq. (16) it is clear that turbulence induced deviations are likely most significant for regimes of
low collisionality, as would be naively anticipated. Similarly, the thermoelectric contribution
can be seen to be closely associated with the turbulent heat flux. Indeed, a simple closure of
this term performed in Ref. [30] reveals strong temperature gradient dependence of this term.

4. Conclusion

In this analysis, we have presented a unified formulation of toroidal and poloidal flow genera-
tion. The primary results of this analysis are as follows:

a) The relevant spectral moments and associated symmetry breaking mechanisms for toroidal
flow generation have been derived, and are summarized in Table 1. It is noted that aside
from the now extensively studied E × B shear driven residual stress, numerous other
residual stress contributions are likely present within the toroidal momentum flux.
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b) A quasilinear expression for a pinch of toroidal momentum has been derived for ITG
turbulence near marginality. Turbulent equipartition as well as thermoelectric contribu-
tions to the toroidal pinch velocity are derived, and their dependencies are summarized
in Table 2.

c) Equation (14), which possesses an analogous form as the classic Taylor identity, has
been utilized in order to link the perpendicular stress divergence to the flux of gyrocenter
charge. This flux has been shown to be composed of diffusive, TEP and thermoelectric
contributions, suggesting multiple means of driving deviations from neoclassical levels
of rotation.
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