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Abstract.

Flux-driven global gyrokinetic codes are now mature enough to make predictions in terms of tur-

bulence and transport in tokamak plasmas. The recent breakthroughs of three such codes, namely

GYSELA, ORB5 and XGC1, are reviewed. Turbulent transport is mediated by avalanche-like events,

for a broad range of ρ∗ = ρi/a values, ratio of the gyro-radius over the minor radius. Still, the radial

correlation length scales with ρi, leading to the gyroBohm scaling of the effective transport coefficient

below ρ∗ ≈ 1/300. The experimental power law decay of the energy confinement time with additional

power is recovered. For flat density profiles, the poloidal rotation of turbulence eddies is governed by the

electric drift. At low collisionality, the shear of the total poloidal rotation departs from the neoclassical

prediction, as a result of the radial corrugation of the zonal flows. The latter limits the excursion of the

avalanches. Finally, the numerical verification of toroidal momentum balance allows one to analyze in

detail the transport and source/sink terms of momentum in the absence of injected torque.

1. Introduction
Predicting the performance of fusion plasmas in terms of quality factor, ratio of the fu-

sion power over the injected power, is among the key challenges in fusion plasma physics.
In this perspective, turbulence and heat transport need being modeled within the most
accurate theoretical framework, using state-of-the-art non-linear simulation tools. The
gyrokinetic equation for each species, coupled to Maxwell’s equations, constitutes the
proper self-consistent description of this problem. As far as the modeling part is con-
cerned, one of the key issues deals with the type of forcing applied to the system. In
order to get closer to experimental conditions, new types of codes have recently emerged,
in which turbulence is driven by some prescribed external heat source [1].

The most recent results obtained with three such codes are reviewed, focussing on
predictions on turbulent transport and plasma rotation in tokamaks. Section 2 details
the models, with special emphasis on the main differences from one code to another, in
particular regarding the source term. The turbulent transport dynamics is highlighted
in section 3, as well as its scaling law with the normalized gyro-radius ρ∗ and the addi-
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tional power. Attempts to trigger transport barriers are also reported. Finally, plasma
rotation issues, both in the poloidal and toroidal directions, are the backbone of section 4.

2. Main characteristics of the three gyrokinetic codes
The non-linear results of three gyrokinetic codes are analyzed and compared hereafter,

namely GYSELA [2], ORB5 [3] and XGC1 [4]. Although they use different numerical
schemes, all three share similar characteristics, which reveal essential to capture the rich
dynamics of flux-driven turbulent transport. Firstly, they are global: a large fraction of
the plasma radius is considered. This opposes to flux-tube codes which focus on the small
volume around magnetic field lines by proceeding from a scale separation assumption, the
fluctuation scale length being smaller than the equilibrium one. In such codes, periodicity
is assumed along the radial direction. Conversely, global codes face the delicate problem
of radial boundary conditions. Basically, non-axisymmetric fluctuations of the electric
potential and of the distribution function – i.e. (m,n) 6= (0, 0) modes, with m and n
the poloidal and toroidal wave numbers – are forced to zero at both radial boundaries of
the simulated domain, except for ORB5 which solves up to the magnetic axis. As far as
the axisymmetric component is concerned, the value of the potential is prescribed at the
outer boundary, while the radial electric field is set to zero at the inner boundary (except
for ORB5). Secondly and very importantly, these codes are full-f 1, such that the back
reaction of turbulent transport is accounted for in the time evolution of the equilibrium. In
such cases, the turbulence regime is evanescent if no free energy is injected in the system.
A heat source is mandatory in view of exploring the long time – on energy confinement
times – behavior of turbulence and transport.

The simulations focus on the electrostatic Ion Temperature Gradient (ITG) driven
turbulence with adiabatic electrons. The set of solved equations is derived from the
modern formulation of gyro-kinetic theory [6]. We detail the formulation adopted in the
GYSELA code, and outline the main differences with respect to the two other codes,
ORB5 and XGC1. They read, for the entire ion distribution function f(r, θ, ϕ, vG‖, µ, t):

B∗‖∂tf + ∇ ·
(
B∗‖ ẋG f

)
+ ∂vG‖

(
B∗‖ v̇G‖ f

)
= C(f) + S (1)

B∗‖ ẋG = vG‖B
∗ + b×∇Ξ/e ; B∗‖ v̇G‖ = −B∗ ·∇Ξ/mi (2)

with ∇Ξ = µ∇B + e∇φ̄ and B∗ = B + (mi/e) vG‖∇ × b. The collision operator C(f)
and the source term S are detailed below. φ̄ is the gyro-averaged electric potential. The
scalar B∗‖ is B∗‖ = B∗ ·b, with b = B/B. Electrons are assumed adiabatic, so that particle
transport vanishes. The system is closed by quasi-neutrality:

(φ− 〈φ〉) e/Te,eq −∇⊥.
{(
mineq/eB

2
)
∇⊥φ

}
/neq = (nG − nG,eq) /neq (3)

with ~∇⊥ = (∂r,
1
r
∂θ) and ∇‖ = 1

R
(∂ϕ+ 1

q
∂θ). The polarisation density (second term on the

left hand side of Eq. 3) is an approximation: such an expression is valid in the limit of
long wavelengths only, characterized by k⊥ρi � 1. The guiding-center density is defined
by: nG =

∫∫
Jv dµ dvG‖(J.f), with J the gyro-average operator and Jv = 2πB∗‖/mi the

Jacobian in the velocity space. f is replaced by the equilibrium component feq when

1Although ORB5 uses a splitting f = δf + f0 to improve numerical performance, the correct full-f
equations are implemented, without any assumption on the relative size of f0 and δf [5].
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computing neq. 〈φ〉 stands for the flux surface average of the electric potential, defined
by 〈φ〉 =

∫∫
Jx φ dθ dϕ/

∫∫
Jx dθ dϕ, with Jx = (B ·∇θ)−1 the configuration space

Jacobian.
Both ORB5 and XGC1 are Particle In Cell (PIC) codes, while GYSELA uses the

semi-Lagrangian scheme [7]. They have been successfully benchmarked against several
linear predictions, namely growth rates and real frequencies of the most unstable modes
in the unstable ITG regime, and the oscillatory decay towards residual poloidal flow in
the collisionless regime, according to Rosenbluth-Hinton prediction [8]. In XGC1 and
ORB5, Coulomb collisions are modeled by a linearized Monte Carlo scheme [9], while a
simplified Fokker-Planck operator is used in GYSELA, acting on vG‖ only [10, 11]. Both of
them conserve particle, momentum and energy, and the full distribution function relaxes
towards the isotropic Maxwellian, according to the H-theorem (Boltzmann). Also, they
have been shown to reproduce neoclassical physics. While GYSELA employs a simplified
magnetic equilibrium with circular and concentric magnetic flux surfaces, both ORB5 and
XGC1 are capable of treating more realistic geometries. Especially, XGC1 accounts for
an X-point at the plasma periphery.

The source term aims at sustaining the equilibrium profiles, which would otherwise
relax towards the marginal state. Different expressions have been retained in the three
codes. In GYSELA, the source consists of the sum of the product of Hermite and Laguerre
polynomials in vG‖ and µ, respectively. It is versatile enough to allow for separate injection
of heat, parallel momentum and vorticity. Present simulations use an anisotropic heat
source. Up to small terms proportional to the parallel current, it reads as follows:

SGY SELA ' Sr

[(
vG‖/vTs

)2 − 1
]

exp
{
−
(
mivG‖

2/2 + µB0

)
/Ts
}

(4)

with vTs an arbitrary normalizing velocity. The prescribed radial profile Sr is the sum of
two hyperbolic tangents, and is localized close to the inner boundary of the simulation
domain [15]. Redistribution of the energy towards the transverse velocity space takes
place on collisional time scales, the kernel of the collision operator being an isotropic
Maxwellian. The source term applies to the time evolution of δf in ORB5. It is given
the form of the following Krook operator [12]:

SORB5 = −γH
(
δf − feq

∫
d3v δf /

∫
d3v feq

)
(5)

Such a time dependent heat source damps the components of the perturbed distribution δf
on a time scale γ−1H , while only leading to a mild reduction of zonal flows in the collisionless
linear regime. This results in a limited relaxation of the equilibrium gradient. Finally,
heating is achieved in XGC1 by increasing the particle energy close to the inner radial
boundary at uniform rate, while keeping the particle pitch angle fixed [4]. An artificially
large collisionality is prescribed in this region only so that the system smoothly transfers
this forcing to the turbulent region.

There are two main advantages of dealing with a prescribed heat source: (i) the forcing
of turbulence mimics the one at work in the experiments, contrary to simulations where
the gradient remains fixed, and (ii) the sum of turbulent and neoclassical heat fluxes is
forced to equal, on average and on the energy confinement time scale, the prescribed driv-
ing flux. In this case, the degree of freedom is the temperature gradient, which ultimately
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Figure 1: Color plots of the turbulent heat flux in the two-dimensional space (r,t) for the three global

gyrokinetic codes GYSELA (a), ORB5 (b) and XGC1 (c).

governs the internal energy and therefore the performance of the discharge.

3. Transport dynamics and scaling properties
A general feature of flux-driven turbulence simulations, already well documented in

fluid simulations [13, 14], is that the turbulent transport exhibits avalanche-like events,
characterized by large scale intermittent outbursts. These bursts, which are easily iden-
tified on flux surface averaged maps of the heat flux (cf. Fig.1), propagate almost bal-
listically on large radial scales, much larger than the Eulerian correlation length of tur-
bulence. Their propagation velocity is a fraction of the diamagnetic velocity v∗i ≈ ρ∗vT ,
with ρ∗ = ρi/a the gyroradius normalised to the minor radius a, and vT the ion thermal
velocity. Notice that, when turbulence is primarily excited in the edge plasma region,
like in XGC1 simulations with an initially large temperature gradient close to the last
closed flux surface [9], a front of temperature then propagate inwards, at the same speed.
Such a dynamics is associated to local profile relaxations, such as the ”domino effect”.
For intermediate ρ∗ values at least (ρ∗ = 1/64), it is found to correlate with streamer-like
structures of the convection cells, albeit their Fourier spectrum departs significantly from
that of the most unstable linear modes [15]. For sufficiently small ρ∗ simulations (typically
ρ∗ < 1/256), the shearing regions generated by the self-generated zonal flows appear to
control the radial extent of the avalanches – although the opposite cannot be excluded
a priori, namely that the avalanche mean size governs the position of zonal flows [16].
Besides, the direction of propagation of the avalanches depends on the sign of the local
shearing rate [17, 18]. Such ingredients reveal extremely powerful when deriving reduced
transport models which capture the essence of avalanche-like transport [17, 16]. One
important feature of the zonal flow radial structure is that they exhibit a characteristic
wave-like shape, as evident on Fig.2a. As already noticed, such a shape is reminiscent of
the anti-viscosity nature of the Reynolds stress tensor [19]. Also, consistently with the
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“staircase” picture [16], their characteristic radial size scales with the gyroradius ρi, in-
dependently of the system size. Predicting such a typical wavelength would be extremely
valuable in the course of predicting turbulent transport level.

Figure 2: (a) Radial profile of the flux surface averaged poloidal component of the E ×B drift for two

values of ρ∗ (GYSELA runs). The small scale structure, namely the zonal flows, exhibit radial patterns

independent of the system size. (b) Auto-correlation function of the electric potential fluctuations for

different ρ∗ values.

The scaling properties, especially with respect to ρ∗, of the avalanche-dominated tur-
bulent transport is a matter of concern for predicting the performances of next step
devices, including ITER. First because ρ∗ strongly impacts the energy confinement time,
ωcτE ∼ ρ∗−2.8 according to ITER scaling law. Second because avalanches could break
the gyro-Bohm scaling of turbulence, possibly due to their large radial excursion over a
significant portion of the system size. Scanning ρ∗ from 1/70 to 1/560 with ORB5 re-
veals that the effective diffusion coefficient undergoes a transition towards the gyro-Bohm
scaling around ρ∗ ≈ 1/300, with an asymptotic value of the order of χ/χgB ≈ 2.8 − 2.9
[20]. The same results are obtained with the global version of the Eulerian GENE code
[21], while the local version prediction looks consistent with the smallest ρ∗ simulations.
Following another perspective, the typical size of the avalanches as well as the distance
between strongly sheared zonal flow layers is found to plateau below typically ρ∗ . 1/256
[16]. Consistently, the correlation length of the electric potential fluctuations exhibits a
convincing scaling with ρi, independent of the system size, as evident on Fig.2b. Flux
driven simulations also allow for investigating the impact of heating power on energy con-
finement time. Such an analysis is time consuming, and requires all the more CPU time
since ρ∗ is small. For this reason, it was performed at relatively large ρ∗ only (ρ∗ = 1/64).
The degradation of the confinement was observed when increasing the injected heating
power Padd, with the scaling exponent τE ∼ P−0.76±0.04add of the same order of magnitude as
the one reported in the ITER database in L-mode plasmas.

Last but not least, the possibility to trigger transport barriers has been explored.
Experimentally, internal transport barriers (ITBs) often develop in the vicinity of low
order rational resonant surfaces and weak magnetic shear regions, at least in JET and
ASDEX-Upgrade [22]. In this context, GYSELA simulations with hollow and monotonous
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q profiles have been compared. The hollow-q case exhibits a large radial gap region with-
out any resonant mode across qmin. No transport barrier was observed, although different
heat source magnitudes and increasing gap widths have been explored [23]. Conversely,
turbulent transport dramatically drops (by 2 orders of magnitude) in the gap region when
an artificial conical Fourier filter is applied, which only retains those modes which are res-
onant in the simulation domain. Such gyrokinetic simulations tend to reconcile – and
extend to the turbulence flux-driven regime – previously published contradictory results
on the topic. However, understanding and reproducing the experimental triggering of
internal transport barriers still remain an open issue.

4. Poloidal and toroidal flows
Poloidal rotation is a key player in the dynamics of turbulence eddies [24]. On the one

hand, because of the large friction due to trapped particles, it is usually assumed to be
governed by the neoclassical theory in tokamak plasmas, i.e. proportional to the equilib-
rium ion temperature gradient. On the other hand, collisions linearly damp the turbulence
self-generated zonal flows. A twofold scan in the turbulence drive and in collisionality with
GYSELA has revealed that turbulence itself can indeed generate a significant amount of
poloidal momentum. Although its magnitude remains weak with respect to the neoclassi-
cal prediction – at least in the absence of any transport barrier – such a turbulence drive
increases significantly the velocity shear, mainly through the turbulent corrugation of the
mean profiles. This property tends to increase at smaller collisionality, and may therefore
reveal important when considering ITER relevant parameters [11].

It is interesting to notice that turbulent eddies do not actually rotate at the same
speed as the ions. Indeed, the linear expectation indicates that the real frequency of the
fluctuations should be ω ≈ ωE + ω∗n, with ω∗n = (kθρi)vT∂r(log n) the density part of the
diamagnetic frequency and ωE = (kθρi)vT∂r〈φ〉 the Doppler shift governed by the radial
gradient of the mean electric field. The latter is usually dominant, unless steep density
gradients develop. This is consistent with the fact that the radial electric shear only, and
not the shear of the total poloidal plasma flow, plays the critical role in the stabilization
of turbulence. A more detailed analysis reveals that this poloidal flow does not critically
depend on the mode number, at least up to kθρi = 1. Experimental measurements suggest
that, possibly depending on the underlying dominant instability (ITG or trapped electron
modes), such a flow might actually vary with the mode number, at least for small scales
[25]. Due to the simplified gyro-average operator used in GYSELA, sub-Larmor scales
are presently over-damped, preventing us to explore the kθρi > 1 region.

Toroidal rotation is another important player, for it tends to stabilize deleterious MHD
modes (so-called Resistive Wall Modes) and because its shear may reduce the turbulent
transport level. However, the amount of injected torque is expected to be very small
in ITER. Plasma rotation should then rely on non linear processes leading to angular
momentum transport and redistribution. From Eq.1, an exact conservation equation can
be derived for the local toroidal angular momentum Lϕ =

∑
sms

∫
dτ ∗ uϕf , where the

toroidal component of the velocity is uϕ = (I/B)vG‖ (with B = I∇ϕ + ∇ϕ ×∇χ) and
dτ ∗ is the elementary reduced phase space volume, excluding the radial direction χ:

∂tLϕ + ∂χ
(
Πχ
ϕ + Tχ

ϕ

)
= J (6)
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We introduce the radial contravariant component of the velocity vχG = ẋG ·∇χ. It contains
both the E × B and the magnetic drifts, which govern the turbulent and neoclassical
contributions, respectively. Then, the following definitions hold:

Πχ
ϕ =

∑
s

ms

∫
dτ ∗ uϕv

χ
G f ; Tχ

ϕ =
∑
s

es

∫ χ

dχ

∫
dτ ∗ ∂ϕφ̄ f ; J =

∑
s

es

∫
dτ ∗ vχG f (7)

Here, Πχ
ϕ is the (ϕχ) off-diagonal component of the Reynolds stress tensor and Tχ

ϕ that
of the Maxwell stress tensor built with the polarization field [26]. It is reminiscent of the
source of spin up proposed in [27]. The radial integral of Lϕ vanishes, as it should, provided
that the radial current J of gyrocenters is zero. This constraint is naturally fulfilled by
the gyrokinetic equation due to charge conservation, ∂tρ+ ∂χJ = 0, or alternatively after
radial integration: ∂tσ−J = 0 (up to a divergence free component of the current, typically
a magnetization contribution), where σ is the flux surface integral of the contravariant
radial component of the polarization vector (∂χσ = −ρ) [6]. It then readily appears
that J = 0 in the steady state regime. As evident on Fig.3, the local balance Eq.6 is
well satisfied in the nonlinear regime. Also, it appears that the radial current is indeed
vanishing, while the main contributors are the turbulent and neoclassical stresses. Such
a balance will be especially scrutinized in the presence of possible transport barriers, as
well as when adding a source of toroidal momentum into the system.

Figure 3: (a) Local balance of toroidal momentum. (b) Detail of various components.

5. Conclusions
This paper reports on global gyrokinetic simulations of ITG turbulence in the flux-

driven regime with the three codes GYSELA, ORB5 and XGC1. Transport is largely
dominated by avalanches, of characteristic radial velocity ρ∗vT . Although they can prop-
agate radially on much larger radial distances than the Eulerian correlation length of
turbulent eddies, the effective heat diffusivity still exhibits a gyro-Bohm scaling, at least
below ρ∗ ≈ 1/300. They are also found to degrade the confinement at increasing heating
power, in quantitative agreement with experimental scalings. The poloidal rotation of
turbulent eddies is consistent with linear predictions. As far as the plasma poloidal ro-
tation is concerned, its shear significantly departs from the neoclassical prediction at low
collisionality, as a result of the radial corrugation of the zonal flows. Finally, the intrinsic
toroidal rotation appears mainly driven by the turbulent and neoclassical stresses.
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