Advanced SFR Concept Design Studies at KAERI

International Conference on Fast Reactors and Related Fuel Cycles (FR09), Kyoto, Japan 7 December 2009

Yeong-il KIM and Dohee HAHN

KAERI Research Institute

Outline

Long-term Plan for SFR and Pyroprocess

KAERI Research Institute

Technology Goals and R&D Activities

KALIMER-600 System

Key Design Features

600MWe, Pool-type Reactor
Fuel : U-TRU-Zr
Core I/O Temp : 390/545 °C
DHR System : PDRC
2-loop IHTS/SGS
Net Efficiency : 39.4%

2-D Seismic Bearing

Design Studies of Advanced Concept

Advanced Concept (1200MWe)

Breakeven Core Design

Core Design Parameters	KALIMER-600	Advanced SFR
Power (MWe)	600	1,200
Core height (cm)	94	80
No. of fuel regions	3	2
Fuel rod outer diameter (mm)	9.0	8.7
Clad thickness (IC/MC/OC, mm)	1.02/0.72/0.59	0.6
Cycle length (EFPM)	18	
Charged TRU enrichment (IC/MC/OC, wt%)	14.94	13.16/ - /16.79
Average discharge burnup (MWD/kgHM)	80.4	100.1
Fissile Pu Loading (ton/GWe)	6.23	5.07
Sodium void reactivity (\$)	7.51	7.25
Axial Moderator Layer (cm)	14.9cm Graphite	None

TRU Burner Core Design

Core Design Parameters	TRU Burner
Power (MWe)	600
Core height (cm)	89
No. of fuel regions	3
Fuel rod outer diameter (mm)	7.0
Clad thickness (IC/MC/OC, mm)	1.01/0.93/0.73
Cycle length (EFPD)	332
Charged TRU enrichment (wt%)	30.0
Conversion ratio (fissile/TRU)	0.74/0.57
Burnup reactivity swing (pcm)	3,496
Average discharge burnup (MWD/kgHM)	127.9
Sodium void reactivity (EOEC, \$)	7.50

Heat Transport System Design

Improvement of safety and economics from KALIMER-600

□ Consideration of Economics

- Reduction of construction costs by increasing IHTS capacity
- -600MWe/Loop

□ Safety Improvement

- Elimination of sodium-water reaction by Double wall tube steam generator
- Secure redundancy and diversity by adopting
 - Passive RHRS(PDRC)
 - Active RHRS(IRACS)

advanced pool type SFR

PDRC Design Features

System Design Features

- Elimination of active components
- Operation by natural circulation
- No operator action
- Major components
 - AHX, DHX, expansion vessel and piping

Design Improvement

- Prevention of sodium freezing in PDRC loop
 - Partial contact of DHX with sodium
 - Enhancement of local convection by DHX skirt

PDRC design concept

Mechanical Structure System

□ Cost competitive NSSS

- Increasing the reactor capacity
- Minimizing number of loops
- Simplifying systems & components
- New ISI, LBB

□ Structural Design

- Reactor vessel size minimization
- 2 loop layouts with large size equipments
- Simplified IHTS piping with large piping diameters (135m/loop)
- Integrated components (ISI)
- LBB on RV & IHTS Piping

Given Work

- Structural design evaluation
- FR09, Kyoto, 7-11 December 2009 14

Korea Atomic Energy **KAERI** Research Institute

PDRC Experiment

Objectives

- Assessment of initial & long term cooling capability by natural circulation
- Verification of design concept
- Establishment of database for validating system analysis code

□ Test scope

- Confirmation of basic design issues
 - Verification of heat removal capability by transient mode
 - Prevention of sodium solidification
 - Countermeasures for a postulated RV fracture
- Dynamic simulation of natural circulation cool-down during key design basis events

Layout of Experimental Facility

S-CO₂ Brayton Cycle System

Objectives

- Enhancement of plant economics
- Elimination of SWR

□ Status

- Establishment of system design concept coupled to advanced SFR
- Development of MMS-LMR code for evaluation of system control logic
- Performance test of air foil type
 PCHE

Given Future Work

- Evaluation of system transients

S-CO₂ Brayton cycle for SFR

Na-CO₂ Interaction Test

Objective

– Investigation of Na-CO₂ interaction and its kinetic features

□ Surface reaction tests with wellmanipulated conditions

- Confirmation of temperature dependency on reaction mechanism
- Estimation of kinetic parameters

Future Work

- Validation of reaction models

Na-CO₂ reaction test apparatus

Under-sodium Viewing Technology

 Development of ultrasonic waveguide sensor for under-sodium viewing

DExperimental facility

- Manufacture of 10m long waveguide sensor module and feasibility test in water
 - 2mm resolution
- Fabrication of double rotating scanner w/ radiation beam steering function
- Development of C-scan program (Under-Sodium MultiVIEW)

□ Future Work

- Setup of mockup facility
- Performance test in water and sodium

Ultrasonic Waveguide Sensor module

Double rotating scanner

Under-Sodium MultiVIEW

Metal Fuel Technology

□ Metal Fuel

- Selected for the Advanced SFR
- To meet requirements of Gen IV

□ Practicality

- Requires Radiation shielded environment
- Fuel fabrication technology
- FMS cladding alloys
- Advanced fuel casting system
 - Induction furnace
 - Gravity casting

Future Work

20

- Fuel irradiation test in HANARO

Fuel casting system

Creep Strain Rate of New Cladding Alloys

Korea Atomic Energy **KAERI** Research Institute

Validation of SFR Neutronics Code

Objectives

 Validation of reactor core analysis code (K-CORE) with critical experiments

Status

- Evaluation of BFS critical assemblies by using up-to-date nuclear data files, ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, JENDL-AC2008
- Calculation results for the BFS-73-1, BFS-75-1, BFS-55-1

Given Future Work

- Sensitivity and Uncertainty evaluation code
- Development of adjusted multi-group cross section library

Sodium void reactivity

Structural Integrity Evaluation

Objectives

- Development of SIE ASME-NH
 Computer Program Compliance to
 ASME-NH Rules for Elevated
 Temperature Design
- Engineering Cost Reduction by Fast and Accurate Structural Integrity Evaluations

Status

- Complete SIE ASME-NH 1.0 Version with Design Material DB
- -Easy user interface program

Given Future Work

- Update Design Material DB
- Design Procedures for Inelastic Analysis Method

Procedures for ETD by SIE ASME-NH

Safety Analysis Code

Objectives

- To have a flexible modeling capability and enhanced accuracy for the safety evaluation of a SFR

□ Status

- Simulation of SHRT tests for the validation of MARS-LMR code
- Simulation of Natural Circulation Test of Phenix EOL tests for code evaluation
- Analysis of accidents for KALIMER

Future Work

- Simulation of KAERI Experiments
- Accident analysis of Demonstration Reactor of Korea

Sodium Technology

Performance test of SWR detection system

Wastage characteristics

Summary

□ Advanced SFR to satisfy the Gen IV technology goals

 sustainability, safety and reliability, economics, proliferation resistance, and physical protection

□ Advanced concept design studies from KALIMER-600

- Breakeven .vs. Burner
- Heat transfer system
- Mechanical Design

□ Various R&D activities

- To support the development of Advanced SFR concepts
- PDRC Experiments
- SCO2 cycle studies
- Under-sodium viewing
- Metal Fuel
- Development and Validation of Analysis codes
 - Neutronics, Structure integrity evaluation, Safety, Performance
- Sodium technology

