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Abstract. In RFX-mod high current experiments the plasma frequently reaches the Single Helical Axis (SHAX)
state, in which the core electron temperature assumes a helical shape and significant gradients appear. The
plasma magnetic topology is strongly helical in the core while it is almost axisymmetric at the edge, thanks to
the active control of the edge radial field. The weak helical field produced by the plasma profoundly affects the
shape of the equilibrium going from 2D to 3D, therefore three-dimensional tools are being developed for the
description of these states. On one hand the SHEq code, based on a perturbative approach, is used to determine
the magnetic field topology. On the other hand, the VMEC code has been modified for the helical RFP, in order
to describe the SHAX states by using tools developed by the Stellarator community. The effect of three-
dimensional fields on transport is also being actively investigated. The magnetic shear is found to be correlated
with regions with reduced transport: an investigation on the effect of 3D fields on transport mechanisms
underlying such barriers is being performed by adopting several approaches.

1) Introduction

The discovery of Single Helical Axis States (SHAXx) in the reversed field pinch (RFP) [1]
gives a unique opportunity to investigate the physics of three-dimensional fields in
magnetized fusion plasmas.

Thanks to its set of 192 independently controlled active coils [2,3], the RFX-mod experiment
is well equipped to study these effects. In RFX-mod high current experiments, in fact, the
plasma frequently reaches the Single Helical Axis (SHAX) state, in which the core electron
temperature assumes a helical shape and significant T, gradients appear. The SHAX states are
the result of a spontaneous self-organization, which leads the current carrying plasma in a
magnetic configuration with a strongly helical core (with m=1/, n=-7 symmetry) embedded in
an almost axisymmetric boundary. The weak helical field produced by the plasma profoundly
affects the shape of the equilibrium going from 2D to 3D. This paper describes the advances
in the description of such states: Sect. 2 recall the main assumption of the reconstruction
algorithm of the helical equilibrium, based on a perturbative approach. In particular, it is
shown that the q profile is flat in the core and differs from the axi-symmetric one. In Sect. 3
the results obtained of an alternative decription of the equilibrium, based on the VMEC code
are described. While an overview on the progresses on the experimental characterization is
given elsewhere [4,5], Sect. 4 recalls the effects of the helical geometry on transport as
highlighted by means of a Monte Carlo approach and by considering the helical and toroidal
ripple. In Sec. 5 a summary is presented.
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2) Magnetic reconstruction of SHAx states: sop
perturbative approach

Given the observation that the measured non-
axisymmetric magnetic field amounts only to a
few percent of the axisymmetric one, a first
successful description of these states has been
obtained by computing the perturbative solutions
of the force balance equation in toroidal geometry :
with no pressure, performed by means of the asp
NewCombToroidal code (NCT) [6].
The equilibrium magnetic field is considered as a aof
superposition of an axi-symmetric part and a  ~
helical part due to the innermost resonant
nonlinearly saturated resistive kink-tearing mode.
Axi-syimmetric equilibrium. The axi-symmetric
part is obtained by solving the zero-th order force-
free balance equation JoxBy =0, where the By field
is represented in straight field line coordinates
(r,6.¢)

B=VF,(r)yxV8-V¥,(r)xV¢
Fy(r) and ¥y(r) are the toroidal and poloidal
fluxes respectively. Axi-symmetric flux surfaces JE 1 2e12@i74ms | 2ie82@124ms *
are assumed to be non-concentric circles, each L L L
one labelled by its radius r, characterized by a Figure 1) a),d) Poincaré pots for a SHAX and
horizontal shift A(I"). It is assumed that o=Jy By is a DAX case. b) safety factor profile for a SHAx
constant along the surface, but can vary from state (continuous) and .. €) q for a DAx case.
surface to surface: While of) can be in principle ~ ©)f) Thomson Scattering profiles along the

. .. . diameters shown in a) and d)

any function, it is wusually described by an
analytical representation, depending on two free parameters o(r)=26y/a (1 — (r/a)®). The zero-
th order force balance equation is then solved perturbatively and 5 ordinary differential
equations are derived: 2 for the first order field components, 2 for the second order ones and
one for A(r). Boundary conditions for this set of equations are edge measurements of Bgb)
and of A(b), where b is the location of magnetic sensors. The ofr) profile, i.e. the « and 6,
parameters, is then chosen in order to match B y(b) and the toroidal flux.
Helical perturbations. Even when perturbations are present, the total field can be to cast in
the form

B=VFxV3-V¥xVg¢
but F and ¥ are no longer constant on flux surfaces. The first order force-free balance
equation, jxBy+Jpxb;=0 is fourier decomposed and two linear ordinary differential equations
(Newcomb equations) for the fourier coefficients of the " and ¥ functions are obtained

Y(r,9,0) =¥, (r)+ D p™" (™ F(r,8,¢) = F,(r)+ Y f™"(r)e™ ™7

n#0,m n#0,m

Due to the toroidal geometry the equations for each n,m harmonic (/" ,y/") are coupled to
(nm-1) (/""" ") and to (nm+1) (/""" y"""). The details of the derivation of the
equations as well as the solution technique are described in [6]. As far as the latter is
concerned, the procedure is based on determining a base for the space of solutions to the
equations for each » harmonic. The matching to experimental data is performed by
computing, with the pseudo-inverse technique, the linear combination of the base solutions
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that reproduces the Fourier component of each of the four arrays of radial and toroidal
magnetic field measurements.

Magnetic field topology (DAx vs SHAx). These functions have been implemented in the
ORBIT [7] and in the FLiT [8] field line tracing codes. Despite the fact that the helical field is
rather small, the magnetic topology is significantly modified assuming a helical shape in the
plasma core, which is correlated with the thermal content of the column.

Depending on the amplitude of the radial field, two kind of magnetic topology are found. If
the field is below a certain threshold, the magnetic topology displays an island and the
magnetic field is characterized by the presence of two magnetic axes (Double Axis, DAX)
(Figure 1d). For such states a thermal helical structure
winding around the magnetic axis is observed [9],

0.8

characterized by an electron ITB [10] (Figure 1f). At (o)
higher values of the helical magnetic field, the field 0.6 f‘i} y
topology changes, as the axisymmetric O-point coalesces =

with the island X-point [11](Figure la). The former = O4f

island O-point becomes the only magnetic axis, which .

motivates to term Single Helical Axis (SHAX) this kind 0-2f

of QSH state [12]. In SHAX states the region inside the 0.0

ITB [13] spans a significantly bigger volume than in DAx 0.4 -02 00 02 0.4

states (Figure 1c). 0.8 rim), ..
Computation of helical flux surfaces: The SHEq code. ;'.,;.._«.:::i (b)
The electron temperature and density in SHAX states are 0.6F" - ™" vk

constant on flux surfaces created by the m=In=-7 % _
perturbed field. The SHAX equilibria can be modelled as »'5_0.4 ‘:.*.' E
pure Single Helicity states, composed by the = ""';_H. -
superposition of the zero-th order axisymmetric o.zr
equilibrium and of the m=1,n=-7 eigenfunction. The 0.0 . o
perturbed poloidal and torqldal fluxes are: 4 00 02 0.4 0.6 0.8 1.0
Y(ru)=Y,(r)+y" (r)e" F@ru)=F,@)+ " (r)e" o

Figure 2) (a)Electron temperature
measured along a horizontal diameter
of RFX-mod (b) The same data of
frame (a) plotted as a function of
normalized the helical flux.

where u = 6-7¢ is an helical angle. It can shown that the
function

1(ru)=Y-TF =¥, - TF, +y" (r)=7f" (r)e"

is constant on the helical flux surfaces, i.e. that B- Vy is
constant over helical flux surfaces, and their shape can be
determined without field line integration (as in [14]). This analytical representation allows re-
mapping the profiles for diagnostics giving multi-point or multi-chord measurements, such as
electron temperature by the TS diagnostics, electron density and SXR brightnesses.

The q profile of SHAx (and DAx) states and the electron transport barriers. The internal
transport barriers observed in electron temperature profiles are associated with a flattening or
a reversal of the magnetic shear profile of the helical QSH equilibria. This correlation is
observed provided that the safety factor ¢ of the helical surfaces is computed, which differs
from the ¢ profile of the axi-simmetric equilibrium (g,). The ¢ value is computed using the
helical flux function y: if one adopts (,u, @) as a new coordinate system, the magnetic field is
represented by B =VF xVu—-VyxVg¢. Considering the hamiltonian form of the magnetic

field line equations, where ¢ is equivalent to time, u to coordinate, ' to momentum and y is
the hamiltonian, a canonical trasformation to action-angle coordinates can be performed. This
is achieved by computing the action as a loop integral over the constant- y orbit

l ' '
F, = IF(;(,u)du
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The computation of the angle u;, conjugate to F}, is immaterial here: what matters is that in
action-angle variable the trajectories (i.e. the magnetic field lines) are straight lines, and are
characterized by a pitch equal to = dy\dF),. Taking into account the 7-fold twist of the
magnetic axis, one finally finds that g=1/(z, + 7). An example of the ¢ profile for a SHAx
states is shown in Figure 1b. For reference, the axisimmetric q,,; profile is also shown. While
qaxi 18 greater than 1/7 in the core, the ¢ value of all helical surfaces is always lower than 1/7:
equivalently 7 is always greater that 7. The ¢ profile in SHAX states exhibits a maximum and
its slope changes sign, implying the presence of a significant magnetic shear.

The concept of ¢ is useful when analyzing DAx states too, (Figure 1d): the rotational
transform is directly computed with a field line tracing technique, determining the total

poloidal angle around the helical axis after one toroidal transit. For each surface, the
definition is applied with respect to the
the magnetic island, while it is greater
than 1/7, for the other surfaces. If the .
ki St ]

outside the surface, all the flux tubes are %ﬂf; " i K ]
characterized by same value of q. Indeed \ T ]
point, which is a remnant of the axi- a {"f ]
symmetric resonant surface whose qayj 4‘}* . . e
relation between the positions of the ma(q) position (cm)
electron temperature gradient foot and  Figure 3) Position of the ITB vs the q maximum
SHAx states, have been investigated 2nd SHAx states (empty points).
statistically. A set of 55 reproducible
straight lines fitting the TS profiles in separate regions. In both the DAx and SHAx cases the
two locations (Figure 3) are well correlated and coincide within a few cm. For the DAx case
SHAX case this gradient may be on any side of the maximum ¢ surface. This may be due to

' the fact that in the SHAx case the separatrix
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=
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=
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axis it contains: ¢ is less than 1/7 inside 35 Tt
definition is applied considering an axis

. e
the separatrix is the attractor of the X
was exactly 1/7. The experimental 15 20 23 30
the shear reversal of q in both DAX and location for RFX-mod experimental DAx (full points)
shots have been considered. The location of the ITB has been determined by intersections of
the steep gradient is systematically beginning slightly inside the separatrix, while for the

0.08 ' expulsion reduces the level of the magnetic
i chaos. [11].

0.04 I The q profile in visco-resistive MHD

simulations. The presence of a maximum in the

[ q profile is also found in 3D MHD simulations

0.00¢ performed in cylindrical geometry with the

SpeCyl code [15], when the final SHAX state is

—0.041 the result of a transition from a DAXx state.

Helical equilibria are obtained in the code

0.0 0.3 1.0 through the non linear saturation of a single

0 perturbed m =1,n mode. The geometry of the

Figure 4) q profiles corresponding to different SpeCyl simulatiqns and their initial condi.tions
helical equilibria provided by visco-resistive  are such that the inner most resonant mode is the
MHD simulations (SpeCyl code) for m =1 n = —10. The g profile of the nonlinearly
modes with n varying fromn=—11ton=-8. saturated helical state is obtained by applying the
standard definition dy,,(p)/dw,0i(p). The shape of
the ¢ profile depends on the n number of the
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mode (see Figure 4). In particular the n = —8 and n = =9 SHAX equilibria, which are obtained
after the saturation of a non-resonant kink mode (without going through a DAxstate), are
characterized by a monotonic g profile. On the other hand, when the SHAx equilibrium is
reached as a saturation of a resonant resistive kink-tearing mode (as for —10 and for —11
helicities) i.e. after a transition from a DAx to a SHAX topology, the corresponding q profile
takes a peaked shape.

3) Magnetic

2.0

reconstruction of 15p e .
SHAX states: VMEC U e 5 LS
for the helical RFP 1or

br(a)

br(a)

The helical states have

also been described by the J At
VMEC [16] code.
Olania A sulnld I0anan. .| 0.0

Differently from tokamaks -
0 3 6 9 1215 18 21 24 0 3 6 9 121518 21 24

and stellarators, the RFP - n n
requires the poloidal flux mesTy
as a surface label, due to & £
E a0t S

the reversal of the edge — VMEC—Extender =

. 20F ZNCT @
toroidal field, and 0
therefore the VMEC code 00 01 02 03 04 05 00 01 02 03 04 05
has been modified [17,18]. r (m) r (m)

At present, the code runs Figure S5) comparison between magnetic fluctuations spectra from
in fixed boundary mode experimental data and from VMEC:a) m=1 and b) m=0 radial field harmonic
and the toroidal spectra ; ¢)m=1 and d) m=0 radial field inside the plasma

periodicity number (Np) is

set equal to 7, identical to the periodicity of the SHAX state. Differently from Stellarators and
tokamaks this parameters is not set by the structure of the device but by the plasma. The shape
of the surfaces is well represented by 9 poloidal harmonics and 6 toroidal harmonics. The
experimental measurement of the toroidal flux at the LCMS is also set as a constraint.
Differently from NCT, where the parallel axi-symmetric current profile o(7) needs to be
defined, VMEC requires the g(p) value for each flux surface. Finally, a guess for the
displacement of the magnetic axis needs to be provided: this parameter is not a constraint but
has an impact on the convergence. The code then computes the total plasma current, the shape
of the surfaces and all the magnetic field and current density components along these
surfaces. At present VMEC is not run to fit directly external measurements but uses the q
profile computed by the SHEq code. Moreover NCT is used to define the shape of the LCMS,
by computing the A, 7 and the A, shifts (Ao, shift are neglected in SHEq and therefore set to
zero in VMEC). Given all of these inputs, VMEC computes the plasma current and the shapes
of the helical magnetic surfaces which are in reasonable agreement with SHEq.

As a step towards a direct matching of the reconstructed equilibrium with the experimental
measurements, the radial field due to the plasma currents only is computed by means of the
EXTENDER code [19]. We neglect at present the fields produced by the currents flowing into
the external conductors: the comparison of the radial harmonics (m=0 and m=1) is shown in
Figure 5a,b. Given the choice of Nj=7, only the 7, 14 and 21 harmonics can be compared to
the experimental spectrum. The VMEC predicted amplitude is comparable to the
experimental m=/ harmonic. (Work is in progress in order to include the contribution of
external currents, which requires taking into account the attenuation of the field due to the
shell). We also compared the radial field inside the plasma: in this case the EXTENDER code
computes the whole field, thanks to the virtual casing principle [19]. In order to ease the
comparison, the VMEC fields are computed on a set of equally spaced points in the axi-
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symmetric flux coordinates. In this way their Fourier transform is directly comparable to the
eigenfunction profiles (see Figure 5c,d). The Newcomb approach for the first-order
perturbation of the equilibrium in NCT assumes that a thin helical current density layer
develops around the axi-symmetric resonant surface and a discontinuity in the first derivative
of the radial field occurs. Such an assumption is not done in VMEC and the radial field
derivative is not discontinuous.

Stability of helical equilibria. Though the helical states observed in RFX-mod last for several
energy confinement times [20], temporary back transitions through reconnection events lead
to a more chaotic, lower confinement state [21,22]. This at the moment prevents the helical
equilibrium from being fully stationary. Numerically the stability of helical states has been
addressed by means of MHD codes (3D but in cylindrical geometry) showing the importance
of dissipation processes linked to both resistivity and viscosity, as well as the importance of
the ratio between dominant and secondary modes [23,24] in non linear regimes.

As these analysis are quite demanding we attempted to address ideal linear stability of helical
equilibria with the Terpsichore code [25], looking for periodicity breaking modes, i.e. modes
that have a helicity close to the one corresponding to the dominant mode. Considering kink
instabilities driven by parallel current, two examples have been considered with small
differences in the safety factor profile: one case with a small reversed shear and one with a
null shear in the helical core. As a preliminary result, it has been found that the helical states
with monotonic q profile are significantly more unstable than the case with reversed shear,
where the periodicity breaking modes are dominantly the m=I,n=8 coupled with the
m=2,n=15 (both marginally resonant) components. As a direct extension of these results, a
parametric study is presently underway to assess the role of the reversed shear region and of
the resonances (also double resonances in the case of reversed magnetic shear) associated to
the instability of periodicity breaking modes.

4) Effects of 3d geometry on transport in the helical RFP

Not only 3D fields significantly affect magnetic topology, but also play an important role in
determining transport. Low confinement, globally axi-symmetric states, characterized by the
simultaneous presence of many resonant modes, are in fact dominated by chaotic transport,
but not far above the stochastic threshold. The resulting transport is subdiffusive, and cannot
be described by Rechester-Rosenbluth diffusion [26]. It is found that whereas passing
particles explore the stochastic field, the trapped particles experience normal neoclassical
diffusion.

The presence of transport barriers in SHAX states near the location where the magnetic shear
changes implies that magnetic chaos does not dominate transport.

Transport coefficients in helical states. Neoclassical effects and/or micro-turbulence might
be ruling transport in the helical core and across the gradient of the internal barriers, even
though the residual magnetic chaos could still play a role. An overview on the investigations
on anomalous transport is presented elsewhere [5], we focus here on the effect of the helical
geometry and of the residual magnetic chaos due to global tearing instabilities, whose
eigenfunctions are well described by the NCT code.

Several approaches to study transport in helical states are being used: on the one hand volume
averaged particle transport coefficients across helical surfaces are estimated numerically by a
mono-energetic test particle approach [27]. This approach allows taking into account both the
drifts of particles trajectories and the effect of the residual magnetic chaos. Work is in
progress in order to implement in the ORBIT code also an electric field perpendicular to the
helical surfaces. The numerical simulations only consider mono-energetic particles, subject to
energy conserving collisions, in thermal equilibrium with the plasma background. Even
though at higher electron temperatures (i.e. lower collisionalities) a global diffusion
coefficient could not be defined, the average diffusion coefficient estimated with the
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algorithm described in [27], do not significantly differ from the average of the local diffusion
coefficients (estimated by computing Ar’/t with t chosen so that particles are still close to their
initial deposition position, but large enough in order to observe the linear increase of Ar).
A complementary approach is based on the DKES code [28], which is based on VMEC
equilibria, in order to estimate the full matrix of the
0.20 T local neoclassical transport coefficients, even though
0150 /' the effect of the residual magnetic chaos is not
] included. This approach is based on the assumption
0.10 that transport can be described by a local approach:
this assumption needs to be verified for RFX-mod
experimental conditions.
As far as the Monte Carlo approach is concerned, in
0.05 R —— the ideal situation where no secondary modes are
00 02 04 06 08 10 : . .
s considered, at the density and temperature typical of
RFX-mod, ORBIT gives D~0.8 m?*s and D,~0.06
Figure 6) Radial profiles of the helical m?*/s, averaged over the whole helical domain. If
& and of the toroidal ripple & fora RFX-  regjdyal chaos is taken into account D; slightly
mod SHAX state. . 2
increases to ~1 m°/s, but a greater effect can be found
on the electron diffusion (due to their small mass) and
D, can become of the order of 1-2 m%/s. The different effect on the two species makes the
implementation of a radial electric field necessary in order to ensure the ambipolarity
constraint.
Helical magnetic ripple in SHAx states. The previous Monte Carlo results can be analyzed
considering the magnetic field ripple profile, as it is usual in Stellarators [29].
The strong deviations from axi-symmetry of the core magnetic surfaces can, in fact, be
quantified by means of the radial functions g,(s) and &(s), the helical and the toroidal ripple
respectively [29]. The radial dependences of these profiles are shown in Figure 6: g is
dominant in the central region (g, =2-3 &) and close to zero at the edge (g, =0.1-0.2 g). Thus,
while the core is strongly helically deformed, the outer region almost preserves the typical
properties of a quasi axisymmetric configuration. In regions where gy, is high, particles with
low parallel velocity may become helically trapped (superbananas), thus representing a
significant source of losses due to their non-zero bounce averaged radial drift [29]. The
trapped particle fraction in the helical state increases by about 10% compared to a standard
axisymmetric RFP [30].
Neoclassical effects, and in particular super-bananas, which affects un-optimized Stellarators
at low collisionality, might not be a significant issue for the helical RFP. The ORBIT code
shows that when trapped particles drift out of the helical core, they reach a region (r/a ~ 0.6)
where e¢h decreases and they become almost passing without being lost, at least at low
collisionality. MonteCarlo transport simulations by ORBIT confirm that the ion diffusion
coefficient (D;) - volume-averaged over the helical domain - versus collisionality v does not
show the //vregime typical of Stellarators.

€€

0.05}

0.00F

5) Summary

The SHAX states in the RFP share with the Stellarators the same helical nature, even though
they rely on currents flowing into the plasma. The helical field produced by the plasma is
relatively weak, and in fact it is relatively well represented by the perturbative approach. The
basic ansatz behind this approach is the assumption that the axi-symmetric parallel current
profile is a monotonically decreasing function of the radius with two parameters adjusted to
match external magnetic measurements, and that the helical currents only flow in a thin layer
around the resonant layer. On the other hand, the VMEC code computes the parallel current
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(for the helical state) for a given ¢ profile: at present, if the same ¢ profile predicted by the
perturbative approach is used, VMEC converge to an equilibrium which is similar to the
perturbative one. Work is in progress in order to investigate if the ¢ profile can be represented
by few relevant parameters in order to infer its shape based on external measurements only.
Work is also in progress in order to investigate the long term sustainment of the RFP reversal:
an overview of recent progress on this subject is described elsewhere [5]. The vanishing of the
magnetic shear is associated to an electron transport barrier: this indicates that magnetic chaos
is no longer the dominant transport mechanism. Neoclassical effects on particle transport do
not seem as critical in the helical RFP (characterized by rather high : value) as in the
Stellarator, due to the small drift of trapped particles (as computed by the ORBIT code) and the
fact that helical core is actually surrounded by an axisymmetric configuration.

This contract was supported by the Euratom Communities under the contract of Association
between Euratom/ENEA. The views and opinions expressed herein do not necessarily reflect
those of the European Commission.
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