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Abstract In this paper we discuss global linear and nonlinear gyrokinetic results concerning effects of
finite beta and collisions in tokamak and stellarator turbulence, using particle in cell (PIC) codes. Our
approach is based on an adjustable control variate method which drastically reduces the computational
resources needed to correctly describe the evolution of the non-adiabatic currents and limits the growth
of the discretization error. Global electromagnetic and collisional PIC simulations of realistic plasmas
can finally be achieved.

1. Introduction.
The theoretical understanding of mesoscale and microscale turbulence is required for de-
veloping a predictive capability of heat, particle and momentum transport in tokamaks and
stellarators. Many global linear and nonlinear particle in cell (PIC) codes are routinely used for
solving the gyrokinetic equations in the limit of the electrostatic approximation. However, the
electrostatic approximation is expected to break down in the core of high βe (βe

� µ0neTe
�
B2)

plasmas or in any region where pressure gradients are large. For a finite value of βe, magnetic
fluctuations modify the evolution of the electrostatic instabilities and eventually introduce
new electromagnetic modes [1]. Therefore, a complete electromagnetic treatment of plasma
instabilities is desirable and must be included in models and codes. Most of the existing
gyrokinetic PIC codes are based on the δ f method [2–4]. In the δ f method the distribution
function f of each plasma species is split into a time independent background distribution
function f0 and a time dependent perturbation δ f , f � f0 � δ f . In the δ f method, the perturbed
part only (δ f ) is discretized using numerical particles. As long as the perturbation δ f remains
small as compared to f0, the δ f method reduces the statistical noise. The δ f method can be
interpreted as a “control variate” algorithm [5,6], a variance reduction technique widely used
for Monte Carlo methods. Electromagnetic simulations using a conventional δ f method are
much more demanding in respect of numerical resources than electrostatic simulations. The
parallel electron dynamics imposes a strong constraint on the size of the time step. In addition
to this, electromagnetic simulations require a much larger number of numerical particles in
order to correctly describe the evolution of the non-adiabatic part of the electron distribution
function. Indeed, the physically relevant non-adiabatic part of the electron distribution
function is overwhelmed by the adiabatic response to the magnetic potential A � leading to a
severe accuracy problem, known in the literature as the “cancellation problem” (see [6] and
references therein). Two main methods have been proposed to overcome those difficulties:
the so called “split-weight” scheme, originally proposed in [7], and the use of an appropriate
adjustable control variate method in the conventional δ f scheme [6]. The adjustable control
variate method has been applied in linear electromagnetic tokamak simulations using the code
GYGLES [8]. The same method has been successfully extended to nonlinear simulations using
NEMORB[9], a new electromagnetic, multispecies version of the code ORB5 [10], as well as
to the full 3D global code EUTERPE[11]. In this paper we present an overview of the recent
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Figure 1: radial structure of the electrostatic potential (left) and parallel magnetic potential
(right) for a TAE mode, GYGLES simulation [12].

results obtained by the three global codes GYGLES, NEMORB and EUTERPE, all based on
improved control variate schemes.
The organization of the paper is as follows. In Sec.II the gyrokinetic model used in the codes
is presented. Section III is dedicated to the discussion of linear simulations of shear Alfvén
modes, focusing in particular on fast-particle effects. Nonlinear simulations of finite-βe micro-
turbulence are presented in section IV. Finally, the influence of collisions on ion temperature
gradient (ITG) modes in stellarator geometry is discussed in section V.

2. The gyrokinetic model
Our gyrokinetic model is based on the gyrokinetic Vlasov-Maxwell system of equations of
Hahm and Brizard [13–16]. The latter consists of a set of self-consistent and energy conserving
nonlinear gyrokinetic equations for particles and fields.
The particle Lagrangian is

L ��� eA � pzb �	� Ṙ � m2

e
µθ̇ 
 H (1)

where � R � pz � µ � θ � are the particle coordinates, b is the unit vector for B, m and e are the species
mass and charge. Here, µ � v2� � 2B is magnetic moment per unit mass and pz is the canonical
parallel momentum coordinate, defined by:

mU � pz 
 eJ0A � � U � ∂H
∂pz

(2)

U is the parallel velocity of the particle and J0 is the gyroaverage operator.
The Hamiltonian contains only terms up to the first order in the potential fields, Φ and A � :

H � m
U2

2 � mµB � eJ0Φ � O � Φ2 �� 1
2m

�
p2

z 
 2epzJ0A ��� � mµB � eJ0Φ � (3)

The equations of motion are given by the Euler-Lagrange equations:

Ṙ � ∂H
∂pz

B �
B � � 
 1

eBB � � F � ∇H (4)

ṗz � 
 B �
B � � � ∇H (5)
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Figure 2: real frequency (left) and the growth rate (right) of the TAE mode destabilized by
fast particles as a function of fast particle density, GYGLES simulation [12]. The fast-particle
destabilization of the TAE mode and modification of the TAE into the EPM instability has been
observed in the simulations.

we have used a tensor notation for the magnetic field, summarized by:

F � ∇A 
 � ∇A � T F � ε � B ∇ � b ��
 ∇ � F
B

b ����
 F
B
� (6)

Replacing the Hamiltonian of Eq. (3) in the Euler-Lagrange equations (4) and defining a gener-
alized potential Ψ, the equations of motion become:

Ψ � Φ 
 pz

m
A � (7)

Ṙ � � pz

m

 e

m
J0A ��� B �

B � � � 1
B � � b ��� µm

e
∇B � ∇J0Ψ � (8)

ṗz � 
 mB �
B � � �	� µ∇B � e

m
∇J0Ψ � (9)

where B ��� ∇ � A � and A � � A � � pz
�
e � b.

The gyrokinetic Vlasov equation is:

dF
dt
� ∂F

∂R
� Ṙ � ∂F

∂pz
ṗz � C � F � � S (10)

where F � R � pz � µ � is the distribution function of the gyrocenters, C � F � is a collision operator and
S is a source term. The time evolution of the perturbed electrostatic and magnetic potentials is
described by the linearized gyrokinetic Poisson equation (in the long wavelength approxima-
tion) and by the parallel Ampére’s law, respectively:


 ∇ � � ∑
species

mn0

eB2 ! ∇ � Φ � ∑
species

δn (11)

� ∑
species

µ0n0e2

m
A � ! 
 ∇2� A �"� µ0 ∑

species
δ j � (12)
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Figure 3. (a) growth rate of a TAE mode as a function of fast particle temperature, for differ-
ent codes. Good agreement is found between CKA-EUTERPE and GYGLES. (b) radial mode
structure, # φ � s �$# [arbitrary units], for T � 400 KeV , calculated by CKA-EUTERPE; stor is the
normalized toroidal flux.

where δn � % dWδ f δ � R � ρ 
 x � is the perturbed gyrocenter density, δ j �&�
e % dW � pz

�
m � δ f δ � R � ρ 
 x � , dW � 2πB � � m ' 1dRdpzdµ and ρ is the gyroradius. For

C � F �(� 0 and S � 0, this set of gyrokinetic equations is energy and momentum conserving. An
elegant proof is given in Ref. [17].

3. Linear global simulations of Alfvén modes in tokamak
The GYGLES [18] code has been successfully used to perform global simulations of shear
Alfvén modes in tokamak and pinch geometry. Figure 1 shows an example of toroidal Alfvén
eigenmode (TAE) for a large aspect ratio tokamak. The mode is radially located in the vicinity
of the position of the gap in the shear Alfvén spectrum. The mode shows the typical radial
structure of a TAE. Moreover, the dominant frequency is in agreement with the frequency
of the corresponding ideal MHD mode. A detailed description of this simulation and the
corresponding numerical and physical parameters, can be found in Refs. [12,18].
When a fast particle population is present in the simulation, the TAE mode is destabilized
by fast particles above a certain threshold density. This effect is illustrated in Fig. 2, where
the real part of the frequency and the growth rate of the most unstable modes are plotted as a
function of the fast particle density. An increase in the fast particle density leads to a further
destabilization of the TAE. When the fast particle density is large enough, the most unstable
mode becomes an energetic particle continuum mode (EPM). Note that an increase of the fast
ion temperature leads to similar results. Details can be found in Ref. [12].
In the framework of a perturbative approach to the destabilization of Alfvén modes by fast
particles a module has been developed to couple EUTERPE to an ideal three-dimensional
MHD code like the CKA code. The energy transfer between fast particles and the ideal MHD
mode is then calculated to yield the growth rate. First benchmarks show good agreement with
other codes. Figure 3 shows an example of a direct comparison between GYGLES and the
CKA-EUTERPE hybrid code. In Fig. 3 (a), the growth rate of the most unstable mode has
been calculated for different values of the fast particle temperature. The two codes are in good
agreement even for large values of the fast particle temperature. This illustrates the importance
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Figure 4. (a) time evolution of the ion thermal diffusivity for an electromagnetic βe � 0 � 3%
simulation (red), and electrostatic simulation with (black, dashed) and without (blue) trapped
electrons, copyright c

)
2010 IEEE . (b) ion thermal diffusivity as a function of βe, moving aver-

aged in time. The red point corresponds to a simulation with different initial conditions.

of retaining finite Larmor radius (FLR) effects in the simulations. For comparison, results of
the hybrid MHD-drift kinetic code CAS3D-K [19] are shown, where finite orbit width and
FLR effects had been neglected. Figure 3 (b) gives and example of a radial mode structure
calculated by CKA, in good agreement with the GYGLES code.

4. Nonlinear finite βe simulations of microturbulence in tokamaks
The nonlinear PIC code ORB5 solves the set of nonlinear gyrokinetic equations in the whole
plasma core down to the magnetic axis, using MHD equilibria. The dissipation necessary to as-
sure entropy saturation is provided by a residual zonal flow conserving noise-control algorithm
[20,21]. The code ORB5 has been proved to scale up to 32k cores on a BlueGene/P architecture.
The electromagnetic version of ORB5, NEMORB, has been tested and benchmarked against
the linear electromagnetic code GYGLES [9]. The nonlinear simulations described in this
Section, are based on parameters and profiles of the Cyclone base case [22]. The mass ratio is
mi
�
me � 1000 and the value of the central density has been adjusted to have βe � 0 � 3%. Figure

4 (a) compares the time evolution of ion thermal diffusivity of a βe � 0 � 3% electromagnetic
simulation (red) with the the original electrostatic, adiabatic electrons simulation of Ref. [22]
(blue) and an electrostatic simulation including kinetic trapped electrons (black). The ion
thermal diffusivity for the electrostatic simulation including trapped electrons is comparable
with the electromagnetic case. The EM simulation (red) was performed using 512 million
numerical particles per species and with a time step 20 times smaller than the electrostatic
case (∆t � 1 Ωi where Ωi is the ion cyclotron frequency). Figure 4 (b) presents a scan in βe
for the ion diffusivity, for the same parameters of Fig. 4 (a). βe has been varied by rescaling
the value of the density on the axis. A heating source is applied, in order to prevent profile
relaxation. The ion diffusivities have been averaged in radius, over the range s ��* 0 � 6 � 0 � 8 + (s is
the square root of normalized poloidal flux) and in time, using a moving time window during
the stationary phase of the simulations. The two points at βe � 0 � 3% correspond to different
initial conditions: white noise (black) and single mode initialization (red). The stabilizing
effect of finite βe on ITGs, already documented in many linear simulation, is recovered in
global nonlinear simulations.
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Figure 5: time evolution of the field energy at a radial position far from the island (left) and at
the island separatrix (right) [23].

Magnetic islands, supposed to evolve on a much longer time scale than the turbulence, have
been introduced in ORB5 through a time-independent parallel vector potential A � of assigned
helicity. Simulations of electrostatic turbulence including a magnetic island have demonstrated
the nonlinear excitation of (otherwise linearly stable) long-wavelength modes, corresponding
to the mode numbers of the rational surface under consideration. The sheared flows associated
to these large-scale modes “rip apart” the eddies in analogy to what is known from zonal-flows
dynamics. Fig. 5 reports the time evolution of the local turbulence spectrum at two different
radial locations, the first at a given distance from the island, the second at the island separatrix.
In the first case, it can be seen that the n � 2 component of the electrostatic potential, that
decays during the first phase of the ORB5 simulation (in which the profiles adjust to the
perturbed equilibrium[23]), raises again due to the nonlinear pumping mentioned above.
However, the energy of the long-scale mode is smaller than that of turbulence during most of
the simulation time and the turbulent eddies efficiently transport heat across the flux surfaces.
On the contrary, at the island separatrix, the n � 2 mode largely dominates. The result observed
in several simulations is a reduction of the heat flux at the separatrix, except for the X-point
region, where larger structures can develop. From the simulations performed so far with
ORB5 and GKW[24,25], however, no firm conclusion can be drawn on whether nonlinearly
generated sheared flows arising in the presence of small magnetic islands can contribute to the
improvement of the confinement in the vicinity of rational surfaces, which has been reported in
experiments[26].

5. Influence of collisions on ITG modes in stellarators
The full 3D global gyrokinetic code EUTERPE uses stellarator equilibria calculated with
VMEC. The mapping from VMEC to the internally used PEST coordinates is done by a newly
developed tool allowing the use of smoothed splines to make the equilibrium more consistent
near the magnetic axis. The physical model of EUTERPE includes three kinetic species, non-
linear terms and electromagnetic perturbations. A pitch angle collision operator can also be
included to allow e.g. neoclassical transport calculations or the simulation of collisional effects
on TEM and ITGs. Benchmarks of the electromagnetic version using analytically given equilib-
ria for destabilized GAE and TAE show good agreement with the GYGLES code for different
βe. The code EUTERPE has been used to study the effect of collisions on 3D configurations.
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Figure 6. Left: Growth rate dependence on collisionality for different geometries (LT
�
a �

0 � 0 � LT
�
a � 3 � 5). Right: Growth rate dependence on ηi (for fixed LT

�
a � 3 � 5) for a cylinder

(blue), a tokamak (red) and a stellarator (black) configuration. Dotted lines and open symbols
indicate the collisionless case. Solid lines and filled symbols indicate the collisional case (ν �
0 � 01Ωi).

The stellarator results presented in Fig. 6 correspond to a LHD configuration with R � 3 � 75m
and βe � 1 � 5%. This configuration has been compared with an equivalent tokamak of aspect
ratio A � 5 and minor radius a � 0 � 8 m, and a cylinder of A � 5 and a � 0 � 8 m, but having a flat
iota profile. Figure 6, left, shows the dependency of the growth rate on the collisionality ν. A
weakly stabilizing effect of the collisionality for the dominant ITG mode is present in stellarator
configuration. Figure 6 (right) illustrates the effect of varying ηi

� Ln
�
LT, where LT and Ln are

the equilibrium temperature and density gradient scale lengths, respectively. For stellarators,
collisions provide a stronger stabilization to the ITG mode for larger values of ηi. The behavior
is different in tokamak configurations, were, in general, the ITG is always weakly affected by
collisions. The poloidal cross section of the electrostatic potential at different toroidal positions,
for the collisional LHD simulation, is shown in Fig. 7.

6. Conclusions
Gyrokinetic global PIC simulations have made dramatic progress in the last years. In particular,
the problem of the accumulation of the numerical noise has been cured by introducing dissipa-
tion in the Lagrange discretization. Moreover, the use of adjustable control variate methods,
drastically reduces the numerical resources required for electromagnetic and collisional
simulations. In this paper, we have presented a brief overview of results obtained by applying
both noise reduction techniques and control variate methods. The results suggest that global
nonlinear electromagnetic simulations in realistic tokamak and stellarator configurations are
finally achievable.
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Jülich Rechenzentrum under EFDA. EUTERPE simulations have been performed on the IBM
Power6 (SP6) at CINECA, Italy, in the frame of the DEISA-Extreme Computing Initiative. We
thank P. Helander, B.F. McMillan, L. Villard and S. Jolliet for helpful discussions.

References
[1] ZONCA, F. et al., Physics of Plasmas 6 (1999) 1917.



8 THC/P4-02

Figure 7: real part of the electrostatic potential for the collisional ( ν � 0 � 01Ωi) ITG mode
in LHD. Left: Cross section at the beginning of a period (ϕ � 0). Right: cross section at the
middle of a period (ϕ � 1

2
2π
10 ).

[2] LEE, W. W., Physics of Fluids 26 (1983) 556.
[3] PARKER, S. E. et al., Physics of Fluids B 5 (1993) 77.
[4] DIMITS, A. M. et al., Journal of Computational Physics 107 (1993) 309.
[5] AYDEMIR, A. Y., Physics of Plasmas 1 (1994) 5480.
[6] HATZKY, R. et al., Journal of Computational Physics 189 (2007) 463.
[7] CHEN, Y. et al., Journal of Computational Physics 189 (2003) 463.
[8] MISHCHENKO, A. et al., Physics of Plasmas 11 (2004) 5480.
[9] BOTTINO, A. et al., IEEE Transactions on Plasma Science 38 (2010) 2129.

[10] JOLLIET, S. et al., Computer Physics Communications 177 (2007) 409.
[11] KORNILOV, V. et al., Physics of Plasmas 11 (2004) 3196.
[12] MISHCHENKO, A. et al., Physics of Plasmas 16 (2009) 082105.
[13] HAHM, T. S. et al., Physics of Fluids 31 (1988) 1940.
[14] HAHM, T. S., Physics of Fluids 31 (1988) 2670.
[15] BRIZARD, A., Journal of Plasma Physics 41 (1989) 541.
[16] SUGAMA, H., Physics of Plasmas 7 (2000) 466.
[17] SCOTT, B. et al., Phys. Plasmas 17 (2010) in press, arXiv:1008.1244.
[18] MISHCHENKO, A. et al., Physics of Plasmas 15 (2008) 112106.
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