

Utility Perspective on Future of Water Cooled Reactors

IAEA

Atoms for Peace

Michael Baron-USA October 29, 2009

Overview

- ✓ Existing US Nuclear Fleet
- ✓ Existing Exelon Nuclear Fleet
- ✓ Nuclear Renaissance US
- ✓ Licensing Process US
- ✓ SMART Design/Construction

Existing US Nuclear Fleet

October 29, 2009

Location of Existing US Nuclear Fleet

US Existing Nuclear Fleet

- ✓ Nuclear energy provides almost 20 percent of the United States' electricity and is its No. 1 source of emission-free electricity.
- ✓ **Percent of worldwide electricity:** 14% or 2,601 billion kilowatt-hours (bkWh) in 2008.
- ✓ Number of operating reactors: 104
 - (35 boiling water reactors, 69 pressurized water reactors)
- 14 BWR plants have one reactor; nine have two reactors; one has three reactors
- ✓ 15 PWR plants have one reactor; 24 have two reactors; two have three reactors
- ✓ **Companies licensed to operate nuclear reactors:** 32
- ✓ Number of states with operating reactors : 31
- ✓ Longest Operating Period Between Refueling: LaSalle 1 (Illinois); 739 days; February 2006

Existing Fleet Performance Data Analysis

- Performance benchmarking data parameters (Institute of Nuclear Power Operations (INPO) Index):
 - Industrial Safety Accident Rate (ISAR)
 - Collective Radiation Exposure (CRE)
 - Total Scrams
 - Composite Safety System Performance Unavailability Indicator (SSPI)
 - Capacity Factor
 - Forced Loss Rate (FLR)
 - Refueling Outage Duration
 - Refueling Outage Cost
 - Production Cost (\$/MWh)
 - Total Generating Cost (\$/MWh)
 - Total Staffing

Existing Fleet Performance Data Analysis

✓ Industry Indicators:

- INPO Index trending upward for the past 10 years
- FLR dropped from 3.4% in 1998 to 1.3% through 1Q07
- Since 1998, BWR and PWR Collective Radiation Exposure (CRE) decreased by about 30%
- Industrial Safety Accident Rate (ISAR) has steadily improved
- Automatic scrams remained relative unchanged
- Fuel reliability trending negatively

Existing Exelon Nuclear Fleet

October 29, 2009

Exelon - Background

\checkmark One of the largest electric utilities in the U.S.

- Distributes
 - Electricity to approximately 5.2 million customers primarily in Illinois and Pennsylvania
 - Gas to 480,000 customers primarily in the Philadelphia area
- ✓ Generation subsidiary
 - One of the largest electricity generation portfolios in the U.S., with a nationwide reach and strong positions in the Midwest and Mid-Atlantic
 - Operates the largest nuclear fleet in the U.S.
 - o Third largest commercial nuclear fleet in the world
 - 17 nuclear generating units Industry performance leader

Who we are... Multi-Regional Generation Company

17 nuclear units at 10 sites in 3 states 16,856 MW capacity owned – the largest nuclear fleet in the US; 3rd largest nuclear fleet worldwide

Exelon Nuclear Fleet Overview

Plant, Location	Units	Туре	Vendor	Net Annual Mean Rating MW 2008	License Expiration / Status	Ownership
Braidwood, IL	2	PWR	W	1178, 1152	2026, 2027	100%
Byron, IL	2	PWR	W	1164, 1136	2024, 2026	100%
Clinton, IL	1	BWR	GE	1043	2026	100%
Dresden, IL	2	BWR	GE	867, 867	Renewed: 2029, 2031	100%
LaSalle, IL	2	BWR	GE	1118, 1120	2022, 2023	100%
Limerick, PA	2	BWR	GE	1134, 1134	2024, 2029	100%
Oyster Creek, NJ	1	BWR	GE	619	2009; renewal filed 2005	100%
Peach Bottom, PA	2	BWR	GE	1112, 1112	Renewed: 2033, 2034	50% Exelon, 50% PSEG
Quad Cities, IL	2	BWR	GE	867, 867	Renewed: 2032	75% Exelon, 25% Mid- American Holdings
TMI-1, PA	1	PWR	B&W	786	2014; renewal filed 2008	100%
Salem, NJ	2	PWR	W	1174, 1130	2016, 2020	42.6% Exelon, 56.4 % PSEG

World Class Nuclear Operations – General

- ✓ Premier U.S. nuclear fleet
 - Best fleet capacity factor ~ 94%
 - Lowest fleet production costs ~ \$15/MWh
 - Fleet average refueling outage durations (17-24 days)
 - Strong reputation for performance

World Class Nuclear Operations – Refueling Outage Duration (Cont'd)

13 Day 17hr BWR Outage Template for Excellence

Reactor Moderator Temp <200 Start fuel shuffle #1 Finish Fuel shuffle #1 Finish IVVI inspections Start Fuel Shuffle #2 Finish Core Verification RPV Pipe Tight RPV Pressure < 50 psig Mode Switch to Startup Breaker Closed

World Class Nuclear Operations

✓ Summer 2008 Performance

•	Fleet capacity factor	98.6%
•	Clinton capacity factor	100%
•	Quad Cities capacity factor	99.7%
•	Byron capacity factor	99.5%
•	Dresden capacity factor	99.5%
•	Braidwood capacity factor	98.8%
•	TMI capacity factor	98.6%
•	LaSalle capacity factor	98.3%
•	Limerick capacity factor	98.1%
•	Oyster Creek capacity factor	96.1%
•	Peach Bottom capacity factor	95.5%

Impact of Refueling Outages

Nuclear Refueling Cycle

- 18 or 24 months
- Outage duration: ~17-24 days on an average

2008 Refueling Outage Impact

- 2008 reflects Salem's extended steam generator replacement outage
- 2008 YTD average outage duration is 24 days without Salem

2009 Refueling Outage Impact

- Reflects extended steam generator replacement outage
 - Based on the refueling cycle, we will conduct 10 refueling outages in 2009, versus 12 in 2008

Exelon Nuclear Management Model®

✓ Comprehensive framework for consistent execution of all we do

- Clearly states our vision, beliefs, strategic focus areas, and key business elements all in one place
- Drives <u>real</u> performance improvement via an <u>actionable</u> business planning process
- Illustrates the interdependence of all aspects of our business
- Playbook for driving standardization
 - Gets everyone on the same page
 - Defines the "One way, best way" to run the business
 - Aligns the corporation and stations eliminating localized differences
 - Facilitates integration of future acquisitions
- ✓ Performance assessment and continuous improvement tool
 - Establishes processes for continuous assessment and improvement
 - Documents progress and change

Nuclear Renaissance- US

October 29, 2009

Location of Projected New Nuclear Power

*Review Suspended

**Review Partially Suspended

Industry New Build Status

Several US utilities are aggressively exploring new build opportunities:

- Exelon
- NuStart/Southern
- UniStar
- NRG
- Dominion
- Progress
- PSEG,
- Duke,
- Entergy
- Southern California Edison

U.S. Electricity Production Costs

(in 2005 cents/kWh)

What's Driving the Nuclear Market?

The case for new nuclear is compelling

- ✓ Carbon constraints and climate change
- ✓ Security of fuel supply
- ✓ Stability of fuel price
- ✓ Reliability of generation
- Cost competitiveness of energy supply
- ✓ Proven performance of the current fleet

Exelon criteria for new build:

- ✓ viable design,
- ✓ sound economics,
- ✓ regulatory stability,
- ✓ state and local support
- ✓ path to spent fuel resolution

Nuclear Renaissance

Issues and uncertainties need to be addressed:

- Nuclear proliferation & plant security
- Spent fuel storage
- Workforce availability and qualifications
- Manufacturing infrastructure
- Public opinion
- Regulatory processes

Nuclear Renaissance

Critical Performance Indicators:

- ✓ Project Execution
 - Ability to finance the investment
 - Ability to design and construct the plan
 - Ability to equip the new plant with the right methods, qualified staff, operability and standards
 - Optimized design and standardization
- ✓ Confidence in performance
 - The confidence of the public, the investor, the regulator in sustainable safety and excellence
 - The ability to operate as promised and expected

New Build Optimization

- ✓ Enhanced design calculations
- Technical specification outlining the design requirements, margins, lessons learned, etc...
- ✓ State of the art refueling outage equipment and process
- ✓ Advanced tooling including robotics
- ✓ Advanced resource management
- ✓ Advanced best practice

360° Work Platform

Inspection Robotics

Licensing Process- US

October 29, 2009

New Nuclear Licensing Process-US

✓ Licensing Approach (10 CFR 52)

- Early Site Permit (ESP)
 - Approval to secure one or more sites for future use
- Combined Construction and Operating License (COL)

- Approval to construct and operate a nuclear plant

✓ More information available to the public earlier

✓ Safety issues are resolved prior to construction

New NRC Licensing Process (1992 Energy Policy Act)

*Public Comment Opportunity

Roadmap to Commercial Operation

Building a new nuclear plant is a sequence of three successive decisions:

SMART/Design Construction of New Build

October 29, 2009

Smart Construction

- ✓ CAD Models
- ✓ GPS
- ✓ Video
- ✓ Radio
- ✓ Virtual Briefings
- ✓ Teams and Critical Path shifts
- ✓ State of the art equipment

Equipment Tracking

- ✓ GPS tracking modules off-site✓ GPS tracking on-site
- ✓ Equipment tracking
- ✓ Site communications
- Tracking personnel on-site
- ✓ On-site material
- ✓ Schedule
- ✓ Contingencies

Modularization

- ✓ Numbers, sizes, & weights
- ✓ Design of on-site modular construction yard
- ✓ Building for on-site modular construction
- ✓ Transportation of modules, barges/trucks
- ✓ Unloading modules at barge facility
- ✓ Schedule
- ✓ Contingencies

EPC Specification Technical Requirements Overview

- Recommendation = Issue Commercial
 Technical Specification that delivers a State
 of the Art Plant
 - Emphasis on nuclear industry Lessons Learned and operational experience to date
 - Emphasis on performance
 - Augment the Certified Design (DCD)
 - Specify critical design including margins and procurement requirements

Inputs to EPC Technical Specification

- Construction schedule
 - Around the clock critical path/near critical path to optimize the schedule
 - Critical path
 - Near critical path
 - Preparatory path
 - Parallel activities and resource management
 - Parallel paths with manpower and equipment
 - Use the largest of the large equipment to optimize tasks
- Construction control overall site integration into smart construction
- ✓ Contingency planning
- ✓ Progress reporting plan
 - Multi level task plan feeding back to overall schedule

Construction Optimization

- ✓ Modularization integration
 - Integrate with the procurement process and construction phases
 - QC oversight throughout the modularization process
- ✓ Heavy lift crane plan collaboration
 - Optimization of crane logistics considering parallel activity and security attributes
 - Transition of crane plan from construction phase to operation phase
- Construction labor / manpower plan
 - Optimize resources
 - Housing plan
- Craft qualifications and certification tracking
 - Craft and qualifications matrix

- ✓ Constructability reviews plan
 - Project Team
 - 3-D modeling interference assessments
- ✓ Overall site safety, environmental, and health plan
 - NEI 0606 Fitness for Duty, 29 CFR 1910, and 29 CFR 1926
 - Personal Protection Equipment (PPE), various aspects of safety
- ✓ Site Crisis management plan
 - Emergencies, evacuation
- Existing industrial/environmental/archeological obstructions
- ✓ Waste disposal plan
 - Construction waste disposal plan landfill in area
- Construction work packages
 - Blocks of man-hours, electronic tracking

✓ DOR

- Construction Temp Power
- ✓ Warehousing Plan
 - Parts and materials stored onsite harsh environment

✓ Procurement Plan

- Tied directly with scheduling (feed and bleed, recommendation 6 months)
- ✓ 3-D Model
 - Pre job briefs with crews
 - Constructability and rigging
 - Safety

Conclusion:

Established Utilities

✓ New Programs

THANK YOU