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Abstract The transport code B2SOLPS5.2 was used to simulate L and H-mode discharges on MAST with 
and without resonant magnetic perturbations (RMP). The simulated variation of the radial electric field (less 
negative for RMP) and toroidal rotation (spin-up in the co-current direction for RMP) is in agreement with 
experiment. The pump-out effect in the L-modes with high and medium plasma density and in the H-mode is 
caused by the additional neoclassical radial plasma flow in the electric field modified due to the electron loss 
along the stochastic field lines. The pump-out in the low density L-mode can be reproduced only by a 
significant rise of the turbulent transport coefficients. The modeling suggests strong RMP screening. An 
analytical model for RMP screening is proposed.  
 
1. Introduction 

 
It has been demonstrated on DIII-D [1] and later on JET [2] that edge localized modes 
(ELMs) can be suppressed or mitigated by applying resonant magnetic perturbations 
(RMP) to the high confinement mode (H-mode) of a tokamak. Resonant coils for RMP are 
installed or planned on almost all large tokamaks: DIII-D, JET, MAST, ASDEX-Upgrade 
(AUG) and ITER. The widely accepted mechanism for ELM suppression during RMP is 
the reduction of the pressure gradient in the pedestal region below the stability limit for 
type I ELMs. The main contribution to the pressure gradient decrease is the pedestal 
density drop – the so-called ‘pump-out effect’, while the pedestal temperature does not drop 
and might even increase. Up to now this effect was not completely understood. On the 
other hand, as was known from several earlier [3] and recent [4, 5, 6] observations, inside 
the stochastic layer the radial electric field becomes less negative or even positive and co-
current toroidal rotation is generated.  

An analytical model which can describe these effects has been suggested in [7]-[9] and 
the first simulations made by the B2SOLPS5.2 transport code [9] demonstrated that the 
results are consistent with the analytical predictions. The key element of the model is the 
account of the radial current of electrons in a stochastic magnetic field. The parallel current 
is driven by the radial electric field, density and electron temperature gradients in the 
presence of the radial magnetic field perturbations. The radial projection of the parallel 
current, averaged over the flux surface, provides a radial current of electrons which is 
proportional to the square of the radial magnetic field perturbations. Since the net radial 
current should be zero due to the ambipolar constraint, a radial current of ions is generated. 
This current flows when the radial electric field is different from the neoclassical electric 
field. Its value has been calculated in [10]-[11] and see also the review in [12]. The value of 
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the ion radial current is controlled by so-called neoclassical radial conductivity and roughly 
speaking is proportional to the difference between the radial electric field and its 
neoclassical value. The ambipolar condition determines the ambipolar radial electric field 
which is less positive than the neoclassical electric field. In addition the radial ion current 
generates a toroidal rotation in the co-current direction due to a Bj

rr
×  force.  

The impact of the RMP on the pedestal profiles according to the analytical model and 
simulations [9] is described in the following. An additional particle flux which is 
proportional to the ion radial current is generated during RMP. This flux reduces the 
density in the pedestal region causing pump-out effect. The effect is more pronounced for 
the H-mode where the additional particle flux is large in the presence of strong gradients 
and strong radial electric field while the turbulent diffusivity is reduced inside the edge 
transport barrier. In the L-mode the effect should be more modest. The change in the 
temperatures is controlled by two factors acting in the opposite directions. On one hand the 
pedestal temperature should rise to keep the same heating power coming from the core 
when the density is reduced. On the other hand, additional electron heat conductivity in a 
stochastic magnetic field reduces the pedestal temperature. As shown in the simulations [9] 
the result of the interplay of these two factors is the modest rise of the pedestal temperature 
which is consistent with observations.  

One of the most important issues is the level of the magnetic field perturbations in the 
plasma. There is some evidence that the vacuum magnetic field perturbations are strongly 
screened by the plasma so that the resulting RMPs are significantly lower than the vacuum 
ones. An amplification of the perturbation is also possible. Up to now RMP screening 
models were based on the screening of a separate magnetic island; see, for example, [13]. 
However, screening models for the separate island are not directly applicable to the case of 
RMP due to overlapping of the magnetic islands and stochastization of the magnetic field. 
In this situation the radial pressure gradient, radial electric field, poloidal and toroidal flows 
remain finite inside a region of stochastization in contrast with the case of a separate island. 
Therefore for the case of RMP a new approach to the problem of screening is required. This 
was done in [14] analytically; while in [15] a similar simplified approach has been 
incorporated into a MHD code.  

In the present paper the impact of RMP on the structure of the edge plasma of 
MAST has been studied using the B2SOLPS5.2 transport code. Results are compared with 
experimental data obtained on MAST in the shots with and without RMP. The radial 
electron current and electron heat flux produced by RMP are taken into account in the 
equations solved in the code. Simulations were performed for several L-mode shots with 
different densities with and without RMP. It was found that the electric field at the core 
side of the separatrix becomes less negative and the plasma is accelerated in the co-current 
direction in all the cases. The variations in the electric field and in the toroidal rotation are 
consistent with those measured in these shots.  

H-mode shots with and without RMP have been simulated as well. For H-mode 
discharge as well as for the medium-density L-mode it was demonstrated that the additional 
particle flux in the barrier region due to the stochastic field might explain the pump-out 
effect and the rise of the pedestal electron temperature observed. However, for the low 
density L-mode case the additional particle flux due to the stochastic field is not sufficient 
to cause the significant pump-out which is observed. The simulations show that in order to 
match the observed pump out, the transport coefficients in the low density L-mode shot 
with RMP have to be significantly increased compared to the shots without RMP. This 
increase in the transport coefficients correlates with the observed increase in the amplitude 
of the ion saturation current fluctuations.  
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 It is shown that the level of the magnetic field perturbations required to match the 
pump-out effect in the H-mode and the variation of the radial electric field and toroidal 
rotation in the L-mode is significantly smaller than that calculated using the vacuum 
magnetic field, i.e. significant screening of the perturbed magnetic field is required. The 
mechanism and level of the screening are discussed.  
 
2. Model 
 
The simulations were performed with the B2SOLPS5.2 code [16]. In this code the system 
of fluid transport equations is solved including all perpendicular currents,  drift, B∇ BE

rr
×  

drift, and drifts associated with viscosity. The formalism provides a transition to the 
neoclassical equations when the anomalous transport coefficients are replaced by the 
classical values. In order to account for the stochastization an additional radial electron 
current and additional electron heat flow were introduced. The radial current density of 
electrons in a stochastic magnetic field is given by a simple expression [17] (  is a 
dimensionless radial coordinate,  is the metric coefficient) 
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while  is a numerical coefficient (in the simulations 1<k 3.0=k  was chosen). Here  is 
a stochastic diffusion coefficient for the magnetic field lines. For MAST the value of  
was calculated for vacuum magnetic field perturbations with the ERGOS code [19], which 
can trace magnetic field lines. 
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balance equation. We did not consider the direct ion flux caused by the stochastisity since 
the corresponding diffusivity is the order of ie

RR
e mm /χ  which is small with respect to the 

neoclassical effects.  
 The current continuity equation 0=⋅∇ j

r
 which is solved in the code with account 

of electron radial current (1) determines the self-consistent radial electric field. A stochastic 
diffusion coefficient  was taken as a free parameter and its value was chosen to match 
the observed variations in the radial electric field and toroidal rotation. An independent 
analytical estimate of screening effect has been performed [14] which justifies the choice of 
the RMP level the in plasma.  
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3. Simulation results 
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FIG.1. Electron density profile at the FIG.2. Electron temperature profile at 
outer midplane for L-mode shot №21712 
(without RMP) and shot №21713 (with 
RMP) . 

the outer midplane for L-mode shot 
№21712 (without RMP) and shot 
№21713 (with RMP).  

match the experimental profiles the following transport coefficients were chosen for the 
medium density shots 21712 (without RMP) and 21713 (with RMP): particle diffusivity 

smD /5.2 2= , electron and ion heat conductivities smie /5.1 2=χ=χ . Density and 
rofiles for these shots are shown in Figs. 1-2. The radial electric field and 

parallel rotation profiles are shown in Figs. 3-4. Simulation results are compared with 
experimental profiles obtained in [20]. Measurements of the radial electric field and parallel 
flows have been made using a reciprocating probe equipped with a Gundestrup head. The 
value of StD  was taken to be mDSt

7102 −⋅=  which is twice smaller than the value 
DSt 104 ⋅=  calculated from the etic field. The pump out effect observed  
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FIG.3. Comparison of experimental and 
simulated radial electric field profiles at 
the outer midplane for L-mode shots with 
and without RMP.  

FIG. 4. Comparison of experimental and 
simulated parallel Mach numbers at the 
outer midplane for L-mode shots with 
and without RMP. 
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4. Screening of RMP 
 

x  is the poloidal, y  - radial and z  - toroidal coordinates. The radial 
current is the radial projection of the parallel current 
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where L  is the radial scale of the RMP. Let us introduce the screening parameter  
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To estimate the screening factor for MAST it is necessary to know the 
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5. Conclusions 
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Simulations of the impact of RMP on MA discharges were performed using th
B2SOLPS5.2 transport code. The predicted changes of radial electric field (less negative 

MP) and toroidal rotation velocity (spin-up in the co-current direction with RMP) are 
consistent with observations. The observed density pump-out effect on MAST can be 

ant rise of the turbulent transport coefficients were required to m e 
experimental profiles. A strong RMP screening is predicted analytically and is consistent 
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