Better Materials for Nuclear Energy

S. Banerjee, Bhabha Atomic Research Centre, India

IAEA Scientific Forum 2005

1

Increasing demands on materials

Pushing the burn-up

Pellet Clad Interaction at High Burnup

Protection against PCI/SCC failure is required for pushing the fuel burnup.

PCI/SCC Failure

Hour-glassing of fuel pellet due to radial thermal gradient

Incipient PCI/SCC cracks

Fission Gas Release

Athermal Release

- From pellet surface by recoil and knock out

Diffusional Release

(Equivalent Sphere Model with re-solution) $(\partial c/\partial t) = D\nabla^2 c - gc + bm +$

Gas conc. in grain Diffusion to grain boundaries

Capture by traps. Re- Generation solution from bubbles

β

- Gas atom migration to grain boundaries

Gas atom collection at grain boundaries

- Grain boundary sweeping accumulates fission gas to reach early saturation

Nucleation and growth of gas bubbles on grain boundaries

Interconnected channels of gas bubbles at grain faces

Strategies for

Improving Fuel Performance

- Large grain size:
- Stable porosity structure:
- Improved fuel design:
- Fuel-clad barrier layer:

reduces the fission gas release avoids densification reduces the heat rating pure Zr, graphite

High Performance MOX Fuel Microstructure

Performance Requirement for High Burn-up Fuels:

- 1. "Soft pellets" To reduce PCMI.
- 2. Large grain size To reduce FGR.

Suggested Microstructure - Rock in Sand A hybrid of islands of fine grains (Fertile rich) to give plasticity and large grains (Fissile rich) to reduce FGR. CAP process being developed for (Th-U²³³) MOX Appears to achieve this.

In-service Degradation of Structural Materials

Non-Destructive Examination for Structural Integrity Assessment of PHWR Pressure Tube

6 Ultrasonic Transducers

Inspection Head

- Validation of Existing NDE Techniques
- Sizing and imaging of flaws by ultrasonic time-of-flight technique

IAEA CRP on Pressure Tube Inspection & Diagnostics

Specimen	Growth Strain (10⁻⁴)
Seamless Longitudinal	4.70
Seam welded Long.	4.78
Seamless Transverse	2.78
Seam Welded Transverse	3.89

² Bwr Bwr Bwr	PWR/ Reduci
¹ 0.02 0.1 μm 0.8 Precipitate Size	BWR Oxidizi

Reactor Type	Corrosion Concern	Desired Particle Size	CAP (Hours)
PWR/PHWR Reducing environ.	Uniform	> 0.1 µm	2 x10 ⁻¹⁸ – 5x10 ⁻¹⁷
BWR Oxidizing environ	Nodular	< 0.15 µm	≤10 ⁻¹⁸

Microstructure of PHWR Components

Two phase (α **-matrix +** β **-Zr stringers)**

Development of Zr - Sn - Nb - Fe Alloys

• Alloy 635 (Russian alloy) : Zr – 1.2 Sn – 1 Nb – 0.4 Fe

PIE after 70,000 MWD/Te : Good Performance of ZIRLO Clad

Isotopically Denatured Zirconium

Reactor Pressure Vessel Steel Embrittlement

		lietien. Englewittlemennt					
	Rac		Embrittlement		Rema	rks	
Energy		Un -Irradiated Irradiated	Matrix damage		Lattice defects due to neutron		
			Precipitation effect		Ni, Mn, Cu, Si-enriched precipitates		
		Temperature	Segregation eff	ect	P,Ni, S P at g	Si to dislocations, rain boundary	
		Major characteristi	CS	Western		WWER 1000	
		Alloying elements for o strength, toughness, w hardenability	ptimizing eldability &	Mn, Mo		Cr, Mo, V, Ni	
		Elements causing irrad embrittlement	iation	Cu,P, Ni		Cu, P, Ni, Mn, Si	
		Predictive equation use embrittlement	ed for irradiation	CF = f(Cu,	Ni)	CF = f(Cu,P) = 20 for weld	
$\Delta T = CF \times FF$ Compositional Fluence		FF = F ^{0.28-0}).01logF	= 23 for base FF = F ^{0.33}			

Intercomparison of Embrittelement Trends of RPVs of Different Origins

For TAPS, \triangle T_{EOL} = 33°C (Surveillance)

Intercomparison of Embrittelement Trends in WWER-1000 RPV

 ΔT_{EOL} = 92°C (Design Limit)

= 73°C (Design Limit)

Approach to Extend RPV Life

- Reduction in Ni
- Controlling Dual Presence of Mn & Ni
- Reduction of P, Cu, Si
- Lowering Non-Metallic Inclusions

Three Stage Indian Nuclear Programme

Thorium in the centre stage

MOX fuel for PHWRs

- Uranium conservation and demonstration of high burn-up fuels for PHWRs.
- MOX fuel design and fabrication capability.
- Natural uranium savings (~40%)
- Lower volume of spent fuel storage/ reprocessing.
- 11,000 MWd/T achieved in MOX bundles

 \bigotimes - UO₂ RODS

MOX Fuel Bundle for PHWR

Fuel subassembly inside glove box

IAEA Scientific Forum 2005

Indian Fast Breeder Reactor Programme

FBTR- 40 MW_{th} (loop type) with indigeneously developed mixed carbide fuel is in operation since 1985.

Construction of FBR- 500 MW_e (pool type) with MOX fuel has started in Oct. 2004.

Metallic fuels with high breeding ratio are under Consideration for future fast reactors.

Fuel and core structural materials for fast reactors are new challenges for development.

Properties of Reference FBR Fuels

Properties	(U _{0.8} Pu _{0.2})O ₂	(U _{0.8} Pu _{0.2})C	(U _{0.8} Pu _{0.2})N	U-19Pu-10Zr
Heavy metal Density g/cc	9.78	12.96	13.50	14.30
Melting point ^o K	3083	2750	3070	1400
Thermal conductivity				
(W/m ºK) 1000 K	2.6	18.8	15.8	40
2000 K	2.4	21.2	20.1	
Crystal structure	Fluorite	NaCl	NaCl	bcc (γ)
Breeding ratio	1.1 - 1.15	1.2 – 1.25	1.2 - 1.25	1.35 - 1.4
Swelling	Moderate	High	Moderate	High
Handling	Easy	pyrophoric	Inert atmos	Inert atmos
Compatibility - clad	average	Carburisation	good	eutectics
coolant	average	good	good	good
Dissolution & reprocessing	Good	Demonstrated	risk of	Pyro-
amenability			C ¹⁴	reprocessing
Fabrication/Irradiation	Large	Good Indian	very little	limited
experience	Good	Experience		

BARC, India

IAEA Scientific Forum 2005

40 MW_{th} Fast Breeder Test Reactor (FBTR) Kalpakkam

3%

(U0_{0.3}, Pu_{0.7})C fuel in FBTR crossed a burn-up of 145 GWd/t.

PIE of FBTR fuel at 100 GWd/t

- No restructuring (low temperature)
- Diametral strain in cladding: 1.8%
- Fission gas release: 14%
- Fuel-clad gap closed
- No evidence of clad carburisation
- Residual ductility of clad

Fuel Macrographs

Life Limiting Processes in Core Structural Materials of FBR

Void Swelling

- Incubation period for swelling.
- Austenitic stainless steels (AISI 316) not resistant to swelling beyond 50 dpa
- Search for better materials, which can withstand exposure upto 150-200 dpa.

Void Swelling Resistance

- Enhancing vacancy-interstitial recombination
- Providing sites for recombination
- Optimisation of chemical composition
- Controlled cold work
- Coherent precipitate distribution

Candidate Materials: D9, PE16, 9Cr-1Mo, ODS steel²⁸

Stainless Steels for Fast Breeder Reactors

Not Suitable for Clad but feasible to use for Wrappers after Optimization of Chemical Composition & Microstructure to take care of DBTT Rise

Future Nuclear Energy Sources & Systems

1. Abundance of Resources

(large reserves to sustain requirement for a few generations)

2. Resource consumption is matched by resource production. (Neither breeding nor burning – just self-sustaining)

3 Environmental friendly

(Low long lived radiotoxicity/ transmutation nuclide)

- **4. Waste safety** (Fuel itself is a stable matrix for actinide and fission products, better than vitrified glass)
- 5. Proliferation resistance

(U²³² inherent presence in U²³³/difficult to reprocess)

Thorium based Fuel cycle fits the bill

Advanced Heavy Water Reactor

AHWR is a vertical pressure tube type, boiling light water cooled and heavy water moderated reactor using ²³³U-Th MOX and Pu-Th MOX fuel.

Major Design Objectives

- Power output 300 MWe with 500 m³/d of desalinated water.
- A large fraction (65%) of power from thorium.
- Extensive deployment of passive safety features – 3 days grace period, and no need for planning off-site emergency measures.
- Design life of 100 years.
- Easily replaceable coolant channels.

Indian AHWR Fuel Cycle

Sintering behaviour of (Th-U)O₂ Pellets Made by CAP Process

Compact High Temperature Reactor

High temperature process heat for hydrogen production by water splitting

 Special materials Shutdown System Special fuel Passive systems for Heat Exchange Vessels safe operation of the Heat Pipes reactor Gas Gap Filling System **Upper Plenum Fuel Channel Beryllia Moderator** and Reflector **Graphite Reflector** Lower Plenum

Passive Power Regulation System IAEA Scientific Forum 2005 34

BARC, India

List of Materials for CHTR and their Selection considerations

System	Material options	Reasons for selection
Fuel	$\underline{\text{UC}}_{2}, \underline{\text{UO}}_{2}$	Less Kernel migration
Moderator	BeO , Be, BeH ₂	High temp. capability
Reflector	BeO, BeO+Graphite	Economical
Fuel Channel and	Coated Graphite	Low neutron abs. c/s,
Downcomer tubes		High temp. capability
Inner Reactor Vessel	Ceramic coated Mo-	High resistance against
	30%W, <u>TZM</u> , Mo-1%	Pb-Bi eutectic
	TiC, Nb-1% Zr, Ta	
Upper & Lower	<u>Ceramic coated TZM</u>	Better corrosion resistanc
Plenums	<u>(Ti -0.5%, Zr - 0.08-</u>	against Pb/ Pb-Bi eutectic
	<u>0.1%, C, Mo)</u> , Mo, Ta	
Regulating System	W, Niobium lined with	Low neutron abs. c/s
Driver & Control	<u>PyC</u>	
tubes		
Driving Fluid for	<u>Pb-Bi Eutectic</u> , Gallium	Less neutron abs. c/s and
Regulating system		less corrosive
Coolant	Pb/ Pb-Bi Eutectic	Low MP, High BP, Good
		safety features
Upper plenum Heat	<u>TZM</u> / Mo	Good corrosion resistance
pipes		against Pb/ Pb-Bi eutectic

Compact High Temperature Reactor (CHTR) uses ²³³U & Th based fuel, molten Pb-Bi coolant, BeO moderator, and (BeO+graphite) reflector material and has 1000 °C as coolant exit temperature

Severe operating conditions of CHTR poses many material related challenges

Materials	Reactor Components/ Systems
High density nuclear grade BeO	Moderator and reflector
High density, isotropic, nuclear grade graphite	Long fuel tube & down comer tube, large size reflector blocks, plenum flow guide blocks
Carbon-carbon composites	Heat pipes, alternate fuel tubes
Refractory metals/alloys e.g. TZM, Nb alloy, W etc.	Inner reactor shell, coolant plenums, heat utilisation vessels, Passive power regulation system, heat pipes, shutdown system
Oxidation and corrosion resistant Coatings	PyC, SiC, Silicides etc.

High density BeO prepared in BARC

Thermoelectric power generators for Compact High Temperature Nuclear Reactor (CHTR)

Developmental challenges

•Synthesis of n-type PbTe and p-type (AgSbTe₂)_{0.15}(GeTe)_{0.85} alloys.

•Fabrication and characterization of Thermoelements .

•Thin film metal contact deposition to thermoelements.

•Metal strip interconnects with low contact resistance.

•Fabrication of devices.

Interface study using SEM & EDX

BARC, India

IAEA Scientific Forum 2005

Summary

Conclusions

- 1. Increasing demands on materials with respect to higher operating temperature, higher fuel burnup, structural integrity at higher fluence and reduced radio-toxicity calls for optimization of presently used materials and /or development of new materials.
- 2. Inputs from R&D work in physical metallurgy and materials science towards optimization of manufacturing routes, identification and understanding of ageing degradation and establishing structure-property correlations are key to developing more forgiving materials and providing engineering solutions.

