Spent Fuel Management: Semi-dry storage

S. Tőzsér KFKI Atomic Energy Research Institute, Budapest, Hungary tozser@sunserv.kfki.hu

> IAEA Scientific Forum 20-22 September 2004 Vienna, Austria

Topics

- NSF's storage practices and problems
- Introduction to the canning technology and equipment
- Canning in practice movie clips
- Canning results at BRR
- Conclusions

Way to the canning

The storage practice

>

- Temporary storage (AR pool->decay+emergency, AFR pool->long time)
- Wet storage technology (stored under water)
- The problem \rightarrow originated from long term wet storage
 - Wet storage can be intermediate only (oldest for 40 years)
 - Transport: no decision no date (to ship final deposit place)
 - Signs of corrosion appeared
- \succ What to do? \rightarrow Decreasing the corrosion process
 - Change the storage mode *from WET to SEMI-WET*

\succ The Solution \rightarrow Canning

- Technology: encapsulation
 - → Placing NSF into a tube, → drying, vacuuming, → filling up with inert gas, → hermetical closing of this package

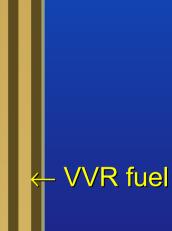
• Requirements:

- Ensure +50 years intermediate storage
- Provide solution for both fuel types
- Ensure easy monitoring after canning
- Leave open all ways for final solution

3D-drawings of Canning Tube

Tube head

Tube body \rightarrow


EK-10 fuel -

Bottom weight \rightarrow

<u>Canning</u>

Construction

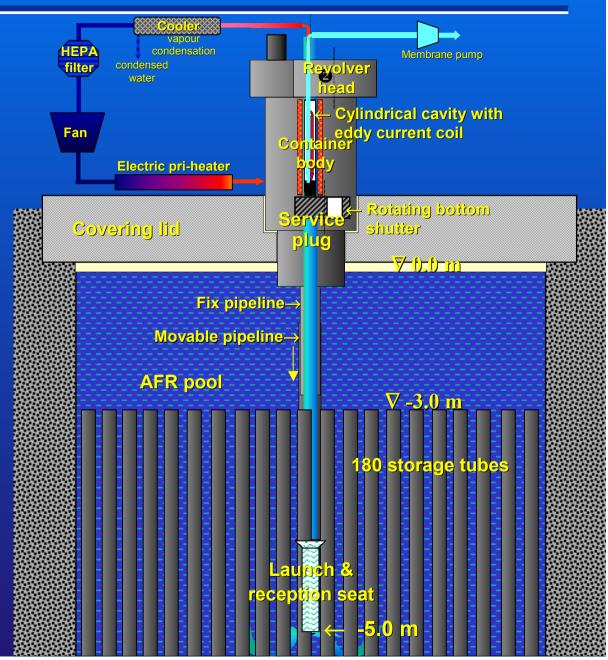
- Tube construction
- Al-alloy
- Thickness: 3 mm
- Length: 939 mm
- Diameter: Ø 100 mm

The Canning Equipment

Design philosophy:

- Easy handling fuel manipulation before and after canning only \rightarrow compact container
- Closed technology \rightarrow PLC control
- Defective canning tube handling \rightarrow cropping machine
- Leave open all way for final solution \rightarrow shipment as package or unpacking

Construction: compact and mobile construction


1. Canning Unit	2. Cropping Machine
 Canning Cask Rotating Head Cask Body Transfer Pipe Assembly Trolley Control Unit Power Supply Electrical with UPS Compressed Air Nitrogen Supply System 	 Driving Unit Cropping Container Single-fuel nest Triple-fuel nest Tube Body nest

Operation (animated slide)

New ideas

AEKI

- 1. Sucking up
- 2. Heating
- 3. Rotating head (compact container)
- 4. Welding under pressurized air (vacuum-tight sealing in the operation chamber of the container)

Canning Cask (assembling phase)

AEKI

Canning Cask (assembling phase)

Canning Stepping motors container (on its operation place) Cropping Rotating head machine ← Cask body Welding unit \rightarrow Transfer pipe driver \rightarrow

Cropping machine

-Transmission bar

Transmission bar ightarrow

Cropping container \rightarrow

Single-fuel nest \rightarrow

Triple-fuel nest

Circular saw-disc -

Tube body nest -

Canning procedure

Work phases	Activity	Time	Op.M.
Prep. phase	NSF's leg-cutting, capsule & NSF are placed in the reception seat	≈ 20 min.	Manual op.
1 st op. phase	float up the capsule with intensive water flow	≈ 3 min.	AUT op.
2 nd op. phase	removing the water from the capsule	<mark>≈ 5 min.</mark>	
3 rd op. phase	drying and maintaining a given heat	<mark>≈ 70 min.</mark>	Closed tech-
4 th op. phase	vacuuming, filling up with nitrogen, and pressing in the capsule head	≈ 8 min. nology chain	
5 th op. phase	capsule head is secured by welding	≈ 4 min.	
Control phase	welded seam inspected by CCTV, underwater observation (bubble test)	≈ 5 min.	Manual op.
Closing phase	 ✓ placing to its designated position X opening by cropping machine 	≈ 5 min.	
	TOTAL CICLE TIME	≈ 120 min.	

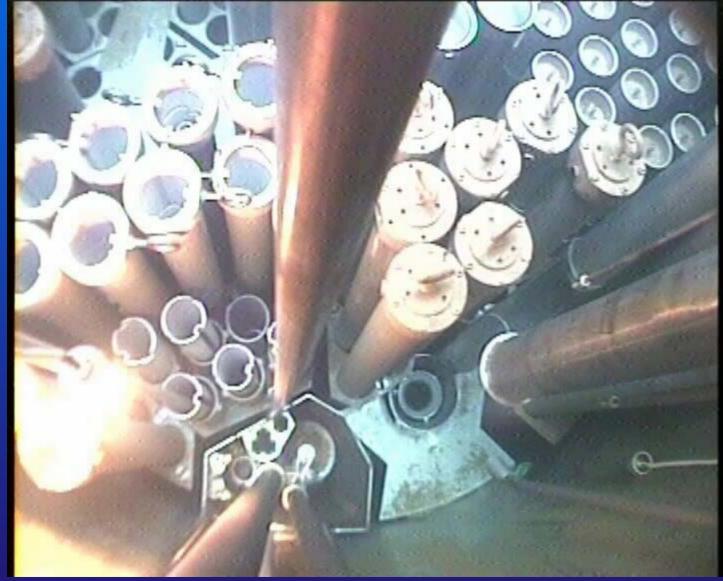
Canning mosaics

Movie clips

From preparation phases

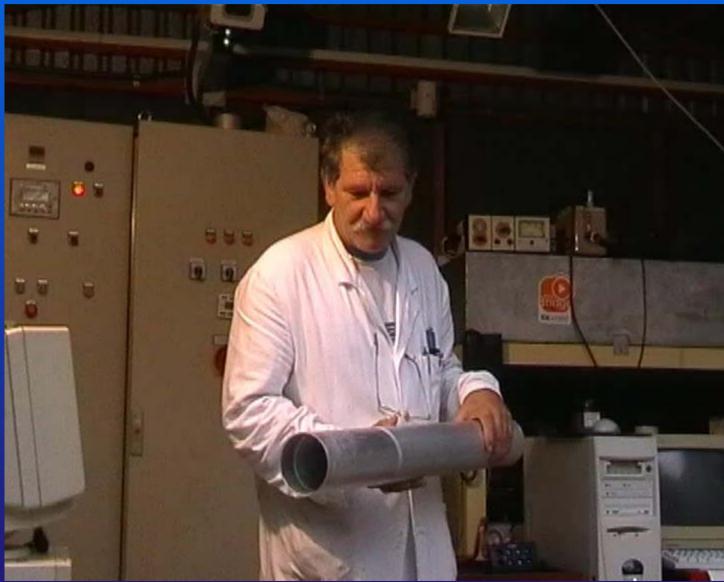
- 1. NSF assembly preparation leg-cutting process (1:17)
- 2. Capsule preparation (1:04)

From operation phases

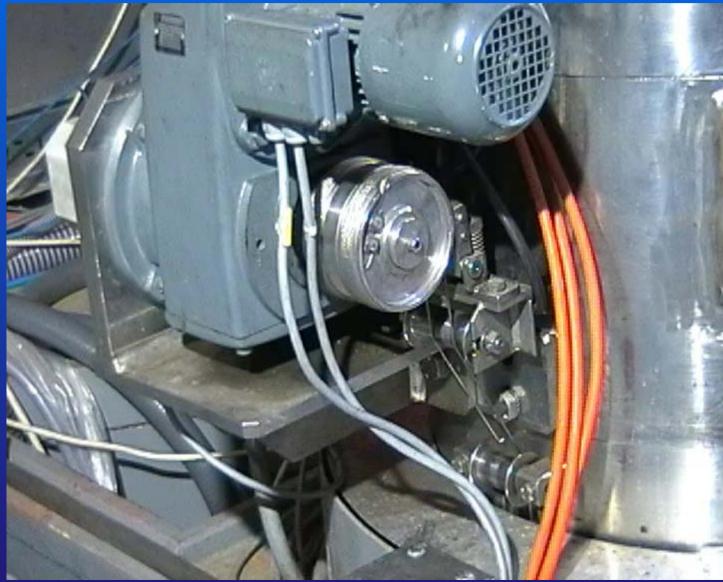

- 3. 1st phase: Float-up phase (0:18)
- 4. 2nd phase: Removing the water from the capsule (0:40)
- 5. 5^{th:} Welding and control phase (0:58)
- 6. Float back of the package (0:27)

From closing phase

7. Deposition of the flawless package – 0:56) Handling the defective closed capsule


8. Bubble test and cutting off (2:23)

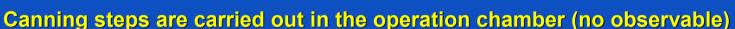
NSF assembly preparation - leg-cutting process (1:17)



Capsule preparation (1:04)

1st phase: Float-up phase (0:18)

2nd phase: Removing the water from the capsule (0:40)



3rd and 4th phases

Sorry, no movie clips

3rd operation phase:

Drying and maintaining on a given heat

- Eddy current heating (48 VAC, 4,5 kVA)
- warming up and min. 40 minutes maintaining on heat (130 °C)
- ➤ Total phase time: ~ 70 minutes

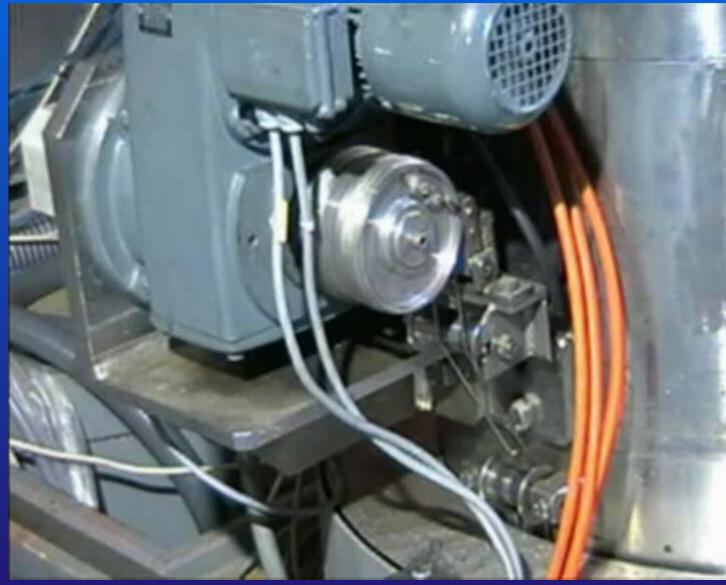
4th operation phase:

Vacuuming, filling up with N₂ and pressing in the capsule head

- Vacuuming < 50 mbar</p>
- Nitrogen: dry nitrogen ($N_2 > 99.9999$ %; $H_2O < 5$ ppm), \geq overpressure: 2.5 bar

<u>Steps:</u> vacuuming (3 min.) \rightarrow filling up with N₂ (1 min.) \rightarrow vacuuming (3 min.) \rightarrow filling up with N₂ (1 min.) \rightarrow pressing in the capsule head $(50 \text{ ms}) \rightarrow \text{equal-warming} (3 \text{ s, shrink fitting})$

Total phase time: \approx 8 minutes

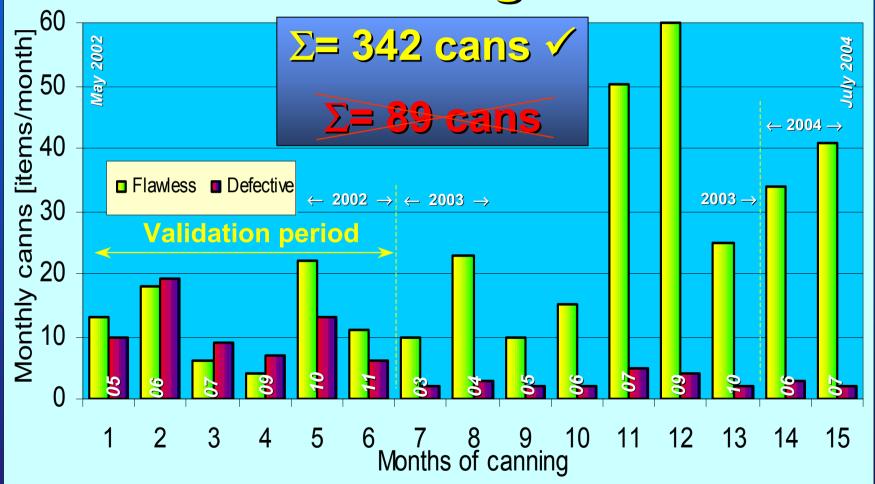


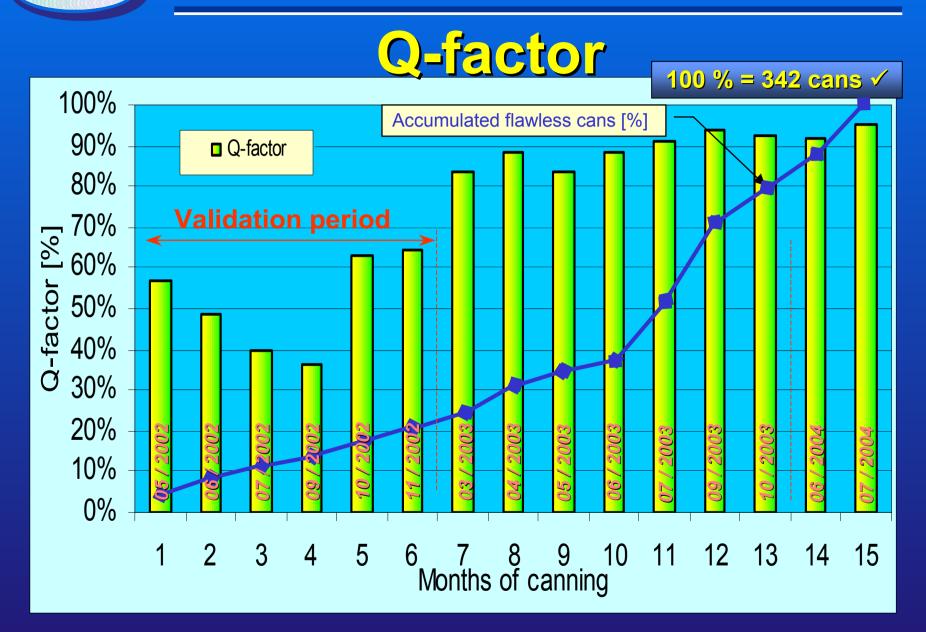
5th Welding and control phase (0:58)

Float back of the package (0:27)

Deposition of the flawless package (0:56)

Handling the defective closed NSF





Bubble test and cutting off (2:23)

AEKI KFKI

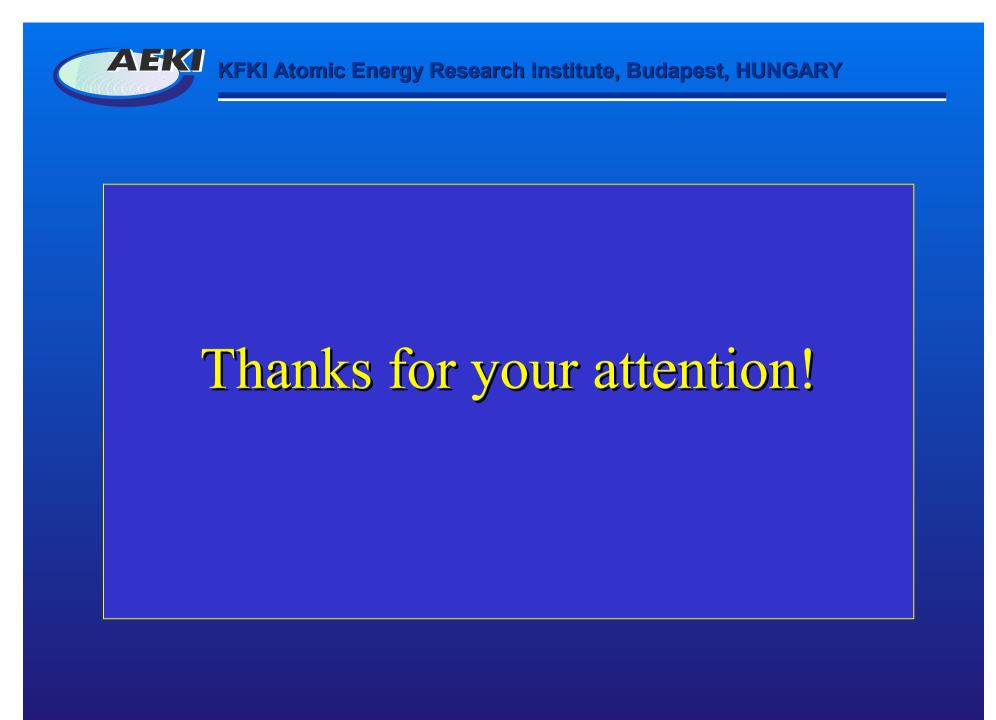
Performance indicator

AEKI

NSF assembly	Quantity to be canned	Required encapsulation	Completed	Defective closed
EK-10	<mark>82</mark>	<mark>82</mark>	82√	66
VVR single	<u>228</u>	76	76√	9
VVR triple	<mark>184</mark>	1 <mark>84</mark>	184√	14
	TOTAL	<u> 342</u>	342√	89

How further?

Status: Phase 1 has completed. ✓


- (encapsulate all NSF irradiated before 1986)
- 1. Closing activities:
 - > Conservation maintenance \rightarrow Put it in stand by;
 - > Summary of the experiences \rightarrow Closing report.
- 2. No decision to start Phase 2
 - It will be a periodic canning by 3-5 years \rightarrow depends on final solution.
- 3. It is offered to fulfill any canning demand.

Improvement and upgrading (?):

- No decision;
- Depends on outer demands and/or requirements.

Conclusions

- > Technology and canning equipment are validated.
- Compact and closed technology that ensures safe reliable and effective encapsulation (demonstrated by 342 encapsulations).
- Cropping machine makes the technology complete (handling the defective canned packages).
- The canned storage technology leaves open all ways for a final solution.
- > Human factor (3 operators form an optimum team).
- The experience demonstrates that the equipment provides a proper solution to the spent fuel storage problems of other research and training reactors (transportability, no contamination).

