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Abstract. A novel model handling zonal flow, geodesic acoustic mode (GAM), and turbulence self-consistently 

as a predator-prey system with multiple frequency shearings is introduced. ZF with finite frequency has different 

shearing relation from that with zero frequency depending to their auto-correlation times. Splitting ZF broadband 

spectrum into the two modes of wave populations enables us to state different shearing weights to the turbulence 

contributions of the ZFs. We define states with no ZF and GAM states as L-mode-like state, with ZF and without 

GAM as ZF-only state, with GAM and without ZF as GAM-only state, and both with ZF and GAM as the 

coexisting state. Since the coexisting state does not appear in the minimal model, mode-competition effects are 

introduced. We introduce one which originates from higher order perturbation of wave actions. The model 

exhibits a sequence of transition between various roots as the driving flux increases. In some chosen parameters, 

bi-stability is evident, which suggests the origin of the hysteretic behavior in the turbulence intensity field during 

power ramp up/down studies. In the presence of noise due to ambient turbulence offers a novel and interesting 

mechanism to explain the bursts and pulsations observed in the turbulence field prior to the L-H transition.  

 

1. Introduction 

 

 Understanding the L-H transition requires a thorough comprehends of pre-transition 

turbulence [1]. It is now well established that edge turbulence has at least two constitutions, 

namely primary modes with cause transport and secondary shearing modes (i.e. zonal flow, 

GAM), and that the turbulence self-regulates via several shearing feedback loops. Both GAMs 

and zonal flows frequently have been detected in tokamak edge turbulence and have been 

observed to respond to changes in plasma conditions and proximity to the L-H transition.  

 There are now many observations of changes in the relative populations (both amplitude 

ratio and profile) of shearing modes while heating power increases approaching the transition 

[2,3,4]. In DIII-D experiments, it is suggested that transition from the GAM to ZF may help 

trigger L-H transition. Due to change of direction of NBI with co-injected power to balanced 

ones, a observed GAM peak in zonal flow spectrum decays and zero-mean-frequency zonal 

flow established just before a sudden L-H transition, i.e. transition from turbulent state to the 

quiescent steady state in a very short time scale [2]. On the other hand, in ASDEX-Upgrade 

experiments, strong dependence of GAM amplitude on turbulence strength is found, while 

little sign for the transition from GAM to ZF has appeared through the L-H transition [3]. This 

may indicate the GAM is just an easily visible secondary signature of the turbulence. Here 

these are accompanied by unusual phenomena such as bursts, pulsations, etc in turbulence. 

Furthermore, in LH-2A experiments, a mixture of nearly zero frequency ZF and finite 

frequency GAM peaks is observed, which is referred as to the coexisting state [4], while the 

previous experiments, in DIII-D or ASDEX-Upgrade, shows a single peak of zonal flow 

broadband spectrum through L-H transition.  

 Taken together the observations suggest the need to understand the dynamics of GAM and 

ZF co-existence and mode competition, and how this competition impacts the qualitative state 

of the turbulence. However, the observations alone have not fully clarified the GAM’s role in 

shear suppression and possible energy transfer from zonal flows and to turbulence. Theory is 

necessary to illuminate these questions. Hence here we report on recent results from 
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theoretical studies directed at these questions. A major focus of this work is the extension of 

the familiar predator-prey model for shears and primary modes to treat the case of multiple 

predators. The model predicts fundamentally new states of turbulence.  

 While zonal flows are stationary and thus exert coherent shears, GAMs propagate radially 

[5] and account of polarization current effects [6]. GAM propagation thus likely reduces the 

GAM shearing efficiency, since the GAM-drift wave coherence time 
1

, ))((


 kvvq grGAMgrac  is smaller than the ZF-drift wave coherence time. Here q is the 

spatial bandwidth of the GAM shearing packet. This implies that a broadband GAM 

frequency shearing field is best characterized by the shearing partition 

ratio )/( 00,,, EEE acacac    , where E0, and ac,0, are the ZF and GAM energies and 

auto-coherence times, respectively. Note that  is set by both coherence times and the 

energies, and not simply by the ratio of shearing intensities. This issue has often been missed 

in previous analysis regarding GAM’s turbulence suppression effects.  

 The reminder of this paper is the following. In Sec. 2 we introduce the minimal multiple 

shearing predator-prey model to describe interplay among turbulence, ZF, and GAM. In Sec. 

3, we discuss why the minimal model is not enough. Here we introduce mode competition 

effect and thus formulate the model with the nonlinear effects. We also discuss the possible 

stability states in the model. In Sec. 4 we briefly discuss the stability analysis around possible 

fixed points. Here we find the bi-stable region of states, and thus discuss the relation of the bi-

stability to the hysteretic behavior of turbulence intensity. In Sec. 5 we conclude this paper 

and remark on some thoughts.  

 

2. A Minimal Multiple Shearing Predator-Prey Model. 

 

 Here we start from the well known wavekinetic equation [7] for drift wave action 
222 ~

)1(  sk kN   coupling with the linear fluid ZF/GAM model [8] consisting of zonal 

flow velocity EvU  , anisotropic up-down asymmetric pressure perturbation 

sinpG  , and anisotropic up-down symmetric parallel velocity perturbation 

cos| |vV  ,  
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 where qr is radial wave number of zonal flow components, )1/( 22

* sk kVk    is drift 

frequency, 11

*

 ncis LcV   is diamagnetic velocity, a and R is minor and major radius, 

respectively, damp is collisional damping of zonal flow, neq and peq (and Teq) is equilibrium 

density and pressure (and temperature) profile, respectively,  is Te/Ti, LD is the Landau 
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damping rate of GAM. Through quasilinear treatment and discussion about shearing regarding 

the auto-correlation times [6] we yield a time evolution of turbulence intensity N as  

22 NUNN
t

N
L  




,         (5) 

 where L is a growth rate of turbulence intensity, which can be estimated from results of 

simulations or experiments by using L=(R/LT-R/LT,crit), where R/LT,crit is the linear critical 

temperature gradient assuming the turbulence is driven by ion temperature gradient (ITG) 

mode,  is a reference growth rate, and  is a nonlinear damping rate of turbulence. Here  

is a coupling parameter between turbulence and zonal flows which is determined by the 

shearing relation depending on mode frequencies. However, here zonal flows have two 

different eigenmode with zero and finite frequencies, i.e. multiple frequencies. Thus  cannot 

be determined easily. Note that Ref. [9] discusses a multiple shearing predator-prey model, 

consisting of turbulence, ZF, and mean flow shear <VE>’. 

 To reproduce shearing effects of zonal flows with multiple frequencies, we separate U by 

expanding Eqs. (2) - (4) by Fourier frequency modes and retain up zero-frequency and high-

frequency modes. Here we assume zonal flows spectrum consist of the zero frequency mode 

(=0) and high frequency modes (=±G) populations. We assume time derivatives of G and 

V obeys eigenmode ratios, that is GAMGttt VGU   :0:::  for a mode with =0 and 

soundGGAMttt iVGU  :::  for modes with =±G, where 

)/()3/5(2 RaTeqGAM   , )/()3/5( qRaTeqsound   , and  

)/()21/()3/5(2 222 RaqTeqsoundGAMG   . We assume higher temperature 

plasmas so that fast (GAM) time scale can separate from slow (transport) time scale. Finally 

we obtain the following minimal multiple shearing predator-prey model with one prey and two 

predators, consisting of a time evolution of the turbulence intensity N, which expands 

U
2
=0E0+E in Eq. (5), and those of the zonal flow energy E0=|U0

2
| and the GAM energy 

E=|U+
2
|+|U-

2
|=2|U

2
|,  

NEEN
t

N
L ][ 00  




,       (6) 

0000

0 )( ENA
t

E
 




,         (7) 


  ENA
t

E
)( 




,         (8) 

 where 0 and  are characterized by the ZF/GAM-drift wave coherence time, i.e. 0~ac,ZF 

and ~ac,GAM. Note that ac,GAM<ac,ZF. 0 and  are dissipations of ZF and GAM. In the 

calculations, we find 0=damp, where damp is the collisional damping rate of ZF, while 

≈damp+LD, where we assume q>1 and thus combinations of the dissipations are so small. 

Thus 0< is satisfied. A0 and A are screening factors regarding q-value dependency, that is 

A0 = (1+2q
2
)
-1

 and A=1-A0.  

 However the minimal model cannot reproduce the coexisting state, because coexisting state 

of ZF and GAM cannot be defined. Based on the derived minimal multiple shearing predator-

prey model, we investigate the stability of states of turbulence, ZF, and GAM. We calculate 

possible fixed points (N, E0, E), where 00  EEN ttt . They are (i) a L-mode-like 

state (NL, 0, 0), (ii) a ZF-only state (N0*, E0*, 0), and (iii) a GAM-only state (N*, 0, E*), 

where NL=L/, N0*=0/0, N*=/, E0*=(1/C0)(NL-N*0), E*=(1/C)(NL-N*), C0=0/, 

and C=. Analyses around the fixed points show that the ZF-only state is stabilized as 
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long as N0*>N* is satisfied. This corresponds to the fact that without turbulence GAM is 

always damped by the Landau damping, while ZF resides without the collisional damping 

[10].  

 

3. A Multiple Shearing Predator-Prey Model with Mode Competition. 

 

 In this section, we discuss the possible mechanism reproducing the coexistence in a multiple 

shearing predator-prey model. As shown in the previous section, the minimal model with only 

linear processes of ZF and GAM cannot reproduce the coexistence, because none define a 

mixture of states. Therefore some nonlinear dynamics between the predators, i.e. mode 

competition, is necessary. The competitive exclusion principle, which forbids the stable 

coexistence of two or more species making their livings in identical ways, is one of basic 

concepts in ecosystem community [11]. Though there are many candidates to facilitate the 

mode competition, here we examine on which originates from higher order perturbation of 

wave actions [12, 13]. Therefore turbulence mediation is essential in this case. Expanding N 

of Eqs. (7) and (8) in terms of E0 and E, we obtain a following multiple shearing predator-

prey model with mode competition,  
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 where ij (i,j=0,) are nonlinear coupling parameters, which can be estimated from 

calculations of the higher order perturbation of wave action as  
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 where  is a ratio of the spatial bandwidth of the GAM shearing wave packet to that of ZF 

shearing ones, =qr,GAM/qr,ZF. Higher order terms (h.o.t.) in N are dropped to simplify 

calculations.  

 This system represents a generalization of the intuitively appealing predator-prey model to 

the case of multiple shearing fields of different frequencies. A state of ZF and GAM co-

existence appears only when shearing mode competition is addressed, in this case via higher 

order coupling through the turbulence. Our multi-predator/prey system has four nontrivial 

roots (fixed points: (N, E0, E)), i.e. (i) one with no shear flows (a L-mode-like state) (NL, 0, 
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0), (ii) a ZF-only state (N0*NL, E0*NL, 0), (iii) a GAM-only state (N*NL, 0, E*NL), and (iv) a 

newly found state of ZF-GAM coexistence (N*0NL, E0*0NL, E*0NL) .  

 

4. Stability analysis, bistability, and its implementation. 

 

 Here we have investigated stability around the found fixes points in the multiple shearing 

predator-prey model with mode competition, i.e. dynamical system analysis [14]. The model 

exhibits a sequence of transitions between various roots as the driving flux and thus L(R/LT-

R/LT,crit) increases. The precise sequence of states varies with system parameters (i.e. ij). First 

we investigate a case with the following parameters: 00=1.0, =2.0, =0.1, and =1.5, 

(and thus 00->0, >0, and ->0). The other parameters are 0=1.5, 

=1.0, damp=10
-4

, q=1.0, and LD = 1.0∙exp(-q
2
). Figure 1 shows a sequence of transitions 

among ZF-only, GAM-only, and coexisting states with these parameters. Here the vertical 

axis represents the maximum of eigenvalues around corresponding fixed points, and thus the 

positive value shows unstable region, while the 

negative one shows stable. It is found that the 

ZF-only state is stabilized in weak turbulence 

region (L<2.1), the coexisting state is in the 

region 1.9<L<2.7, and the GAM-only state is 

in 2.7<L. This indicates the GAM’s shearing 

proportion  tends to goes up in the region with 

power ramp up above some critical, and 

reaches 1 in some region. Note that this picture 

is different that of usual L-H transition [15], 

because here we don’t care for mean flow 

effects. Interestingly, bi-stability is evident, i.e. 

for some ranges of R/LT-R/LT,crit (here, 

1.9<L<2.2), both ZF-only (or GAM-only 

states) and ZF/GAM coexistence states are 

possible as shown in Fig. 1.  

Fig. 1. Temperature gradient (L) scan of 

maximum eigenvalues  for the various 

equilibrium states. In the region 

1.9<L<2.1, both ZF-only and the 

coexisting state are stable, thus 

establishing bistability. 

Fig. 2. Time evolution of N, E0, E, with 

artificial (a) increasing L(LT
-1

) and (b) 

decreasing L (LT
-1

).  

Fig. 3. Plots of evolution of turbulence 

intensity N versus temperature gradient 

(L) in cases with induced ramp up/down 

of LT
-1

. 
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 Multiple states coexistence in turn 

suggests the origin of the hysteretic 

behavior, discovered during power ramp 

up/down studies. Here we have compared 

cases with artificial increasing and 

decreasing LT
-1

, as seen in Fig. 2. In Fig. 

2(a), as power ramps up, a transition of 

states from the ZF-only to the GAM-only 

state through the coexistence is seen at 

L~2.5, where a bifurcation from the 

coexisting to the GAM-only state is seen in 

Fig. 1. On the other hand, in Fig. 2 (b), as 

power ramps down, the transition from the 

GAM-only state to the ZF-only state is 

found through the coexisting state around 

2.5>L>1.8, which corresponds to the 

region where the coexisting state is 

stabilized in Fig. 1. Now we plot these 

evolutions of turbulence intensity N versus 

L representing temperature gradient LT
-1

 in Fig. 3. We find the hysteretic behavior of 

turbulence intensity N there. Note that we find a criterion that the bistability is established, i.e. 

Therefore the bistability in shear field of low frequency and high frequency ZF 

is due to the different shearing effects.  

 Moreover, bistability in the presence of noise [16] (due ambient turbulence) offers a novel 

and interesting mechanism to explain the bursts and pulsations [3] observed in the turbulence 

field prior to the L-H transition. Fig. 4 shows an example that an artificial small perturbation 

can transfer states with the GAM-only to the ZF-only state. This can somehow explain the 

change of GAM to ZF state observed in DIII-D experiments. Here used parameters were set as 

the bistability of GAM-only and ZF-only is established. In principle, in bistability region, a 

resultant state is determined by a series of initial values or initial conditions. Therefore 

external force can change the equilibrium of the system.  

 Note that we have analytically calculated the stability of the system with the dynamical 

system analysis in any cases of the nonlinear parameters. We have here found that the GAM-

only state or the coexisting state tend to be mostly stabilized in stronger turbulence region, in 

accordance with balances of ZF/GAM between self-suppression terms, i.e. diagonal 

coefficients, and mode competition terms, i.e. off-diagonal coefficients. Some exception that 

the ZF-only state is stabilized in whole turbulence region might occur when GAM’s mode-

competition effect to ZF is relatively weaker than GAM’s self-suppression effect and ZF’s 

mode-competition effect is stronger than ZF’s self-suppression effect. In other words, there 

any energy drive to the GAM energy population can be absorbed into the ZF energy 

population through turbulence mediation, while usually any energy drive to the ZF energy 

population can transfer to the GAM energy population through turbulence mediation 

otherwise.  

 

5. Conclusion and Remarks.  

 We have identified possible states of ZF/GAM/turbulence based on the multiple shearing 

predator-prey model with mode competition. Broadband shearing has its own coherence time 

as well as strength. Therefore we define the shearing ratio , i.e. GAM shearing versus total 

(GAM+ZF) shearing quantities. Based on understandings of the GAM shearing, we have 

Fig.4. Temporal evolution of N, E0 and Ew 

with parameters as a bistability of ZF-only 

and GAM-only states is established. At 

t=500-510, artificial noise affected to 

turbulence field. 
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investigated the ZF/GAM interaction to construct a minimal predator-prey model with 

multiple shearings. The minimal predator-prey model consists of one prey turbulence and two 

predators, i.e. ZF with ~0 and GAM with ~GAM. Since the minimal model cannot identify 

the coexistence of ZF and GAM, thus we consider one mechanism of mode competition via 

coupling higher order wavekinetics. Hereby we have found four states, a L-mode-like, a ZF-

only, a GAM-only, and the coexisting states, as possible fixed points of the model. We have 

examined one case, and have found states and the sequence of progress selected by power 

ramp evolution and parameters. As power increases, the ZF-only state transfers to the GAM-

only state through the coexisting state. We have found that bistability in shearing field is 

possible and thus jumps or transition between GAM and ZF states are possible. There are also 

seen a hysteretic behavior between cases with power ramp up and down, which originates 

from nature of the bistability.  

 Here we have several thoughts for experiments. First of all, fundamentally we should 

observe toroidal mode number n=0 spectrum in the space of kr and  to measure the GAM 

property. Determination of the correlation time shear in  bands as well as energies is 

important to really estimate GAM’s contribution to turbulence. As shown in Ref. [6], we have 

found that different shearing coefficients corresponding to the coherence time between 

GAM/ZF-drift wave packets can be expected. As well, it is useful to map  as functions of 

R/LT-R/LT,crit and r. This parameter can characterize the importance of the GAM as a function 

of power ramp and radial location. 

 The bistable property suggests the possibility if observed strong turbulence pulsations or 

bursts a symptom of bistability in ZF/GAM competition problem. Some moderate intensity of 

periodic pulsation can regulate bistability system to be synchronized to the periodic input 

noise/pulsation in a laser experiments with a bistability system [17, 18]. In turn, interesting 

comparison is “How moderate the pulsation is to reproduce the dithering-like oscillation of 

GAM and ZF?” Hereafter, one interesting question is how we control the intensity of 

pulsation and whether the change of the intensity could regulate the periodicity of ZF and 

GAM. The “noise” here is related to turbulence dynamics. It would be related to turbulence 

intensity and variability, i.e. avalanche interaction with the edge. The most reasonable way to 

handle noise would be to balance driving flux with transport, setting local gradient. So high 

noise burst would correspond to arrival of avalanche at the edge.   

 Another issue regarding the GAM propagation is to map of (kr, ) and then making 

rk / contours. Survey of the group propagation of GAM as well as that of the phase 

propagation must be helpful to understand the GAM nonlocal dynamics. Bicoherence analysis 

can elucidate how the mode competition can be constructed and it might be helpful to expand 

our thoughts for the mode competition mechanism. We wonder if test for the bistability or 

hysteresis in  in power ramp up/down is possible. It is useful to examine possibility of 

evolution of 1/c,turb and (k)GAM crossing over. Assuming edge plasmas, GAM frequency 

goes down as temperature goes down, while turbulence has finite frequency as it approaches 

the edge, therefore the GAM frequency peak can be degenerate with ZF when 

1/c,turb~(k)GAM is satisfied. This can be another reason why the observed GAM is condensed 

at the edge region. Therefore observation of the crossing-over is important to understand the 

edge turbulence/ZF/GAM interplays.  

 To understand the comprehensive property of edge turbulence in terms of L-H transition, we 

need the following further works. First we need expand this to one dimensional model 

involving mean flow shear effects and maybe the GAM propagation. More thorough study of 

competition mechanism is required, i.e. mean flow shear can affect GAM shearing, and ZF 

shear also can affect GAM shear. Still we believe that including higher order expansion of 
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ZF/GAM energy the basic form in terms of self-suppression/mode-competition effects can 

keeps in the first order expansion, except for treatments of dissipations. That is, effective 

damping effects, collision or Landau damping, can be slightly reduced in strong turbulence 

region due to excitation of ZF/GAM energy, which originates from the ZF/GAM shearing 

effects to the ZF/GAM shearings. These processes should be carefully examined in future 

work. Especially, these effects might be important when the crossing-over of turbulence 

decorrelation time and GAM frequency occurs, as discussed above. We need to expand the 

predator model to three predators, including mean flow shear. As denoted above, the present 

portrait of turbulence intensity versus temperature gradient is different from the usual L-H 

transition picture, because here we do not mention the mean flow shearing effect on ZF/GAM 

shearing. Therefore mean flow must be another player in the mode competition figures. 
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