IAEA-CN-164-18KS

Research and Development of Supercritical-pressure light water cooled reactors, Super LWR and Super FR

Yoshiaki Oka

Professor

Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, Japan

IAEA International Conference on Opportunities and Challenges for Water Cooled Reactor in the 21st Century, Vienna, Austria, October 27-30, 2009

Presentation includes the results of "Research and Development of the Super Fast Reactor" entrusted to the University of Tokyo by the Ministry of Education, Culture, Sports, Science at Technology of Japan (MEXT).

Outline

- 1. Introduction
- 2. Fuel and core design
- 3. Safety
- 4. Fast reactor
- 5. R&D

Change of density and specific heat of water with temperature at supercritical pressure (25 MPa)

Super LWR

- Super LWR: Supercritical-pressure light water cooled and moderated reactor developed at Univ. of Tokyo
- Once-through direct cycle thermal reactor

- Pressure: 25 MPa
- Inlet: 280°C
- Outlet (average): 500°C
- Flow rate: 1/8 of BWR

Evolution of boilers

Supercritical fossil-fired power plants

Once-through boilers Number of units are larger than that of LWRs. Proven technologies; turbines, pumps, piping etc. USA; developed in 1950's, Largest unit is 1300MWe. Japan; deployed in 1960's and constantly improved. Many plants in Russia and Europe.

Compact SC turbine (700MWe,31.0MPa,566°C)

Features of Super LWR/Super

- Compact & simple plant systems; Capital cost reduction
 - No steam/water separation and no SGs: Coolant enthalpy inside CV is small.
 - High specific enthalpy & low flow rate: Compact components
- High temperature & thermal efficiency (500C, ~ 44%)
- Utilize LWR and Supercritical FPP technologies:
 Temperatures of major components below the experience of the plane ystem between thermal and fast of the supercritical FPP super LWR/ BWR
 PWR (once-through boiler) Super FR

Fuel and core design

Core design criteria

Thermal design criteria

- Maximum linear heat generation rate (MLHGR) at rated power ≤ 39kW/m
- Maximum cladding surface temperature at rated power ≤ 650C for Stainless Steel cladding
- Moderator temperature in water rods ≤ 384C (pseudo critical temperature at 25MPa)

Neutronic design criteria

- Positive water density reactivity coefficient (negative void reactivity coefficient)
- Core shutdown margin $\ge 1.0\%\Delta K/K$

Fuel assembly (example)

Design requirements	-> Solution	
Low flow rate per unit power (< 1/8 of LWR) due to large ⊿T of once-through system	Narrow gap between fuel rods to keep high mass flux	
Thermal spectrum core	Many/Large water rods	
Moderator temperature below pseudo-critical	Insulation of water rod wall	
Reduction of thermal stress in water rod wall		
Uniform moderation	Uniform fuel rod arrangement	
Control rod guide tube UO_2 fuel rod $UO_2 + Gd_2O_3$ fuel rod Water rod	Stainless Steel ZrO ₂ (10) Xamei, et al., ICAPP'05, Paper 5527	
	10	

Fuel enrichment

•Fuel enrichment is divided into two regions to prevent top axial power peak

Average fuel enrichment 6.11wt%

Coolant flow scheme

Flow directions

	Coolant	Moderator
Inner FA	Upward	Downward
Outer FA	Downward	Downward

To keep high average coolant outlet temperature

3-D N-T Coupled Core Calculation

- T-H calculation based on single channel model
- Neutronic calculation; SRAC

Core consists of homogenized fuel elements

Fuel load and reload pattern

■120 FAs of 1st, 2nd and 3rd cycle fuels and one 4th cycle FA

 3rd cycle FAs which have lowest reactivity are loaded at the peripheral region of the core to reduce the neutron leakage

The low leakage core with high outlet temperature is made possible by downward flow cooling in peripheral FAs

Coolant flow rate distribution

•Flow rate to each FA is adjusted by an inlet orifice

•48 out of 121FAs are cooled with descending flow

Relative coolant flow distribution (1/4 core)

Control rod patterns

•X : withdrawn rate (X/40) Blank box : complete withdrawal (X=40)

•At the EOC, some CRs are slightly inserted to prevent a high axial power peak near the top of the core

MLHGR and MCST

MLHGR and MCST are kept below 39kW/m and 650C throughout a cycle.

Thermal design criteria are satisfied

Water density reactivity coefficient and Shutdown margin

Positive water density
 reactivity coefficient (Negative void reactivity coefficient)

Shutdown margin is 1.27 %dk/k

K/ K/ (g/ cc)) reactivity 0.1 7 0GWd/t coefficient 15GWd/t 45GWd/t Water 0.0 0.2 0.4 0.6 0.8 1.0 Water density (g/cc)

•One rod stuck

Cold and clean core

Neutronic design criteria are satisfied

Super LWR characteristics summary

Core	Super LWR	
Core pressure [MPa]	25	
Core thermal/electrical power [MW]	2744/1200	
Coolant inlet/outlet temperature [C]	280/500	
Thermal efficiency [%]	43.8	
Core flow rate [kg/s]	1418	
Number of all FA/FA with descending flow cooling	121/48	
Fuel enrichment bottom/top/average [wt%]	6.2/5.9/6.11	
Active height/equivalent diameter [m]	4.2/3.73	
FA average discharged burnup [GWd/t]	45	
MLHGR/ALHGR [kW/m]	38.9/18.0	
Average power density [kW/I]	59.9	
Fuel rod diameter/Cladding thickness (material) [mm]	10.2/0.63 (Stainless Steel)	
Thermal insulation thickness (material) [mm]	2.0 (ZrO ₂)	

Sub-channel analysis coupled with 3D core calculation

Reconstruction of pin power distributions

Statistical thermal design

 Taking uncertainties into evaluation of peak cladding temperature

>Monte Carlo statistical procedure

Safety

Depressurization induces core coolant flow of the once-through cycle reactor

Once-through system \Rightarrow Coolant flow induced in the core Large water inventory of Top dome \Rightarrow In-vessel accumulator Negative void reactivity \Rightarrow Power decreasing

Safety principle of Super LWR

 Keeping coolant inventory is not suitable due to no water level and large density change.

Plant and safety system

Abnormal levels and actuations

Flow rate low (\Leftrightarrow Coolant flow from cold-leg) Level 1 (90%)* **Reactor scram** Level 2 (20%)* AFS **ADS/LPCI** Level 3 (6%)* **Pressure high (\LeftrightarrowCoolant outlet at hot-leg)** Level 1 (26.0 MPa) Reactor scram Level 2 (26.2 MPa) SRV **Pressure low (⇔Valve opening, LOCA)** Level 1 (24.0 MPa) Reactor scram Level 2 (23.5 MPa) ADS/LPCI

*100% corresponds rated flow rate

Safety system design

Capacity: AFS LPCI/RHR SRV/ADS

TD 3 units: 50kg/s/unit (4%)* at 25MPa MD 3 units: 300kg/s/unit (25%)* at 1MPa 8 units: 240kg/s/unit (20%)* at 25MPa

Configuration:

*100% corresponds to rated flow rate

Water rods mitigate loss-of-flow events.

Under loss-of-flow condition:

Heat conduction to water rods increases. \rightarrow "Heat sink" effect Water rods supply their inventory to fuel channels due to thermal expansion. \rightarrow "Water source" effect

Alternative action is not necessary under ATWS conditions (Super LWR)

Analysis results for ATWS events without an alternative action

Good inherent safety characteristics of Super LWR

Why ATWS is mild?

1. Small power increase by valve closure.

- flow stagnation mitigates density increase
- no void collapse
- 2. Power decreases with core flow rate due to density feedback.

Good ATWS behavior without alternative action inserting negative reactivity

Summary of safety analysis results

Transients	Accidents	
1. Partial loss of reactor coolant flow	1. Total loss of reactor coolant	
2. Loss of offsite power	flow	
3. Loss of turbine load	2. Reactor coolant pump seizure	
4. Isolation of main steam line	3. CR ejection at full power	
5. Pressure control system failure	4. CR ejection at hot standby	
6. Loss of feedwater heating	5. Large LOCA	
7. Inadvertent startup of AFS	6. Small LOCA	
8. Reactor coolant flow control system failure		
9. Uncontrolled CR withdrawal at normal operation		
10. Uncontrolled CR withdrawal at startup	3	

ΔMSCT for abnormal events

Summary of safety characteristics of Super LWR

- Core cooling by depressurization
- Top dome and water rods serve as an "invessel accumulator"
- Loss of flow mitigated by water rods
- Short period of high cladding temperature at transients
- Mild behavior at transients, accidents and ATWS
- Simple safety principle (keeping flow rate) due to once-through cooling cycle

Super fast reactor

Tight fuel lattice Supercritical-pressure light water cooled fast reactor Same plant system as Super LWR

Plant system of Super LWR and Super FR

Advantages of Super Fast Reactor

- Low reactor coolant flow rate due to high enthalpy rise High head pumps of the once-through direct cycle plant
- Compatible with tight fuel lattice core of Super FR, a light water cooled fast reactor
- No pumping power increase and instability problems of high conversion LWR
- Same plant system as Super LWR, the thermal reactor Fast reactors have higher power densities than thermal reactors due to no moderator necessary.
- Making capital cost of Super FR lower than LWRs (Capital cost; Super FR< Super LWR< LWRs)</p>

R&D of Super Fast Reactor

University of Tokyo, JAEA, Kyusyu Univ. and TEPCO entrusted by MEXT as one of the Japanese NERI, 5 years, Dec. 2005-March 2010

Fuel and Core (example)

- MOX fuel with SS cladding (Fuel rod analysis)
- Core design: 3-D N-TH coupled core burn-up calculation, subchannel analysis

Core Structure and Plant Control and Safety

(700MWe)	Core1 Core 2			
Fuel				
Fuel (Seed/Blanket)	MOX/dep.UO ₂			
Fuel pellet density	95%TD			
Rod OD[mm]] 7.0			
Pitch/ OD	1.16	1.19		
Cladding Material	SUS304			
Thickness [mm]	0.43	0.4		
Effective heating length [cm]	300	200		
Core				
No. of seed fuel assemblies	126	162		
No. of blanket fuel assemblies	73			
Pitch of FA	14.2	11.6		

RPV and the coolant flow

Thermal hydraulic experiments

Kyusyu University ;HCFC22 (Freon)

- (1) single tube and 7-rod bundle
- (2) critical heat flux near critical pressure
- (3) critical flow and condensation

JAEA Naka-lab; Supercritical Water

42

Heater rods and spacers

Single rod 7-rod bundle

Experimental results; HCFC22(Freon)

Grid spacer effect on heat transfer coefficients and critical heat flux

Need for Developing High Creep Strength Clad

- Max. stress on clad at peak T (700-750°C): 70-100MPa
 - Exceed creep strength of SS for LWR (SUS316L)
 - Advanced SS for LMFBR (PNC1520) almost satisfies the requirement but SCC susceptibility, corrosion and neutron absorption properties need to be improved
- High creep strength clad needs to be developed for Super FR

Developed Good Thermal Insulator Yttria stabilzed zirconia (YSZ)

- Large ΔT (~250°C)
- Thermal insulator is required for:
 - reduction of thermal stress
 - maintaining coolant temperature

~1/20 of Zirconia

45

Elution of structural material in SC water

Experimental devices

Elution decreases with temperature (at 25 MPa)

	Absolute value		Relative value	
	(g / m^2)		(Normalized at 300 °C)	
	Deaerated	200 ppb	Deaerated	200 ppb
		O_2		O_2
300 °C	0.203	0.102	1.0	1.0
400 °C	0.0098	0.0085	0.048	0.083
450 °C	0.0045	0.0045	0.022	0.045
550 °C	< 0.002	0.0062	< 0.01	0.060

Elution depends on O₂

SCWR R&D in the world

- Japan: University of Tokyo; Super LWR concept (since 1989), Super FR R&D (2005-2010). Toshiba; SCPR R&D, Consortium for GIF R&D
- China; Shanghai JTU (8 organizations) SCWR R&D (2007-2012), CGNPC announced the plan of constructing an experimental SCWR from 2016.
- EU; HPLWR phase 1 (FZK, 2000-2), phase 2 (FZK, 10 organizations of 8 countries 2006-9), planning of phase 3
- Canada: pressure tube type SCWR R&D : NSERC/NRCan/AECL-Universities program
- Korea: thermal hydraulics (KEARI)
- Russia: SC thermal hydraulic loops of IPPE, WS at NIKIET in 2008
- USA: TH and materials at Univ. Wisconsin and Univ. Michigan (finished)
- GIF SCWR OECD/NEA (Canada, EU, Japan and other countries) phase 2
- IAEA: CRP of supercritical thermal hydraulics

SCR symposiums; 1st and 2nd at University of Tokyo in 2000 and 2003, 3rd at Shanghai JTU in 2007 and 4th in Heidelberg in 2009

47

Thank you

Control and start up

Plant control system

Sliding Pressure Startup System

Fig.18 Sliding pressure fossil fired power plant

Sliding pressure supercritical water-cooled reactor

Nuclear heating starts at subcritical pressure.

Water separator is installed on a bypass line.

Calculation Model for Sliding Pressure Startup

Sliding Pressure Startup Procedure

(BI) BEEDINT HURMAN BEERE BEE

Pressurization phase

- Sliding pressure startup system (nuclear heating starts at subcritical pressure)
- Clad temperature increase in pressurization phase is due to BT
- Power / flow region is limited by CHF
- CHF may be increased by grid spacers

Linear Stability Analysis (for Supercritical Pressure)

Thermal-Hydraulic Stability (Supercritical pressure) Coupled Neutronic Thermal-Hydraulic Stability (Supercritical pressure)

Decay Ratio Map for Coupled Neutronic Thermal-hydraulic Stability

Decay ratio increases with power to flow rate ratio.

Stability Analysis during Sliding-Pressure Startup

- Coupled neutronic thermal-hydraulic stability analysis
- Thermal-hydraulic stability analysis
- Thermal-hydraulic analysis
- Sliding pressure startup procedures

Sliding pressure startup curve

(Thermal criteria only)

Sliding pressure startup curve

(Both Thermal and Stability criteria)

Scope of studies and Computer codes

1.Fuel and core

Single channel thermal hydraulics (SPROD), 3D coupled core neutronic/thermal-hydraulic (SRAC-SPROD), Coupled sub-channel analysis, Statistical thermal design method, Fuel rod behavior (FEMAXI-6), Data base of heat transfer coefficients of supercritical water

- 2. Plant system; Plant heat balance and thermal efficiency
- 3. Plant control
- Safety; Transient and accident analysis at supercritical-and subcritical pressure, ATWS analysis, LOCA analysis (SCRELA)
- 5. Start-up (sliding-pressure and constant-pressure)
- 6. Stability (TH and core stabilities at supercritical and subcritical-pressure)
- 7. Probabilistic safety assessment

Economic potential

Comparison of containments