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Abstract. The understanding of plasma turbulent transport in tokamaks used to rely on a local process, in the 
sense that locally excited fluctuations exhibit short radial correlation lengths only, ultimately leading to diffusive 
transport. We find here that the intrinsic nature of turbulent heat transport in tokamaks is nonlocal. This 
nonlocality is thoroughly defined and quantified. In the same vein, it is also found that the global structure of 
turbulence and transport results from a synergy between edge-driven inward propagation of turbulence intensity 
with outward heat transport. This synergy results in inward-outward pulse scattering leading to spontaneous 
production of strong internal shear layers in which the turbulent transport is almost suppressed over several 
radial correlation lengths. These two examples represent different sides of the same coin: the turbulence-
generated self-organised processes which occur at mesoscales are central to our understanding of transport 
processes as they govern shear generation and flow pattern formation. 
 
1. Introduction 
 

Transport and turbulence in tokamaks have traditionally been treated as local 
processes, in which localised instabilities drive local mixing and diffusive transport, so that 
well separated regions of the plasma interact with one another only by diffusive pulse 
propagation. Recast differently, this paradigm states that any particle or heat flux can 
accurately be described using a set of local transport coefficients –diffusivities or 
conductivities– which should be locally related through a generalised Fick's law to the 
thermodynamic forces which induce them. Models with such assumptions will be referred to 
as local or quasi-local: they assume successive transport events to be either mutually 
independent or with both a short correlation and short memory; in other words transport 
events are random and accurately described by a classical Gauss-Markov process. 

Theoreticians have long alerted to the dubiety of local, diffusive approaches to 
nonlinear transport, using e.g. continuous time random walks (CTRWs) [1] in as different 
areas as chaotic dynamics [2,3], geophysics, financial mathematics [4], hydrodynamics [5] or 
even hydrology [6]. Early works in fusion research have also worked beyond local, diffusive 
models: either invoking (i) linear toroidal mode coupling to account for fast pulse propagation 
time scales [7], (ii) self-organised criticality [8-10] and the concept of marginal stability to 
connect nonlocal transport events to scale-free avalanches [11,12] and explain ion profile 
stiffness, (iii) turbulence spreading where rapid pulse propagation is considered as a more 
general consequence of the nonlinear dynamics [13] or (iv) based on the fractional kinetic 
equation [14,15], following pioneering works by Mandelbrot or Zaslavsky [16].  

And recently, while studying the turbulent heat conduction generated by the Ion 
Temperature Gradient (ITG) instability, evidence was shown from a different standpoint [17] 
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that the ``standard''‚ local model described above is surely incomplete, in that turbulence and 
transport dynamics are intrinsically nonlocal. We first present evidence of this strong 
nonlocal, nondiffusive, avalanche-mediated character of heat transport found in state-of-the-
art flux-driven gyrokinetics (section 2) and show how these nonlocal dynamics lead to the 
discovery of a novel self-organised flow structure which we called the ``ExB staircase'' [17] 
(section 3). We then discuss how this nonlocal behaviour can crucially affect our 
understanding of the edge-core interaction, especially through the large-scale fast propagation 
of turbulent fronts which connect core and edge regions (section 4). 
 
2. Quantifying nonlocal, nondiffusive behaviour: avalanching and the heat conduction 
 

It is possible to provide a simple, systematic, constructive and self-consistent 
procedure to quantify nonlocal and nondiffusive behaviour in complex geometry and realistic 
plasma parameters. Self-consistency is key: the analysis presented in Ref.[17] and detailed 
below is based on a large database from the state-of-the-art full-f, flux-diven gyrokinetic 
GYSELA [18] and XGC1 [19] codes: velocity fields, flows and heat fluxes are fully self-
consistently evaluated, differing from either CTRW or particle-following methods. 
Avalanching, namely intermittent bursts due to overturning of neighbouring modal 
convection cells, has been observed in digital and physical experiments on plasma turbulence. 
The process of thermal avalanching suggests a nonlocal description of the heat flux which 
translates mathematically as follows. We wish to move from a local or quasi-local formalism: 
Q(r)=−n(r)χ(r)∇T(r), Q being the turbulent heat flux, n the density, χ the turbulent diffusivity 
and T the temperature – each of these three latter quantities are expressed locally at radius r – 
to a generalised heat transfer integral: Q(r)=− ∫κ(r,r')∇T(r')dr' since the heat flux at radius r 
must necessarily have a memory of where the avalanche was triggered. Here, the kernel κ –
physically, a generalised diffusivity, which includes the density dependence– is the crucial 
quantity. At this point, insofar as κ is not specified, let us emphasise that no assumption of 
dominance of nonlocality over locality is made: the above heat transfer integral embeds both 
nonlocal and local (κ can be a Dirac distribution) formalisms. 

One of our goals here is to provide 
a straightforward and systematic way to 
infer the form of κ, no assumptions on the 
nature of the dynamics (local or not) being 
made a priori. The basic idea is to interpret 
the above heat transfer integral as a 
convolution product and hence recast, 
using the convolution theorem, the integral 
as a mere product in Fourier space: 
F(κ)=−F(Q)/F(∇T), F being the radial 
Fourier transform. Thus, given any set of 
data, insofar as the turbulent heat flux Q 

and the external thermodynamic forces are 
known, one can straightforwardly compute 
the (Fourier transform of) kernel F(κ). To 
illustrate this idea, we performed this procedure on a vast sample of simulation data (see 
Fig.1), encompassing significantly different plasma parameters. For an up-front comparison 
with local transport models, the quantities below are both flux-surface averaged and radially 
averaged over the central half of the simulation domain, as is the case for the normalised 
temperature gradient R/LT, known to quantify the strength of the turbulence drive: 

Figure 1 A Cauchy-Lorentz distribution robustly fits 
the kernel F(κ) in Fourier space. 
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Q∝(R/LT−5.9)1/2 [20]. We scan (i) the importance of SOC features while scanning this key 
control parameter from weak and close to marginal (R/LT~6.2) to moderate/strong (R/LT~7.5) 
turbulence regimes, (ii) the collisionality ν∗ over one order of magnitude in the tokamak-
relevant low-collisional so-called “banana regime”, from 0.05 up to 0.5. At last, the system 
size, parametrised (iii) by the dimensionless ρ∗=ρi/a number spans from today's smallest 
tokamaks (ρ∗=1/128) down to tomorrow's largest ones (with the (ρ∗=1/512) Iter-like value). 
Here, a denotes the minor radius and ρi is the ion gyroradius. 

As the first remarkable feature from Fig.1, (i) a universal pattern arises, despite the 
widely different underlying plasma conditions. A generic exponential form Lγ~exp(−Δ|kr|

γ) 
can indeed be tailored in each case to best fit the data, kr denoting the radial wavevector, 
normalised to ρi at mid radius. The Fourier transforms are performed between 0.35<ρ<0.65 
after temporal averaging over a collision time. At this point, γ and Δ are free parameters: γ 
controlling the shape of the fit, Δ its width. Note that the absolute value of kr is reminiscent of 
the non-diffusive behaviour found in radiation hydrodynamics, later rediscovered in closure 
theory [21,22]. A set of optimal (γ,Δ) pairs [e.g. in the case ρ∗=1/512, pairs between 
(γ,Δ)=(0.9,18) and (1.1,24)] may be found to equally well fit the data through a systematic 
minimisation in the (γ,Δ) space of quantity F(κ)−Ffit,(γ,Δ)(κ). Interestingly, in any case, 
0.8<γ<1.2, readily implying that (ii) the kernel κ is a Lévy distribution with index γ. This 
result is especially attractive since Lévy distributions are characterised by a divergent second 
moment (infinite variance), making them choice candidates for modeling nonlocality. 

At this point, let us strongly emphasise on the fact that finding the kernel κ to be of 
Lévy type appeared self-consistently, as an outcome of our procedure and that no pre-
conceived hypothesis has led us to this conclusion. The current study, based on the self-
consistent fluxes from GYSELA or XGC1, is strongly different in essence to procedures 
based on test particle following in a pre-chosen 
Lévy-like nondiffusive formalism. For the sake of 
simplicity, we now (iii) choose to discriminate 
amongst all optimal (γ, Δ) pairs by setting γ=1. 
This choice has several advantages: with limited 
loss of generality, it allows for physical intuition 
while remaining fully analytic. As a special case 
of Lévy distributions, γ=1 is trivially Fourier 
invertible, its inverse being the well-known 
Lorentz distribution. Thus, κ in real space now 
has the attractively simple analytic expression: 
κ(r,r')∝(Δ/2){(Δ/2)2+|r−r'|2}−1. As the Lorentzian 
width, parameter Δ may now further be 
interpreted as a radial influence length: a 
transport event happening at location r can drive 
a flux up to a distance Δ from this event. One can 
now readily see that Δ does indeed take over a special relevance to assess the question of 
locality v.s. nonlocality: the larger Δ, the stronger the nonlocality.  

Interestingly also, this radial influence length Δ fills in the mesoscale range –i.e. 
  

€ 

 c << Δ << LTi , where   

€ 

 c  is the turbulence autocorrelation length and LTi is the profile scale– 
and is systematically 3-4 times larger than the turbulence autocorrelation length, as shown in 
Fig.2. If we further recall that κ may equivalently be described by a second moment divergent 
Lévy distribution, reconciliation of this data with local or quasi-local models can only 
appear as fortuitous. 

Figure 2 The `influence length'  is compared 
to the turbulence autocorrelation length, the 
avalanche size and the `ExB staircase' width 
(solid symbols GYSELA; open symbols XGC1). 

Figure 2 The `influence length' Δ  is compared 
to the turbulence autocorrelation length, the 
avalanche size and the `ExB staircase' width 
(solid symbols GYSELA; open symbols XGC1). 
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On the grounds of this difficult reconciliation, any transport model should endeavour 
to encompass the possibility for a nonlocal, nondiffusive action at a distance. A prominent 
manifestation of action at a distance in plasma turbulence are the commonly observed, 
intermittent, large-scale heat avalanches; in that spirit, the typical avalanche size –comparable 
to the tail in the autocorrelation function– is compared in Fig.2 to the kernel width Δ for each 
simulation. Close agreement is found, which interestingly grounds this intuitive nonlocal 
influence length Δ –self-consistently obtained from actual heat fluxes– to the oft-invoked 
physics of self-organised near-critical transport [5,8–15,20]. 
 

Organisation of the transport dynamics based on realistic, unconstrained and self-
consistent full-f, flux-driven (statistical) state-of-the art modeling shows that a crucial piece of 
physics occurs at intermediate scales, in-between the local-like turbulence autocorrelation 
length   

€ 

 c  and the system size (or the profile scale) LTi. A crystallisation happens at these 
intermediate mesoscales where shear and turbulent stresses are generated, flows are formed 
and dissipation happens. 
 
3. Puzzling staircases 
 
Avalanches are often thought of as scale-
invariant; having an intrinsic “nonlocal length” 
Δ emerging as in section 2 and saturating at 
mesoscales   

€ 

 c << Δ << LTi  for large enough 
systems (ρ∗<1/256) (see Fig.2) is a remarkable 
feature. So is the fact that it corresponds to a 
typical avalanche size in the system. Remarkably 
also, this influence length leaves a salient 
footprint on the flow structure. Strongly 
organised and persistent ExB sheared flows 
emerge and organise the turbulence into radial 
domains (see Fig.3, inset). The typical size of 
these domains [the spacing between the “jets”] is 
shown as the “ExB staircase width” in Fig.2; it 
also is in remarkable agreement with the 
avalanche size and the kernel influence length Δ, reflecting the surprising tendency of the 
stochastic avalanche ensemble to self-organise in a jet-like pattern: few avalanches do indeed 
exist on scales larger than Δ. Though the causality question “is it the avalanching process that 
sets the jet spacing or is it the creation of this pattern that limits the radial extension of the 
avalanches” is yet unresolved [23], any proposed mechanism will have to account for 
arresting the “upscale of nonlocality” to the system size and the emergence at this mesoscale 
Δ of a jet-like pattern of coherent structures of alternating sign: the “ExB staircase”, see 
Fig.6 and Ref.[17], which we have named after its planetary analogy [24]. Thus, in large 
systems like e.g. Iter, Δ saturates within the mesoscale range. Note that the location of these 
jets is not tied to rational values of the safety factor profile q, as commonly emphasised. An 
interesting perspective, under investigation, is whether at the location of these jets, in 
monotonic q-profile plasmas, a transport barrier may nucleate. 

A bigger picture starts to emerge, in which self-organisation is present at all scales yet 
manifests itself differently at different scales; its most prominent feature being arguably the 
dynamical emergence of the mesoscale Δ: at scales smaller than Δ, transport is scale-
invariant, avalanche-mediated, nonlocal and non-diffusive; at scales larger than Δ, few 
genuinely scale-free avalanches exist; rather, strongly coherent and persistent flows organise 

Figure 3 Steady-state corrugations of the mean 
temperature profile correlate well with 
dynamically-driven perennial ExB sheared 
flows which self-organise non-linearly in a jet-
like pattern: the “ExB staircase” [17]. 
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the turbulence into a jet-like pattern, the “ExB staircase”. This structure represents the 
footprint of the radial influence length on the flow structure, and reflects the surprising 
tendency of the stochastic avalanche ensemble to self-organise in a jet-like pattern. The 
system may thus either be seen as scale-invariant, nonlocal, non-diffusive [fractal or self-
similar] on some scale or, equivalently, strongly organised on some other. A thorough 
characterisation of the interplay between scales may thus only be achieved through a self-
consistent and simultaneous treatment of all scales, especially allowing for the back-reaction 
of fast, small turbulent scales on the slower and larger equilibrium (neoclassical) scales. 

Interestingly, in a global, full-f and flux-driven (statistical) system, the dynamics of 
the mean background profiles provides the turbulence with another efficient channel for 
regulation, especially through alteration of the mean thermodynamic forces acting upon the 
system. This alteration is dominantly located at the steps of the latter staircase and is 
responsible for the generation of a “mean flow shear” (or “equilibrium shear”), dominant as 
compared to the usual fluctuating “zonal flow” shear [20], which is the only turbulence-
regulating mechanism possibly modeled in local or quasi-local models. The dominance near 
marginality of this "mean flow shear" certainly commends a shift to our current understanding 
of the hierarchy of shears and begs for a detailed and self-consistent accounting of 
turbulence-induced mean profile dynamics in “predictive” modeling, as detailed in 
Refs.[20,25]. This observation also emphasises on the central importance of the self-
organising processes happening at mesoscales. 

The remaining question of the physical mechanism that sets the staircase width is 
beyond the scope of the present paper. Its connection to a Rhines-like scale or Rossby-like 
wave breaking mechanism which could account for the emergence of the coherent structures 
in Fig.3 most notably the zonal/mean jets of alternating sign that organise the turbulence into 
radial domains will be reported elsewhere. Ongoing work is also concerned with exploring the 
dependencies of Δ and elucidating the mechanisms whereby the staircase emerges. 
 

Such nonlocal phenomena appear to be very generic features in tokamaks, not merely 
confined to the core region. As we now discuss in the case of the core-edge interaction, a 
similar nonlocal, front (avalanche)-like transport dynamics is found. 
 
4. Edge-Centre Coupling in Turbulence Dynamics, or how the Tail wags the Dog 
 

H-mode density pedestals are usually 
observed to be narrower than Ti-pedestals, so 
that a region of large ηi=Ln/LTi can drive strong 
turbulence in the near-edge region of the Ti 
profile. As a result, a strong ITG turbulence is 
excited in the “near-edge” region of the Ti 
pedestal knee, just inside the density pedestal 
and originates in this region. Remarkably, 
gyrokinetic simulations using the full-f code 
XGC1 [26], which self-consistently evolves 
flows and profiles, reveal the robustness of this 
phenomenon, as shown in Fig.4: rapid inward 
propagations of turbulence intensity [19], 
starting from the near edge, occur at a ballistic 
speed –a fraction of the diamagnetic velocity: 
v~0.1vdia, see Fig.5. These inward and outward avalanches are consistently observed in any 
flux-driven model and are well understood in the context of Self-Oraganised Criticality as 

Figure 4 Ingoing intensity pulses keep 
originating from the near edge. 



6                       THC/P4-06 

“avalanches of holes” which can excite turbulence in 
both directions as the gradient fronts propagate 
either up-hill or down-hill. This inward propagation 
of turbulence intensity is accompanied by an 
increase in the outward ion heat flux in the region of 
active turbulence. Simultaneously, core fluctuations 
grow and drive outward propagating intensity bursts 
which collide with the incoming pulses and thus 
further stir the core turbulence. The strong scattering 
between inward and outward propagating fronts 
triggers the formation of an ExB flow shear layer in 
the core, see Fig.6. In this layer, the turbulent 
diffusivity χi drops to near-neoclassical levels, so 
that the global profile consists of a near marginal 

(stiff) core, a strongly turbulent near edge and a pedestal region where turbulence is 
suppressed. As a consequence, χi is low in the core and rises as one approaches the pedestal, 
since fluctuation intensity peaks in the near edge. 
 These results have several interesting implications for our understanding of tokamak 
confinement and suggest a paradigm shift in how we conceive the basic nature of tokamak 
microturbulence. Previously, the 
turbulence was thought to be local 
and locally driven by the local 
temperature gradient. However: (i) 
as a basic consequence of H-mode 
pedestal structure, a strongly 
turbulent `near edge' region forms 
and connects the stiff core and the 
pedestal zones; much of the core 
plasma is actually activated by an 
inward flux of intensity from the 
ion temperature pedestal. Thus, the 
pedestal is not merely a ``boundary 
condition'' for the core transport 
process. Also, (ii) this incoming 
front scatters off of ambient 
fluctuations, producing a bursty 
outwards heat flux with Q(f) ~ 1/f 
and also triggering a shear layer formation. Models of core turbulence dynamics should 
therefore address the interaction and the collision of inward and outward propagating 
turbulence intensity fronts, and inward turbulence spreading for this latter is a key player in 
core turbulence and transport. Also (iii) the universally observed increase in χi(r) with radius 
may be explained by the dynamics of ITG turbulence spreading alone, without the need of 
additional edge turbulence mechanisms: our results indicate that both fluctuation intensity 
profiles remain peaked at the pedestal as time progresses and that ηi remains peaked at the 
edge in the long time, quasi-stationary state. Taken together, (iv) these results indicate that the 
edge pedestal temperature is a key parameter for core turbulence and transport dynamics and 
that both the temperature and density profile structure may exert a strong nonlocal influence 
on core transport and turbulence. 

Figure 5 Inward (times series) propagation 
of turbulence intensity. 

Figure 6 The building up of a shear flow layer resembling an 
internal transport barrier where the inward propagating 
intensity meets the outgoing heat flux. On the left, the 
turbulent diffusivity; on the right, the turbulence intensity. 
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