The Twin Challenges of Abundant Nuclear Energy Supply and Proliferation Risk Reduction – A View

A. Kakodkar Chairman, Atomic Energy Commission, India and Secretary Department of Atomic Energy, India

Objective and Scope of the Presentation

- Objective:
 - To compare various alternative options to burn or recycle plutonium from thermal nuclear reactors and to explore the role of thorium in this context.
 - Scope:
 - 1) Options for burning LWR Pu in Fast Reactors (based on published OECD study, 2002*)
 - 2) Options for burning LWR and HWR Pu in thorium based reactor configurations (BARC study).
 - * Accelerator-driven Systems (ADS) and Fast Reactor (FR) in Advanced Nuclear Fuel Cycles, Organisation for Economic Co-operation and Development, OECD (2002)

Ten different reactor configurations, including three using FRs and six using thorium in PHWR/ AHWR have been studied.

The three cases highlighted in the next slide serve to compare Fast Reactors with a thorium based AHWR(L1)

- Case II: LWR Pu used in Advanced Heavy Water Reactor variant AHWR(L1) with self-sufficiency in ²³³U and 50 GWd/t burnup.
- Case IV: LWR Pu used in a MOX fuelled LWR(MOX), and the discharged Pu of LWR(MOX) used in CAPRA type Pu burning Fast Reactor, designated FR(M) – *This is the reference Pu burner case in the OECD Study.*
- Case VI: LWR Pu used in an ALMR type TRU burning Fast Reactor FR(TRU) – *This is the reference TRU burner case in the* OECD study.

Results normalised for 1 TWhe energy production in the first stage (LWR or PHWR)

For Stages 2 and 3 (as applicable)

Casa	Case description	Minor	Pu left (kg)	
no.		Actinides left (kg)	Amount (kg)	% Fissile
	LWR-LWR(MOX)	2.63	19.55	51.1
П	LWR-AHWR(L1)	2.28	7.30	22.1
Ш	LWR-AHWR(L2)	2.75	11.34	20.5
IV	LWR-LWR(MOX)-FR(M)	6.98	51.50	34.1
V	LWR-FR(L)	7.58	89.76	34.1
VI	LWR-FR(TRU)	14.06	104.1	43.8
VII	PHWR-PHWR(Th)	0.88	37.70	40.3
VIII	PHWR-PHWR(Th)-AHWR (LR)	5.30	10.79	15.7
IX	PHWR-AHWR(P1)	3.62	15.31	25.5
Х	PHWR-AHWR(P2)	2.60	21.59	31.2

Comparison of residual plutonium (LWR based)

Comparison of burden for treatment of Minor Actinides (MA) produced (LWR based cases)

Comparison of residual plutonium (PHWR based)

Gamma radiation exposure rate at 1 ft. from 5 kg mass of ²³³U in the spent fuel after one cycle

Reactor type	²³² U concentration	Gamma radiation exposure rate at 1 ft. distance from 5 kg. mass of ²³³ U (R/h)		
	(ppm)	After 1 year	Gamma dose	Gamma dose
			rate after 10	rate after 100
			years (R/h)	years (R/h)
AHWR (L1)	2368	355	1089	474
AHWR (L2)	1468	220	676	294
AHWR (P1)	2428	364	1116	485
AHWR (P2)	1289	193	593	258
AHWR (LR)	2107	316	970	422
PHWR (Th)	816	123	378	163

Conclusions

(1/2)

- Fast reactor based options
 - Multiple recycling of Pu attendant cost and proliferation risks
 - MA burners
 - High costs
 - Longer time frames for deployment
 - Immature technologies with attendant economical and technical risks
- Thorium based options
 - Vast superiority considering Pu and MA content in spent fuel
 - Inherently proliferation resistant nature of ²³³U
 - Can be utilised in reactor designs that already exist
 - New systems can be designed to utilise thorium, using existing technologies.

Conclusions

- Out of the current fleet of 443 nuclear power reactors operating in the world, less than half are under IAEA Safeguards.
- Even in this scenario, and with a very slow growth of nuclear power in the last two decades, the volume of human and financial resources needed for the implementation of IAEA safeguards have constituted a large fraction of the resources available to the Agency.
- With the envisaged rapid growth in the demand for nuclear power, mainly in the developing countries, the ability to implement safeguards in the traditional manner could, itself, become a serious limiting factor, and perhaps a hindrance to such growth.
- It is, therefore, necessary to establish institutional as well as technological solutions that should enhance proliferation resistance along with an assured fuel supply, without adversely affecting long-term sustainability of nuclear fuel resources.
- Thorium offers a very important and attractive solution from this perspective.
- India has developed advanced capabilities in this field.

Thank you.

