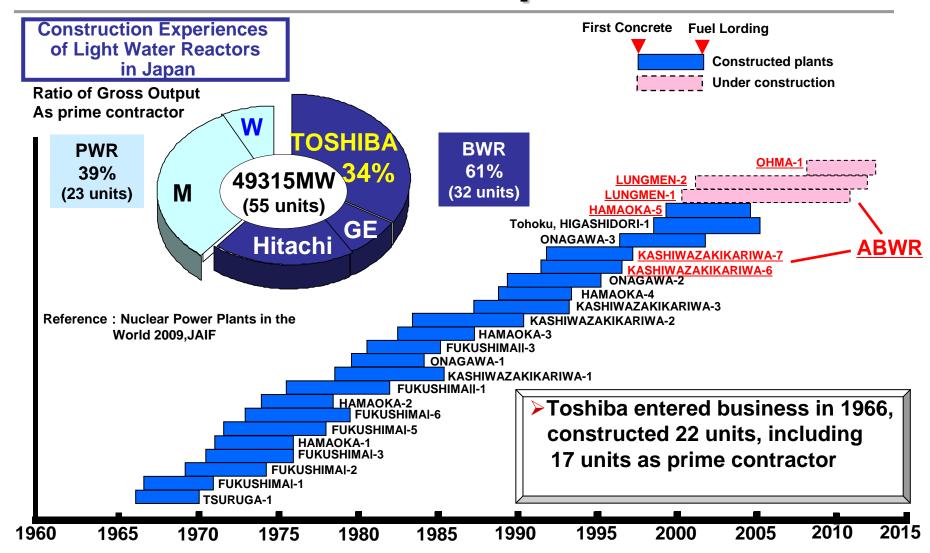


IAEA International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21st Century Vienna, Austria

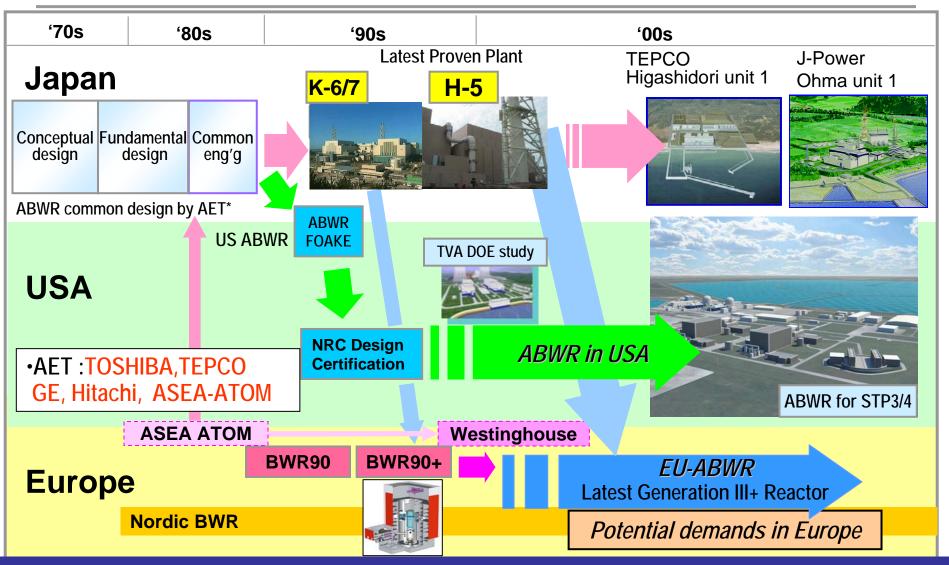
Development and Global Deployment of ABWR


October 27, 2009

Takeo Shimizu
Senior Fellow
Toshiba Corporation

- Development Overview of ABWR
- New ABWR Construction in U.S.

- Development Overview of ABWR
- New ABWR Construction in U.S.


BWR Construction Experiences

BWR is the highest market share in Japan

Development history of ABWR

Latest evolutional ABWR in the world

Safety in ABWR

Testing for Verification & Optimization

In-house Test Facility

RIP Performance Test

CRD Performance Test

Hydraulic Test In Pressure Vessel

Seismic Test of CRD

http://www.iae.or.jp/group/pdf/tadotsu.pdf

Demonstration Test of RCCV (Seismic Test) (by Government)

High reliability by building test facilities

Safety Nuclear Power Plant ABWR

- The latest and Proven BWR to receive Design Certification from the US-NRC
- The first unit started operation in 1996
- Four ABWR in operation in Japan

ABWR (Japan)

Thermal Power	3926MWt	
Elec. Power	1350MWe	
Life time	60 years	
Availability	90%	

Tested and Proven Light Water Reactor

ABWR in Japan

Kashiwazaki-Kariwa Unit 6/7

- The first Generation III Reactor in the world (C/O: November 1996)
- Short construction period
 37months (1st concrete FL)
- Built on schedule and budget

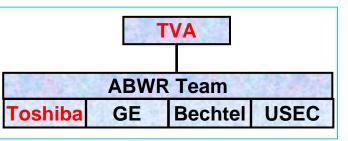
Hamaoka Unit 5

- World's 3rd ABWR (C/O: January 2005)
- Latest technologies applied
- Combined type reactor building for the high seismic condition

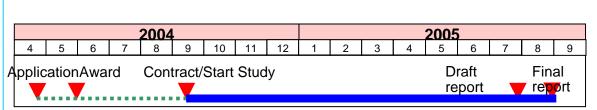
On time, On budget and High Seismic Safety

- Development Overview of ABWR
- New ABWR Construction in U.S.

TVA DOE funding study in 2004,2005


ABWR Cost/Schedule/COL Project at TVA's

Bellefonte Site


- Cost and Schedule
 - ABWR 2 units
 - 1350 1500 MWe class
- PJ Deployment model
- ABWR Enhancements
- Fuel Supply Plan

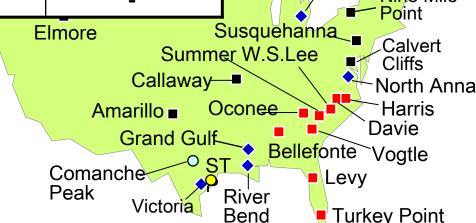
ABWR Team

DOE study schedule(2004 ~ 2005)

Starting point of Global ABWR Deployment

New LWR Construction in U.S.

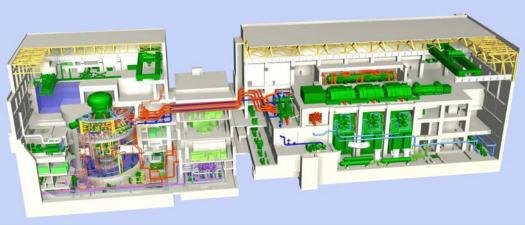
Ready for Construction


【COL Status COL: Combined Construction and Operating Licensing

		COL applied	COL in preparation	EPC contract
0	ABWR	1site, 2units	-	1site, 2units
	AP1000	7sites, 14units	2sites, 2units	3sites, 6units
	EPR	4sites, 4units	2sites, 2units	LLM (part)
-	ESBWR	5sites, 6units	-	LLM: 3units
	APWR	1site, 2units	-	-

Source: NEI HP (09/05)

With TOSHIBA's assumptions


Construction of ABWR begins the Nuclear Renaissance in USA.

STP3/4 project in U.S.

ABWR in USA

EPC contract Feb 9,2009 as TOSHIBA prime contractor

Current Status of STP3/4 project

STP3/4 Project Outlines

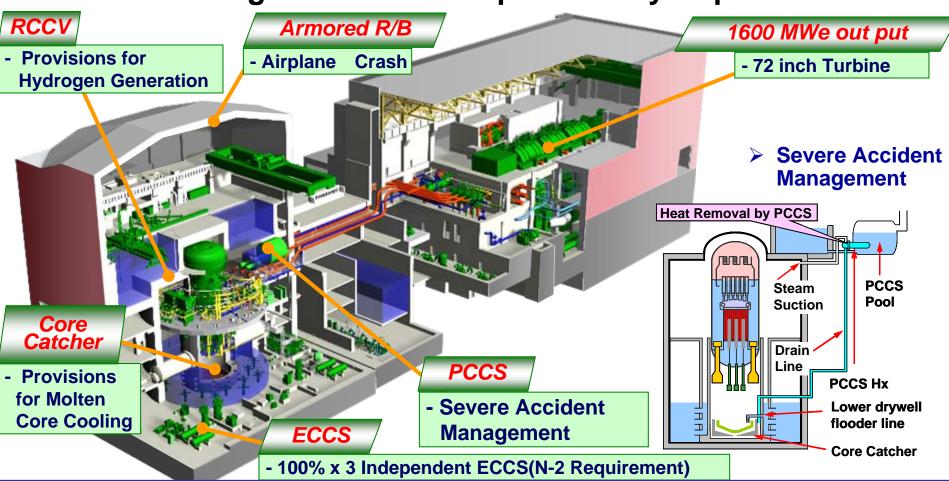
- Customer: STPNOC
- ABWR 2 units (1380MWe/Gross)

Features

- > Actual 1st BWR project as a revival of nuclear industry in U.S.
- Leading success with maximum application of excellent experiences for design, construction and operation of ABWRs in Japan.

Current Project Status

- COLA rev.2 provided by STPNOC to NRC with Toshiba technology
- > EPC contract was established in 2009 as Toshiba prime contractor
- > The date of Commercial Operation expected in 2016 for Unit No.3.


STP3/4 project is on going in U.S.

- Development Overview of ABWR
- New ABWR Construction in U.S.

Deployment of ABWR in Europe

- European BWR Technologies are applied in European ABWR
- ABWR is changed to meet European safety requirements

Design changes are minimum to satisfy safety requirements

Plant Main Data of European ABWR

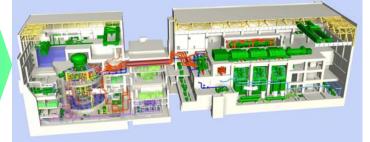
Plant Specification

- Reactor Thermal Power: 4300MW
- Electrical Output: >1600MW
- ➤ Plant efficiency: >37%
- Plant availability
 - Design life: 60 years
 - > Plant availability: >90% over lifetime

Thermal Power increases from 3926 MW to 4300MW.

Global Deployment of ABWR

Japan



USA

US-ABWR

Europe

EU-ABWR (ABWRIII+)
Latest Generation III+ Reactor

To be the World Standard LWR

Global Deployment of ABWR

- Only Generation III Reactor under Operation with excellent operating experience in Japan.
- High certainty for schedule based on the actual construction experiences in Japan.
- Implementation for the development of the STP3/4 project is under going in U.S. based on the results of TVA DOE funding study.
- Specific regulation will be considered for ABWR promotion in Europe as well.

Expanding ABWR construction worldwide

Summary

We provide the BWR technologies and contribute to "The Nuclear Renaissance".

