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FOREWORD

The International Atomic Energy Agency has played a significant role over the years
in the improvement and use of uranium exploration techniques and data obtained through
uranium exploration. Numerous documents on uranium geology and exploration methods
have been published.

The purpose of this document is to provide an introduction to the new tools and
applications of computer based spatial data integration as used by geologists. During
mineral exploration vast amounts of spatial data are collected. Some of these data are
gathered routinely from satellite and airborne sensors in a digital form. Large sets of
ground survey data are also stored in digital form. Integrated use of these data has in the
past been carried out qualitatively and visually. Recent advances in personal computing
give the possibility to integrate several layers of quantitative data and produce the images
that are useful in the overall interpretation of the combined information, not only in the
uranium exploration field, but also in environmental studies.

In order to provide the experts involved in uranium exploration with information on
recent developments in computer applications for spatial data integration and image
processing, the IAEA convened consultants meetings in November 1991 and November
1992 to produce this guidebook, which contains information on spatially distributed data,
data capture, database creation and visualisation of data. Vector, and in particular, raster
data types and the aspects of integration modelling are discussed. For better understanding
of the subject several case studies are included in the document. Guidance on the
specification of technical requirements and the staffing needed to undertake spatial data
processing projects is also provided.

The IAEA wishes to thank the consultants who took part in the preparation of the
guidebook. They included G.F. Bonham-Carter of the Geological Survey of Canada,
R.B. McCammon of the United States Geological Survey, A.G. Fabbri of the
International Institute for Aerospace Survey and Earth Sciences, Netherlands, and
V. Kuosmanen, of the Geological Survey of Finland. Credit should also be given to
E.M. Schetselaar and M.A. Groossens, Netherlands, who contributed to the preparation
of the case studies. The IAEA staff member responsible for the project was M. Pecnik of
the Division of Nuclear Fuel Cycle and Waste Management.



EDITORIAL NOTE

In preparing this document for press, staff of the IAEA have made up the pages from the
original manuscript(s). The views expressed do not necessarily reflect those of the governments of the
nominating Member States or of the nominating organizations.

Throughout the text names of Member States are retained as they were when the text was
compiled.

The use of particular designations of countries or territories does not imply any judgement by
the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and
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1. INTRODUCTION

1.1. PURPOSE OF DOCUMENT

The past decade has seen radical changes to man’s ability to collect, store and analyze
spatial data with computers. Digital images are routinely gathered from a host of space-
and airborne sensors; large suites of samples of geological media are chemically analyzed
and the data stored digitally, often for thirty or more elements simultaneously; even
geological mapping can now be computerized in the field. Advances in computer
technology have not only spurred the collection of huge volumes of spatially-referenced
data, but also provided the means to store, manipulate, visualize and analyze these data.
Fast, relatively inexpensive personal computers equipped with image processing (IP) and
geographical information system (GIS) software have the potential to bring about radical
changes in the geological workplace. Instead of overlaying paper maps by hand on a light
table, maps and images can be electronically combined. This is not only far more efficient
for examining spatial associations between spatial data layers, but it also allows more
exhaustive and creative use to be made of expensively-collected data.

Two areas of application where this new technology are particularly important are mineral
resources and environmental studies. Although the goals of these fields differ, one being
the discovery and assessment of mineral deposits, the other being the understanding and
impact of man-made changes to the earth, both require the simultaneous assessment and
combination of multiple layers of geological, geophysical, geochemical and associated
data. The purpose of this document is to provide an introduction to the tools and
applications of computer-based spatial data integration, as used by geologists.

Until recently, most scientists and engineers would use the services of a typist to prepare
a report or manuscript, yet now many find that they can do the job themselves with a
word-processing package on a personal computer. In addition, spreadsheets, statistical
packages, drawing programs and others are routinely used for analyzing and presenting
data. This has come about not only because of advances in computer hardware, but also
because software has become much friendlier and easy to use. At the same time,
however, the person who can apply these methods effectively must acquire new technical
skills, and such training takes time and effort. This is particularly true of computer
systems for manipulating and integrating spatial data. It may take only an hour or two to
learn how to use a ‘desk-top mapping’ program to manipulate and display maps and
statistics with a prepared database. But much more training is required to use a GIS to
build a spatial database from scratch, and to use it creatively to carry out a mineral
exploration study or an environmental assessment. Furthermore, papers on modern
methods of spatial data integration are scattered in the literature, and there is a need for a
document to bring a number of diverse topics together and present them in a form that
will serve as a guidebook to the subject.

This document is a general overview of the subject for the non-specialist, and is also an
introduction to some technical aspects for those who wish to apply the methodology
themselves. As often happens in new technology fields, the training tends to be centred
around a particular computer product, and the student is required to wrestle with thick
manuals that deal with very specific tasks at the expense of viewing the problem as a
whole. Here we have avoided as much as possible the jargon and myopia of technical
manuals, and have tried to provide a general guidebook, as suggested in the title. The
document could be used effectively in a GIS course, in conjunction with laboratory
exercises using a specific GIS and/or image processing software.



1.2. ROLE OF GEOGRAPHICAL INFORMATION SYSTEMS

One of the most significant developments in the computer handling of spatial data is the
rise of what are now known as geographical information systems (GISs). There are many
definitions of GISs, but essentially a GIS is a computer system (both hardware and
software) for capture, storage, manipulation, visualization and analysis of geographically-
referenced data. GISs have been widely applied to a host of disciplines such as resource
assessment, municipal planning, transportation, marketing, forestry, epidemiology, and
many others. The common factor is simply the use of information about phenomena that
are distributed over the earth. Because the market for GISs is enormous and growing,
some very sophisticated software has been, and is continuing to be, developed that is
available at modest cost. This has led to the application of GISs in a variety of geological
applications, including mineral exploration and mineral resource assessment (Knox-
Robinson, 1992). GISs have not yet, however, been widely exploited by the geological
community (Wadge and Pearson, 1991). One of the reasons for this is that most GISs are
confined to handling 2-D data; some 3-D GISs have been developed ( Raper, 1989;
Turner, 1992; Pflug and Harbaugh, 1992), but they are not yet widely used, except by
some oil companies for analysis of sedimentary basins, and by some mining companies
for mine planning and development. Moreover, many of the problems faced by geologists
using regional data are confined to two dimensions, and 2-D maps have been the
traditional medium of information storage and communication.

Most geologists are more familiar with image processing (IP) systems than with GISs,
because IP systems have been around somewhat longer, and they have been widely used
for display and analysis of satellite images. There is sometimes confusion about the
relationship between GIS and IP. Image processing systems are computer systems for the
input, manipulation, analysis and visualization of raster images. Images can come from a
variety of sources and scales, including non-geographical subjects like medical images and
images of thin sections of rocks. On the other hand, if the images are satellite images or
rasterized maps of various kinds, and where the data are geocoded (i.e. the geographical
location of the pixels is known), then an image processing system is a type of GIS.
However, a full-fledged GIS is more than a raster image processing system, because it
has additional capabilities for handling vector as well as raster data, it uses a database to
store and access the attributes of spatial objects and it can transform data between a
variety of data structures. An IP system is often used as a GIS where the spatial data to
be manipulated consist of raster images. Many IP systems now provide functions for
handling vector and tabular data, and conversely, GISs that started life as vector systems
now handle raster images, so that the distinction between an IP and a GIS is blurred.

There are a wide variety of other types of computer programs for handling and
manipulating spatial data, many of them available for personal computers. We will briefly
mention computer-aided drawing or design (CAD) systems, desktop mapping systems and
contouring packages. Although these programs can be very useful in their own right, any
one package on its own does not provide the same range of functionality as a GIS.

CAD systems are for capturing and manipulating drawings. Point, line and polygon
objects are stored in a vector format. Some very effective geological mapping software,
such as FIELDLOG (Brodaric and Fyon, 1988) is based on linking CAD to a relational
database management system. FIELDIL.OG, and other programs of its type, are suitable
for field capture of geological maps and provide one type of input to a GIS. A CAD
system is like a part of a vector GIS. CAD software is highly developed and has very
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good display capabilities, but on its own is neither designed to carry out spatial analysis
nor to use raster data types.

Desktop mapping systems are for the selective search and display of information from
spatial databases. They are not designed for database-building, but can be useful for
providing low-cost and effective access to an already-built GIS database.

Contouring packages are designed to take point sample data, and to produce contour maps
and raster images of surfaces fitted to one or more variables. The data might be depth to
bedrock at a series of well locations or gravity values, for example. There are some
excellent programs of this type. This functionality is also found in GISs.

Figure 1.1 summarizes some of the various computer software packages used for spatial
data handling.

1.3. DEVELOPING A SPATIAL DATABASE

This topic is taken up in greater detail in a separate chapter, but is introduced at this stage
as a means of providing a brief overview of the typical availability and initial treatment of
source data. Suppose that a mineral potential project is to be carried for a region where a
geological map is available, in addition to geophysical survey data, geochemical survey
data from stream sediments, and information about known mineral occurrences. Briefly
let us sketch out the sequence of steps in creating a spatial database from these typical
data types, showing where GIS and IP tools come into play.

1. Geological map. A geological map might be digitized using a table digitizer, under the
control of GIS digitizing routines, or through CAD-related software like FIELDLOG.
This produces vector data, i.e. a series of point, line and polygon objects represented as
strings of geographical coordinate pairs, plus information necessary for georeference
purposes. Each object is also associated with various kinds of attributes. Each polygon

DATABASE
MANAGEMENT
SYSTEMS
COMPUTER (DBMS)
AIDED IMAGE
DRAWING PROCESSING
(CAD) {ap
I VECTOR RASTEl_zl
GEOGRAPHICAL
DESKTO?P INFORMATION GEOSTATISTICS
MAPPING SYSTEMS
(GIS)
CONSTRUCTING
DESKTOP GENERAL SURFACE
PUBLISHING SPREADSHEETS STATISTICS MODELLING

FIG. 1.1. Types of computer software for spatial data.
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object on the geological map, for example, is described by attributes such as the name of
the geological formation, its age and lithology, its metamorphic grade, type of alteration
and so on. Attribute data are held in tables, and form part of a GIS database. If an IP
system is being used, vector data may be converted to raster format for analysis.

2. Geophysical surveys. Geophysical data may originally be in the form of point
measurements along profiles, such as flight-lines, or may already have been pre-processed
as raster images. Specialized contouring software is used for interpolation and production
of raster images, or similar routines can be found in a GIS. Each raster image is
composed of a rectangular array or lattice of small elements or pixels. The geographical
location of a pixel is known (or can be calculated) from its row and column coordinates.
Each pixel also has a value, often a positive integer in the range 0-255, reflecting the
intensity of the mapped variable. Pixel values can also act as pointers to records in an
attribute table, i.e., the pixel is treated as another type of area object possessing multiple
attributes. Commonly, however, a separate raster image is needed for each variable, such
as total magnetic field, radiometric thorium, or Bouguer anomaly. IP systems are well
suited to handling geophysical images and satellite images such as LANDSAT and SPOT.

3. Geochemical surveys. Geochemical data are usually available as a digital table, each
record being a sample, with columns or fields containing spatial coordinates and chemical
attributes. Such data can be left as point objects, linked to the table of attributes, or can
be transformed into a mapped surface in various ways. The surface can be represented by
interpolating on to a regular lattice, forming a raster image, with the gridding part of a
contouring package. Alternatively each point can be associated with a polygon object,
such as stream drainage basin, and linked to the same chemical attribute table as the
sample points. This can be handled either in vector or raster mode, depending on the
GIS. With an IP system, a separate raster image must be made for each geochemical
element.

4. Mineral occurrences. Mineral deposits, showings and occurrences are usually input as
a digital table, like the geochemical data, except that each occurrence remains a point
object and does not form part of a piecewise or continuous surface. In vector mode, the
occurrence stays as a point, linked to its attributes. In raster mode, sometimes each
occurrence is converted to a pixel, forming a sparse mineral occurrence image where
most of the pixels are empty and are coded with a null value.

Most of these and other data types (such as digital elevation data, drainage networks,
political boundaries, land-use data, soil maps, vegetation maps) are not all available from
a single source. It would be most convenient if all the data were accessible in one place
(‘one-stop shopping’) in data formats that were consistent and well-documented. Although
standards are being developed, there is no consistent set of interchange standards for
spatial data in general use, at least at present. This means that assembling the available
data into a consistent database, with each map layer being properly registered and in a
consistent form, is a time-consuming and important step in any spatial data integration
project. It would be convenient if all the relevant data was stored in one comprehensive
GIS database, but building and maintaining such an information system is very expensive.
At least in the near term it is unlikely that any country will assemble all the relevant
spatial data at the scale and in the variety needed for mineral exploration into a single
consistent GIS database. The cost is too great for the frequency of use.
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After a specific spatial data integration project is complete, the database and the various
derived maps from it are generally ‘mothballed’ rather than being maintained in any
active status. Mothballing , or archiving, consists of transferring the whole project on to a
mass storage device such as a tape, disk or possibly a compact disk (CD).

1.4. GENERALITY OF APPROACH

Three major steps in the spatial data integration process can be identified, see Fig. 1.2.
The steps are (1) build a spatial database, (2) carry out spatial data processing and (3)
apply integration models. Visualization is a particularly powerful and important activity
which comes into play in both step 2 and step 3. Some of the aspects of digital data
capture and data representation in step 1 have been briefly mentioned in Section 1.3. The
spatial data processing of step 2 covers a wide variety of activities, dealing mainly with
the pre-processing , analysis, enhancement and classification of data layers, see

Chapter 3. Pre-processing includes data editing and geometric transformation to a
working geographical projection, as well as transforming between data structures—vector
to raster or raster. to vector for example. This processing stage, coupled with the
visualization of data mainly in geographical space, but also in other views such as
scatterplots, variograms, power spectra and histograms, is vital for identifying spatial
associations and for selecting and enhancing particular data layers to be used for the third
step. Step 3 involves the application of models for combining or integrating layers. In the
case of mineral exploration, the layers that are extracted and enhanced in step 2 are
generally the data to be used as evidence in support of mineralization. The models for
combining the evidence can be grouped into a number of types, such as data-driven
versus knowledge-driven. The former are mostly statistical, whereas the latter use expert
knowledge as the basis for combining spatial evidence.

One important factor that should be stressed is that a conceptual model underlies the
whole spatial data integration procedure. In a sense, this conceptual model provides
implicit guidelines at each step in the process, in selecting suitable data sources in step 1,
in suggesting the appropriate enhancements and likely associations in step 2, and certainly
for the selection and weighting of evidence in step 3. For mineral exploration and
resource assessment this conceptual framework is supplied by mineral deposit models.
Before discussing how deposit models are applied here, consider first the difference
between mineral exploration and mineral resource assessment.

Mineral exploration is the process of locating undiscovered mineral deposits. Exploration
can be carried out at various spatial scales. At a small scale, say 1:250 000, exploration
using integration methods involves using all the available evidence to identify regions or
tracts that have a high potential for undiscovered deposits. An exploration team uses such
an approach to plan detailed fieldwork and data collection for a second stage at a larger

(SEE B |

BUILD APPLY
SPATIAL - DATA INTEGRATION
DATABASE PROCESSING MODELS

FIG. 1.2. Spatial data integration as a three step process.
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scale, say 1:20 000. Again, regions showing elevated potential are identified, as the basis
for further detailed follow-up. The final outcome, possibly after further cycles of data
gathering and assessment, is the selection of drilling targets. Mineral resource assessment,
on the other hand, roughly corresponds to the first stage of mineral exploration, i.e. the
selection of promising regional tracts. It is also often associated with an actual prediction
of the number, size and possible monetary value of mineral targets. Mineral resource
assessment is carried out mostly by governments, who require the information for policy
and planning. Exploration can be carried out either by the private sector or by
government organizations, depending on the political and economic structure of the
country concerned. The process of identifying various tracts according to their
favourability for mineral deposits is also called mineral potential mapping. The
application of mineral deposit models is important both in exploration and resource
assessment.

Mineral deposits can be grouped together into deposit types depending on the similarity of
various geological characteristics. A group of similar deposits can be represented by an
ideal deposit, having all the significant characteristics that distinguish one group from
another. This ideal deposit may not actually exist, but the sum total of its characteristics
constitute a deposit ‘model’. Many different deposit models have been identified and
summarized, as illustrated by Cox and Singer (1986) and Eckstrand (1984), among
others. In exploring for deposits, or assessing a region for mineralization, a number of
different deposit models may be applied. In each case the diagnostic characteristics are
employed both to assess the affinities of prospects of unknown type, as well as to guide
the spatial integration of regional datasets. In the PROSPECTOR expert system, as
described by McCammon (1989, 1990), the characteristics of deposit models are
embodied in a knowledge base that is used to evaluate prospects whose attributes are
elicited from a user in a question and answer session. The output is an evaluation of the
most likely deposit model.

In both the traditional and computer-based spatial integration of regional datasets, deposit
models play a vital role. Depending on the deposit model or models appropriate for a
particular region, particular datasets are chosen for building a spatial database. The
selection and enhancement of particular features, in step 2 of the integration process, is
particularly affected by the deposit model under consideration. Finally, the degree of
weighting of individual layers of evidence is governed by their relative importance for the
particular deposit model at hand. At present, there is no body of literature comparable to
that describing deposit models to guide the integration procedure for environmental
studies.

1.5. THE ROLE OF INTEGRATION MODELLING

Having built a multi-layer spatial database, -and having analyzed, selected, ‘massaged’,
and enhanced the information into particular layers of spatial evidence to be used for
prediction, or to characterize and help understand environmental phenomena, the final
step is to combine the various layers together. The combination process is controlled by
an integration model. An integration model is a symbolic model, using mathematical and
logical symbols to combine data layers together. It usually takes the form of a set of
rules, or equations, that relate a set of input maps to an output map. This kind of
modelling process has also been called map, or cartographic, modelling ( Tomlin, 1990).
The integration process can either take place using modelling tools within a GIS or IP
system, or can be carried out in a separate customized computer program operating on the
same database files.
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Integration models can be a number of types. In this report we distinguish between
descriptive and predictive models. Descriptive models are exploratory in nature, and
combine the input maps without any specific predictive goal in mind. Predictive models,
on the other hand, use combination methods that attempt to predict mineral potential, or
environmental factors such as the effects of acid rain. In practice, such models are usually
only partly successful at best, because of the complex nature of these problems, but they
do provide consistent repeatable outcomes to a particular set of assumptions, and they are
able to consider the spatial coincidence of many factors simultaneously.

It is emphasised that much of the analysis and understanding of the relationships between
spatial data sources comes from their visualization. As in the field of exploratory data
analysis in statistics, many of the insights gained from an integrated study come from
viewing the data in different ways. This is where the graphical tools of computers are so
powerful. Not only are the colour graphics important, but also the ability to explore the
dataset interactively. Interactive interrogation of spatial data using the cursor and pointing
to particular locations or objects, with requests about any of the data layers or their
attributes, is enormously helpful. Not only can the data about a particular location be
displayed in a separate window on the screen, with instant update as the cursor is moved,
but also some systems allow model evaluation ‘on the fly’, so that a model can be
checked in critical areas, giving important insights about the effects of particular
combinations instantaneously. The computer tools of visualization and query can be
thought of as the electronic equivalent of browsing through stacks of maps on a light
table.

In terms of predictive modelling of mineral potential, there are two major lines of
approach. One is to use the knowledge of experienced exploration geologists directly for
modelling, the other is to use a statistical approach to calculate parameters for a model
using known mineral deposits in a training area. Although the statistical approach is
attractive because it is the most objective, it has the drawback that the training area used
to estimate the model parameters is often inadequate. For example, the exploration may
be incomplete, the known deposits are usually few in number and difficult to classify
according to the correct deposit model, and the training area is not sufficiently similar to
the prediction area. On the other hand, the expert system approach is attractive because
deposit model criteria can be explicitly used and it appeals to many practicing geologists
because it simulates their own thinking. However, the process is very subjective, the
model parameters are ‘guesstimates’ and must be adjusted for each project area. Hybrid
methods that use both statistical and expert system concepts together offer a promising
compromise, as discussed in detail in Chapter 5.

1.6. IMPORTANCE OF DATA

The adage ‘garbage in-garbage out’ (GIGO), often used to describe the indiscriminate
application of multivariate statistics to trashy data, certainly holds also for spatial data
integration. It cannot be emphasised too strongly that the interpretation of the results of an
integration study hinges strongly on the careful selection of good data.

There are numerous kinds of errors that can effect the quality of spatial data. Errors of
spatial mis-registration, errors of classification, errors of measurement, errors due to poor
matching of adjacent sheets, measurement errors, interpolation errors, and the list goes
on. Two important types of information about data quality ideally should be associated
with each dataset. The first is metadata, i.e. data about data. For example, the metadata
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associated with a geochemical dataset might include a detailed description of sampling
methods, data preparation and analytical methods, as well as date of collection, the name
of the field party, the name of the analytical laboratory, and so on. The metadata should
allow any future user to be fully aware of the provenance and history of the data. The
second type of information relates to the spatial variation of data quality, and is ideally a
map that accompanies the ‘parent’ map. For example, a geochemical map of zinc
variation in soil might be accompanied by a map showing uncertainty due to interpolation,
such as the kriging variance. The subject of the effects of errors in data and their
propagation through a GIS is relatively undeveloped, although a recent book summarizes
some of the research on the subject (Goodchild and Gopal, 1989). At present, the best
guard against being mislead by bad data is to get a close understanding of its limitations
by display, interactive interrogation and a common sense evaluation of the results (Knox-
Robinson et al., 1992).

1.7. DOCUMENT OUTLINE

Chapter 2 discusses a number of aspects of spatially distributed data, including data
capture, data representation, and its management in data systems. Visualization of data
both on computer monitors and in hard copy are introduced in Chapter 3. Chapter 4
covers the basic methods of image processing. Chapter 5 covers some of the important
aspects of integration modelling. Three of the methods, using fuzzy logic operators,
weights-of-evidence calculations and logistic regression, are illustrated with an application
to gold exploration in Nova Scotia. The technical requirements needed to undertake
spatial data integration projects, from both the hardware/software point of view and most
importantly the staffing needs, are outlined in Chapter 6. Three case studies are illustrated
in Chapter 7: (1) Data integration and GIS modelling in the Northwest Territories of
Canada; (2) Remote sensing and GIS in mineral exploration in central western Spain;

(3) Gold prediction in NE Finland. Chapter 8 ponders the future, in terms of the impact
of trends in hardware.
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2. SPATIALLY DISTRIBUTED DATA
2.1. DATA SOURCES AND DATA CAPTURE
2.1.1. Earth science data

In the earth sciences, one of the basic tasks is to describe and interpret phenomena
through observations in the field. Observations consist of lists of characteristics (e.g.,
rock type and composition), measurements (e.g., strike and dip of layers), and
relationships between observations at different locations. Samples of rock or of soil are
collected to be later analyzed in a laboratory. By necessity, direct observations in the field
are restricted to small areas and their positions are annotated on topographic maps or on
aerial photographs for later compilation into thematic maps. Aid to this task is the
analysis and interpretation of aerial photographs, satellite images, geophysical and
geochemical maps which provide a spatial context. Accurate geographical positioning is
vital in spatial integration studies.

According to Aronoff (1989, p. 1), a geographical information system (GIS) "is designed
for the collection, storage and analysis of objects and phenomena where geographical
location is an important characteristics or critical to the analysis". Such a definition puts
the emphasis on the analysis which can be performed on spatial datasets. A GIS is seen as
a decision-making tool where geographical representation is essential. In addition, the
reference to phenomena implies modelling of spatial processes. Indeed, in the earth
sciences, the spatial distribution of objects and phenomena is a consequence of the
processes that generated them and it can be characterized for genetic interpretations. For
example, we can observe that landslides tend to occur at particular locations where the
geological, morphologic, topographic and hydrologic conditions are such that erosion
processes and the gravity field are likely to generate sliding. Similarly, soil acidity
reaches high values in the vicinity of coal refineries and metallurgical plants due to the
process of releasing acid fumes in the air, or volcanogenic massive sulphide deposits
occur in the vicinity of volcanic centres due to the process of submarine volcanic activity.

By modelling the position of geological objects in space and in time, it is possible to
recognize relationships that can be used to predict the location and the impact of the
phenomena analyzed. Spatial distribution may be characterized by the relative position
between objects and on their absolute locations. Examples of relative positioning are
concepts such as: ‘coinciding in position with’, ‘within a certain distance from’, ‘adjacent
to’, ‘contained in’, ‘oriented in direction ... with strength.’ Therefore, topology, shape,
orientation and distribution are fundamental spatial concepts, although the absolute
locations of objects are also critical for digital representation of spatial features. Position
in space, however, is only one aspect of geoscience data. In combining spatially
distributed data, a clear modelling rationale must be developed that physically and
genetically relates phenomena with spatial relationships. Failure to do so, reduces spatial
correspondence to an unexplained coincidence which is of little predictive utility.

Typically spatial data in the earth sciences consists of field notes associated with
observation points, measurements made with field instruments (including airborne and
satelliteborne instruments), features being plotted on maps and photographs (pointform,
linear or areal). Also common are features from previously produced maps, tables, and
digital files, e.g., geophysical or other remotely sensed data. In collecting the
information, however, the earth scientist simultaneously generates spatial and non-spatial
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data. The latter type of data consist of observations, which can be associated with a
location but which are themselves non-spatial in character, such as a variety of sample
attributes (mineral composition, texture, compactness, etc.). Spatial attributes of objects
usually require different management and processing as compared to non-spatial
attributes, particularly when the spatial objects are lines and areas. The elementary objects
in spatial characterizations are points, segments, bounded areas or polygons, surfaces and
volumes.

A distinction can be made between spatial objects with sharp boundaries, such as rivers,
lakes or city limits, and spatial objects represented by continuously varying values, such
as topographic elevation surfaces or gravity and aeromagnetic fields, which are
represented as interpolated surfaces (or volumes where 3-dimensional data are available),
e.g., ore body grade characterization by drilling. Also, in some applications where time-
dependent data are available, process dynamics can be represented.

Processing non-spatial data consists of selective retrievals and of computations in which
the values associated with spatial objects are considered independently of their spatial

characteristics. In many instances, a spatial manipulation is performed to obtain only the
non-spatial attributes of a given subset of spatial objects. The non-spatial data are stored
in tables which are generally separate from, but which are linked to, the spatial objects.

Computer processing methods must manipulate the data according to the spatial and non-
spatial characteristics, the data type (nominal, ordinal, interval and ratio), the temporal
character, and finally, the confidence or uncertainty that is associated with the data.

2.1.2. Data and information

Spatial data of many different types and provenances are now available to the
geoscientist, who has to cope with enormous data volumes in order to take decisions
about further mineral exploration efforts, and about assessing geological hazards or
environmental impacts. A realistic view of the dilemma facing the decision maker is
represented by the diagram in Fig. 2.1 (after Griffiths, 1974) showing the quantification
future of geoscience. The development of a multitude of new sensors has provided an
enormous amount of new data which has to be decoded, deciphered and manipulated in
order to be interpreted and used in the earth sciences.

At present, with the development of GISs and of fast data capture techniques, even more
data is available for spatial analysis. An important question is then the following: "What
should we do to the data to obtain or extract information?" For instance, how can we use
spaceborne or airborne images for mapping or for setting up an exploration strategy? Raw
images have to be enhanced, corrected geometrically and spectrally, and photointerpreted.
In the end, the results of such interpretations will be used in the decision-making process.
Digital imagery is often seen with suspicion by geologists who are uncomfortable about
the poor locational accuracy of the images or of the results of automatic classification.
Map products, however, are no better in accuracy, since they are the results of fieldwork
and of photogrammetric work which also have a statistical accuracy, i.e., a probability of
being positionally correct within a given distance from the true location! It is still
uncommon to have accuracy designation accompanying topographic maps.

Since the development of systematic approaches with GISs, the need has grown to analyze
map accuracy and reliability before digitization. The main question, then, is the
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FIG. 2.1. Proliferation of processes for data gathering (after Griffiths, 1974, p. 89,
Fig. 3).

following: "What is the information content of a map?" On any map, some objects are
bound to be symbolically represented, other objects are true-to-scale, other objects are
interpretations of the map maker, therefore, they are generalized in such a way that it
becomes a specialist’s job to capture the proper information from the map. This is
particularly important if a computerized map has to be used for purposes other than the
one for which it was initially made.

For example, on land property (cadastral) maps, boundaries of building blocks are
absolute, so are river banks or the limits of existing public parks. In the earth sciences,
however, map unit boundaries may be relative to the author’s interpretation or may have
a variable meaning either due to the characteristics of the map units in the legend, or to
the sharpness of the contact between the units. Some contacts may represent gradual
transitions, other ones may be inferred transitions, other ones may be sharp transitions
and easily observable. For this reason, it becomes the earth scientist’s dilemma to decide
whether it is useful to digitize an existing map in a GIS or it is preferable to construct a
new map from scratch. The latter option is generally ruled out due to cost!

Acknowledging that a map represents a certain degree of generalization by its author,
who has introduced his interpretation skills for synthesis, it is possible to disaggregate the
elementary components of a map and then recombine them for other purposes? How do
we separate interpretation from factual data? How do we evaluate the degree of
generalization? What is the uncertainty associated to the data in a map?

An example of a research effort to provide more usable maps for GISs is the initiative of

the Italian National Geological Survey in the computerization of geological mapping for a
1:50 000 new multiuse geological cartography (CNR-SGN, 1991). A guide was published
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which proposes rules and standards for transferring field data in numeric form to
construct a database associated with each map and with the development of different
themes (e.g., sedimentary or volcanic environment, or the understanding of the
Quaternary deposits, or of geomorphologic hazards). In particular, the guide proposes to
distinguish the mapping units according to their degree of objectivity in three categories:

(a) directly observable units (and those termed objective or para-objective;
(b) deduced units; and
(c) subjective and/or conventional units.

Clearly, such an approach is facilitated by using a GIS for storage and management of the
data and of the associated degrees of objectivity.

Steps in the direction of institutional development for systematic capture of data in the
field for geological cartography and GIS processing, have resulted in a new mapping
approach at the Geological Survey of Canada (Brodaric, 1991; GSC, 1991). Data are
stored in portable microcomputers during the fieldwork and all desirable elementary
characteristics, including absolute location, are captured and stored for later selective
representation either as symbolic, numeric or alphabetic objects. They can then be
processed towards the identification of special themes. FIELDLOG is a relational
database management system designed for geological field data capture (Brodaric and
Fyon, 1989).

The annotation of the uncertainty associated with map data is not new in engineering
geology where, for the purpose of assessing the suitability of different terrains for
engineering uses, special attention is given to the transitions between mappable units
(Varnes, 1974) and different weights can be associated with different transitions or
contacts. Also, in mineral exploration, early applications of expert systems for ‘drilling
site selection’ such as Prospector, allowed for different degrees of confidence or belief to
be associated with map features such as faults and contacts, or geochemical anomalies
(Duda et al., 1978; Duda, 1980).

Such approaches are now more readily implemented with GISs. The assessment of
uncertainty associated with map data is often now a prerequisite to the construction of
thematic maps.

Burrough (1986) discussed data quality in GISs, and the sources of errors and of natural
variation which can affect a database and the resulting analytical work. Table 2.1 lists the
possible factors controlling errors that are associated to data products in GISs.

Drummond (1987) proposed different procedures to express in probabilistic terms the
quality of maps obtained within a GIS by processing data using mathematical and logical
models. In her work, quality parameters for interpolated point samples and for maps with
boundary lines were developed. The superposition of the results obtained by different
photointerpreters in the analysis of the same material was used to compute the percentage
probability of correct assignment to a bounded area. Visual representation of the results
of such a probabilistic procedure is likely to be of usefulness to planners. Data quality
and error propagation are two of the major research topics in GISs today.

2.1.3. Quantification and digitization

The previous section has discussed the transition between data and information, the latter
being still data, however, with a specific meaning in operational terms so that it can be
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TABLE 2.1. SOURCES OF POSSIBLE ERRORS IN GISs
(after Burrough, 1986, p. 104, Table 6.1)

I. OBVIOUS SOURCES OF ERROR

1. Age of data 13 January 1994

2. Areal coverage - partial or complete
3. Map scale

4. Density of observation

5. Relevance

6. Format

7. Accessibility

8. Cost

II. ERRORS RESULTING FROM NATURAL VARIATIONS OR FROM
ORIGINAL MEASUREMENTS

9. Positional accuracy
10. Accuracy of content-qualitative and quantitative
11. Sources of variation in data:

data entry or output faults, observer bias, natural variation

III. ERRORS ARISING THROUGH PROCESSING

12. Numerical errors in the computer:

the limitations of computer representation of numbers
13. Faults arising through topological analyses:

misuse of logic problems associated with map overlay
14. Classification and generalization problems:

methodology class interval definition interpolation

used for analysis or in a decision-making process. Indeed, the fundamental task in the
application of GISs is the quantification of data into a computer processable form. It is
essential, before computerization to identify operational entities to be spatially located and
characterized with additional non-spatial attributes. Geometrical entities with several
dimensions such as points, segments, polygons, surfaces or volumes, need to be uniquely
classified as sensible operational units or classes for the construction and management of
a spatial database. For instance, a basic operational unit for polygons in geomorphology,
is a terrain mapping unit or TMU. Each unit during field verification and from
photointerpretation, has uniform characteristics while being clearly distinguishable from
different adjacent units (Meijerink, 1988). TMUs can only be subdivided further using
information other than the one used for their classification. As such, they represent basic
entities that should be easily described and managed in a spatial database. New, broader
units can be generated by the process of generalization, or smaller units can be obtained
by the process of regionalization in which additional layers of spatial information are used
to generate a more specific theme. TMUs are then the end result of analyses and
interpretations, therefore, their information content is known and their useability when
they are in computational form can be anticipated.

Similar consideration can be made for all other geometric entities in a spatial database.

We can consider quantification the process of identification of such operational units,
while digitization is the process of transforming such units from an analog form into
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digital form. In short, "we must tell the computer what is what and what it is, spatially
and topologically" (Robinove, 1989).

Digital data represent the input to the computer. As illustrated in Fig. 2.2, in a GIS we
can identify the basic components as follows: (a) an input sub-system for data capture and
storage; (b) a management sub-system to structure, query and handle the data; (c) an
analysis and modelling sub-system to study and interpret the information; and (d) an
output sub-system to render spatially and otherwise the results in interpretable and usable
ways for decision making. Some spatial data may already be in digital form, such as
Bouguer gravity, aeromagnetics or digital elevation, while other data might have to be
digitized from original spatial representations (e.g., from maps).

There are numerous ways to capture spatial data in a computer. Typically, in the case of
line data (such as boundaries of orebodies, rivers, coast lines, contacts between crystals)
the lines are extracted by constructing a map for each required type of line (which is then
scanned separately) as shown in Fig. 2.3(a), or the lines are extracted by human operator
while the computer is recording the X-Y coordinates of the tracing stylus, as shown in
Fig. 2.3(b). Various combinations and modifications of these two input methods are used.

The scanner, in contrast, produces a systematic two-dimensional raster or matrix of
numbers. As it can be deduced from Fig. 2.3(a), each element of the matrix corresponds
to the amount of reflected light from a small area, dA. The area dA is called a ‘pixel’ or
picture element. Normally, the signal from the light sensor is thresholded to give a binary
number of zero (0) or one (1) for each pixel: for example, 1 = sensor is located over a
dark region, such as is over a line, and 0 = background. The resultant matrix of zeros
and ones is usually termed a binary image or a binary picture. The data entered in this
situation are intrinsically two-dimensional. Scanning can also provide greyscale or colour
raster images as sets of red, green and blue components.

IMAGES | IMAGES
MAPS MAPS
DATA INPUT DATABASE DATA

MANAGEMENT ANALYSIS
| SUBSYSTEM lqpei SUBSYSTEM [gqm MODELLING
OUTPUT
REPORTS SUBSYSTEM REPORTS
TABLES / TABLES
RASTER VECTOR ATTRIBUTES

spatial databases

FIG. 2.2. The basic components of a GIS.
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FIG. 2.3a. A highly simplified schematic diagram of the digitizing process using a
television camera or scanner. An optical image of the map M is focused onto a light-
sensitive surface S in the camera C. The digitizing process quantizes the signal in space
(X,Y) and amplitude, and creates a digital image which is a matrix of numbers. The
numerical value of each picture element P (of I(x,y)) is proportional to the average light
reflected from a small area dA on the map in the location corresponding to P.
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FIG. 2.3.b. A highly simplified schematic diagram of the digitizing process using a
graphic-tablet digitizer. The map M is mounted onto a tablet T. The tablet contains a grid
which quantized the X and Y directions in steps of delta X and delta Y. The XY position of
the stylus S is read with the spatial accuracy of delta X, delta Y. As the stylus S is moved
along some trajectory on the tablet, the computer receives a string of X-Y coordinate
pairs of vectors V.

24



Once the visual aspect of the elementary components of spatial data has been digitized,
what remains to be done is to make sure that the computer ‘understands’ data types,
topology and attributes within an error free processable data structure. This requires
checking and correcting digitizing errors, linking of point and/or segments to generate
polygons, point or line interpolation to generate surfaces or volumes, and the association
of tables of attributes to the individual points, line segments, polygons, etc., i.e., the
construction of a spatial database. This task is generally the most time consuming stage in
the construction of a database.

In some systems an interaction with the spatial data is possible for on-line interpretation
(e.g., screen digitizing) or image editing for better control of the stored data and for the
preparation of inputs for analysis.

2.2. DATA REPRESENTATION
2.2.1. Data structures for non-spatial data

Database management systems, or DBMSs, are computer programs for storing,
manipulating and retrieving items from collections of data files stored in a structured
fashion and termed a database. In a database, the interrelationships coded between
different sets of data are used for processing and retrieving. In general, a DBMS assumes
the existence of many users, and the absence of unnecessary redundancy which would
complicate management and updating. While the physical description of a database deals
with the location of the various parts of the database in the computer, it is the logical
design that represents the user’s view or conceptual model of the relationships between
the datasets stored in the database.

A common approach in database design is the entity-relationship model of Chen (1976).
In order to illustrate this model, suppose that we have constructed a database of mineral
deposits for an area of interest. A deposit entity set represents the generic structure of the
object or entity described. Each deposit represents an entity which has a number of
attributes (e.g., location, name, type of mineralization) each with a range of possible
values, such as UTM coordinates for location.

We can also define relationship sets, such as deposit ownership, mineral commodities
present, or association of host rocks to the ore, which allow the creation subsets and
retrievals. Specific relationships between entity sets are classified as one-to-one, one-to-
many, and many-to-many mappings. For instance, one company may own one deposit,
another company might own more than one deposit, or each deposit may produce several
commodities which are present in several mineral assemblages.

Figure 2.4 illustrates one example of an entity-relationship model for a mine owner
database. Table 2.2 lists some of the data extracted from Roscoe (1984) who described
several mineral occurrences in a frontier area of the Northwest Territory of Canada. In its
present form, Table 2.2 represents a relational database from which it is possible to
extract information by performing operations between tables (termed relational joins). For
instance, a relational operation is possible between the mine owner’s table and the
occurrence table to associate owner names and occurrence names, or between the
commodity table and the occurrence table to associate mapping symbols to latitude and
longitude on a topographic map.

25



A relational database contains relationships between entities directly represented as tables,
as it was done for the Occurrences—Commodities table in Table 2.2. The simplicity of
such a representation is evident.

The requirements for a true relational database are that the tables have the following
properties:

(i) rows cannot be duplicated (i.e., an entity set cannot have rows whose entire contents
of values are identical);

(ii) each row must be unique and is identified by a ‘key field’ , column or columns;

(iii) no key field column(s) can have null values.

Also, a relational database must contain a minimum amount of data redundancy to allow
the join operations. Codd’s (1970) theory of ‘normal form’ establishes the rules of
relational database construction. Recent progress in software development have now made
this database structure sufficiently efficient for general widespread use. Another type of
data structure is the hierarchical data structure system in which a given entity set is the
root of a tree and a set of parent-child pointers allow linkages from level to level of the
hierarchy. Figure 2.5 shows this tree structure for the example of mine owner database in
Table 2.2. As can be seen in the illustration, such a structure requires the repetition of
attributes for each entity. While this structure is easier to construct, and to handle one-to-
many relationships, the many-to-many relationships (which cannot exist in the hierarchical
data structure) are much more cumbersome to handle as exceptions. In the relational
database structure many-to-many relationships are avoided altogether by the construction
of several one-to-many relationship tables. Other types of DBMS structures have been
developed in the past or are still being used in some systems (Healey, 1991), however,

OoOwhers <--—-ENTITY SET

1

<----RELATIONSHIP SET

M |

<--ohe-to-many
Occurrences mappling
M
M
<--many-to-many
mapping
N

Commodilties Minerals

FIG. 2.4. The entity-relationship model for the mine owner database in Table 2.2.
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relational databases seem to be the most widely adopted at present. The relational data

structure is also common for spatial data. For instance, the column Polygon in Fig. 2.10,

links the mineral Dep. # and Name to a graphic database in which a geological map has

been stored.

TABLE 2.2. THE STRUCTURE OF THE MINE OWNERS RELATIONAL

DATABASE

The Mine Owners Table

Owner_# Name Year_of activity
1 Cominco 1976
2 Trans-Canada 1968
3 Roberts 1964
4 Noranda 1977
The Occurrences Table
Occ._# File # Name Lat. Long. Owner # NTS #
1 061589 POMIE 66 10’ 107 02' 1 761/3
2 502678 COT 66 42' 10" 107 26" 40" 2 76J/11
3 502693 PISTOL L. 67 03’ 108 47' 3 76N/2
4 506486 TURNER L. 67 14’ 108 57" 30" 3 76N/2
5 080737 YON 66 35’ 107 28’ 4 76J/11
6 061590 JWC 66 35’ 108 00’ 1 76J/12
The Commodities Table The Minerals Table
Comm. # Name Symbol Min._# Name
1 gold Au 1 uraninite
2 copper Cu 2 pyrite
3 uranium U 3 chalcopyrite
4 nickel Ni 4 itchblende
5 cobalt Co 5 ornite
6 malachite
7 hematite
8 arsenopyrite
9 pyrrotite
10 niccolite
11 sofflorite
12 gersdoffite
13 galena
14 gold
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TABLE 2.2. (cont.)

The Occurrences_Commodities Table The Occurrences Minerals Table
Occ. # Comm._# Occ. # Min. #
1 3 1 1
2 1 1 2
2 2 1 3
3 1 2 2
4 4 2 3
4 2 2 8
4 6 2 9
4 5 3 2
4 1 3 8
5 3 3 9
5 2 4 2
4 3
4 8
4 9
4 0
4 11
4 12
4 13
4 14
4 15
5 1
5 3
5 4
5 5
5 6
5 7

OWNER # 3 [

= EEA A

FIG. 2.5. The tree structure of the hierarchical model for the mine owner database in
Table 2.2.
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2.2.2. Spatial data structures

This section describes the most common data structure used in GISs. The user’s
perception of a phenomenon that actually exists or the human conceptualization of reality
has to be represented and stored in a complete database. There are several ways of
organizing these geographical data in a computer. The data model of the earth or the
description of entities and their relationships are represented in terms of basic entities
such as points, lines, areas and surfaces. The non-spatial data, or the sets of attributes
describing the scales of properties that apply to the entity, are stored usually in relational
database management systems. The spatial distributions of points, lines, areas and
surfaces are represented in digital form in two basic types of spatial models: tessellation
and vector models. Vector models have the line as the basic logical units in a
geographical context. A series of X-Y pointer locations along the line are recorded as the
components of a single data record. Points are recorded as lines of zero length, areas or
polygons constitute lines with common beginning and ending points. Tessellation or raster
models have as the basic data unit, a unit of space for which entity information is
explicitly recorded. The most common vector models are the whole polygon structure and
the topologic model.

In the whole polygon structure, or spaghetti model, shown in Fig. 2.6, each polygon is
encoded in the database as one logical record and it is defined by a string of X-Y
coordinates representing a closed area. This model is often used for applications that are
limited to the simple forms of computer-assisted cartographic production. In the topologic
model, shown in Fig. 2.7, the spatial relationships among entities are explicitly recorded.
The basic logical entity is a straight line segment that begins or ends at the intersection
with another line or at a bend in the line. Each line segment is recorded with the
coordinates of its two end points. In addition, the identifiers, or names of the polygons on
either side of the line are recorded, thus the more elementary spatial relationships are
explicitly retained and can be used for analysis. Moreover, the basic data are stored in a
non-redundant manner.

The main encoding schemes for the topologic model are:

(1) The Dual Independent Map Encoding (DIME) structure was devised by the US
General Bureau to store digitally urban areas with topologic information for
demographic analysis (US Department of Commerce, 1990). In the DIME file, each
line segment is spatially defined according to the definitions of the model, using both
street addresses and UTM (Universal Transverse Mercator) coordinates. The main
disadvantage of this model is that since segments do not occur in any predefined
sequence, the retrieval of any particular segment requires a sequential, exhaustive
search on the entire file.

(2) POLYVERT is an Arc-Node structure implemented at the Harvard Laboratory for
Computer Graphics (Peucker and Christman, 1975). This structure overcomes the
major retrieval difficulties by storing each type of data entity separately in a
hierarchical data structure. The basic entity is the ‘arc’, a sequence of straight lines
which begins and ends at a ‘node’. A node is the intersection point between two
arcs. Polygons are areas that are completely bounded by a set of arcs. The
hierarchical structure allows selective retrieval of only specific classes of data at
atime. Various attributes can be easily included and linked to the geometry.
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FIG. 2.6. Example of the whole polygon or ‘spaghetti’ data model. See data structure in
Table 2.3. Some authors use this term for vector data that is devoid of attributes, except
(x,y) coordinates.
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FIG. 2.7. Example of the topological data model. See data structure in Table 2.4.
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TABLE 2.3. STRUCTURE OF WHOLE POLYGON DATA MODEL FOR FIG. 2.6

FEATURE NUMBER NAME LOCATION (X-Y)

Point 1 drillholel 3,27

Point 2 drillhole2 13,28

Line 3 fault 2,16 14,22

Line 4 road 11,07,27,5 8,8 13,11 16,14 19,16
20,18 20,20 17,24 17,26 19,28 20,32

Line 5 river 2,04,7 8,11 6,12 6,15 8,16

Line 6 creek 2,12 6,12

Polygon 7 rockunit3 29,16 30,18 31,20 31,23 30,25 28,26
28,27 26,27 25,28 24,27 23,27 22,26
21,24 21,22 22,20 24,19 26,18 29,16

Polygon 8 rockunit2 24,19 22,17 21,26 20,14 19,12 19,9 18,7
18,5 21,4 23,4 24,6 24,8 25,10 26,12
26,16 26,18 24,19

Polygon 9 rockunitl 26,18 29,16 30,13 31,9 29,7 28,5 26,4
23,24 24,6 24,8 25,10 26,12 26,16 26,18

TABLE 2.4. STRUCTURE OF TOPOLOGIC DATA MODEL FOR FIG. 2.7

NODE ARCS ARCS NODE RIGHT LEFT
FROM TO POLY. POLY.
nl al al nl nl p0 pO
n2 a2 a2 n2 n2 p0 pO
n3 a3 a3 n4 n3 p0 pO
n4 a3 a4 n6 n5 p0 p0
n5 ad as nd n7 pO p0
né a4 a6 n9 nd p0 p0
n7 as a7 nl0 n8 p0 p0
n8 a5 a6 a7 a8 nll nl2 pl p0
n9 a6 a9 nl2 nl3 pl p3
nl0 a7 al0 n13 nll pl p2
nll a8 al0 al2 all nl4 nl3 p3 p2
nl2 a8 a9 al3 al2 nl4 nll p2 pO
nl3 a9 al0 all al3 nl2 nl4 p0 p3
nl4 all al2 al3
E(D)IIISYGON ARCS ARCS START COORDINATES (intermediate)
pl a8 a9 al0 al 3,27 3,27
p2 alQ all al2 a2 13,28 13,28
p3 a9 al3 all a3 2,16 14,22
a4 11,0 7,27,58,813,11 16,14 19,16
20,18 20,20 17,24 17,26 19,28 20,32
a5 6,12 6,15 8,16
a6 2,0 4,78,12 6,13
a7 2,12 6,12
a8 24,19 22,20 21,22 21,24 22,26 23,27
24,27 25,28 26,27 28,27 28,26
30,25 31,23 31,20 30,18 29,16
a9 29,16 26,18
al0 26,18 24,19
all 23,4 24,6 24,8 25,10 26,12 26,16 26,18
al2 23,4 21,418,518,719,9 19,12
20,14 21,16 22,17 24,19
al3d 29,16 30,13 31,9 29,7 28,5 26,4 23,4
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The relational structure, where the topologic data are organized similarly to the arc-
node model, but the non-spatial attribute values are stored in relational tables using
relational database management systems. The attribute data are stored in tables
where the columns are the different fields or attributes, and one table includes the
points or nodes of the spatial database. Several commercial general purpose
relational database management systems are available in the market.

The Digital Line Graph structure developed by the US Geological Survey. It is used
to compile the USGS topographic maps (7.5 and 15 minute series). The data
structure of these files is subdivided into different thematic layers. One consists of
boundary information, a second of hydrographic features, a third has a
transportation network and a fourth is based on the Public Land Survey System.

The main tessellation models are as follows: (a) grid, (b) nested, and (c) irregular
models.

(a)

(b)
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In the grid and other regular tessellations, square, triangular, and hexagonal meshes
have been used. The most widely used is the square grid. Figure 2.8 shows the
rasterization of the three polygons in Fig. 2.7. In this raster array, each cell is
referred by a row and a column number and a number representing the value of the
attribute being mapped. The origin of the raster is usually the upper left corner, but .
is sometimes the lower left. One of the limitations of a square grid is that the
distance between diagonal neighbours is not at the same distance as between the
neighbours in the four cardinal directions. In a hexagonal mesh all neighbouring
cells of a given cell are equidistant from the centerpoint of that cell. Radial
symmetry makes this model advantageous for radial search and retrieval functions.
Triangular tessellations have the disadvantage that not all triangles have the same
orientation, making several procedures involving single cell comparisons very
complex. However, this characteristic gives triangulation structures a big advantage
in representing terrain and other typical surface data. Hexagonal and triangular
tessellations have the disadvantages that they cannot be recursively subdivided into
smaller cells of the same shape as the original cells and their numbering system is
more complex than that of a square model. In terms of processing efficiency in
general procedures to complete spatial properties such as area and centroid
calculations, or to perform spatial manipulations such as overlays and windowing,
the algorithms initially devised for square grids can easily be modified to work in
the case of triangular or hexagonal systems. These in fact have the same order of
computational complexity (Ahuja, 1983).

In the nested tessellation models, cells are recursively subdivided into smaller cells
with the same shape and orientation. the most studied model is the quadtree based
on the recursive decomposition of a grid (Peuquet, 1984). As shown in Fig. 2.9, a
quadtree first encloses the area in consideration within a square, and subdivides the
square into four subquadrants. Each quadrant is then recursively subdivided into
four subquadrants until all of them are uniform with respect to the image value, or
until a predefined resolution level is reached. With their variable resolution and
natural subdivisions into hierarchical patches, quadtrees are ideal for handling large
geographical areas (Mark and Lauzon, 1985). A disadvantage of quadtree models is
that they appear are not invariant to translation, rotation or scaling; shape analysis
and pattern recognition are difficult and need intermediate procedures.



FIG. 2.8. Rasterization of the three polygons in Fig. 2.4, using different raster resolutions
of (@) 8 X 8, (b) 16 X 16, (c) 32 X 32, (d) 64 X 64, (e) 128 X 128 and (f) 256 X 256
cells to generate the same numbers of pixels. Note the blockiness of the lower resolutions
and the poor rendering of the polygons.

FIG. 2.9. Quadtree representation of two of the images in (c) and (f) of Fig. 2.8, the
32 X 32 and the 256 X 256 pixel raster images in (a) and (b), respectively.

(c) An irregular tessellation consists of an irregular net of interlocking triangles that can
be adjusted to reflect the density of data occurrences within an area. In dense areas
the cells are small while in sparse areas cells are large. The Triangulated Irregular
Network (TIN) is composed of Delaunay triangles, where each node of the mesh has
an elevation value. TINs are used to represent terrain data for digital elevation
models, for hill shading and other land surface representations A TIN is based on
irregularly distributed points that are first triangulated into a series of connected
facets. The triangulation algorithm allows the generalization of the surface by
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selecting points based on Chebyshev’s approximation (Poiker and Griswold, 1985).
Thiessen polygons or Voronoi diagrams, also termed Dirichlet tessellations,
constitute other irregular models where the polygons are convex and have a variable
number of sides. They are used efficiently in analysis of adjacency and of
proximity. Irregular tessellations are difficult to generate and not well suited for a
number of spatial analyses, such as overlaying procedures (Peuquet, 1984).

The majority of the current applications in both image processing and GISs can be
handled by using raster data, however, the complete functions of a spatial data processor
require both raster and vector data types. Ideally, a system should have a data structure
independence, i.e., the user should be insulated from the data structure when performing
any given application. The selection of the data structure to be used should be done by
the system, automatically choosing either vector or raster, according to a decision on
performance, both speed and accuracy.

2.2.3. Relationships between spatial and non-spatial data structures

The similarity in structure between the spatial data in Table 2.3 and the non-spatjal data
in Table 2.1 is evident. Generally, in processing the spatial data, the linkage is used
between the two types of data. This linkage is represented by the polygon identification
entry in the attribute table. This allows the polygon data to be processed after consulting
the attribute table or to process the attribute data after consulting the polygon table.

In raster data models, a similar simple procedure is followed, because the polygon
identifier is stored as a pixel value, while polygon attributes are stored in associated
tables. Figure 2.10 provides a simplified example of association between spatial and non-
spatial data. In most GISs the spatial and the non-spatial databases are stored separately,
however, hybrid and integrated data models have been designed for large datasets. In the
hybrid data models the spatial data are stored on very fast devices, while the attribute data
are stored in commercial relational database systems. In integrated GIS data models, both
spatial and attribute data are stored together in relational tables.

37A

34\ A 28
1

52
91 A

4

Mineral Deposlt Table

Dep._# Name Polygon_+#

1 Oro 37
2 Sliver city 37
3 Plomblere 61
4 Alberta 91

FIG. 2.10. Schematic example of spatial data and of associated attribute data. The
polygon identifier in the table represents the linkage between the two data types.
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2.2.4. Data representation for integration modelling

A general approach in GIS analysis is to construct a spatial-physical rationale for guiding
the analysis of multiple data layers and their connected tables over a study area. For
example, Green and Craig (1984) identify one of the critical problems in mineral
exploration which is to establish a connection between geological, geophysical or
geochemical observations at the earth’s surface and mineralization at depth. The
complexity of the problem is, of course, greater when dealing with multiple datasets
where geology and remotely sensed data are integrated with geophysics and geochemistry,
for instance to obtain a multivariate classification.

In regional exploration programs, a physical model can connect geophysical data to
physical rock properties, therefore enabling the prediction of such properties that can be
compared with the spatial information provided by a geological map. The study of the
difference between the predicted and the observed spatial pattern of the rocks is bound to
indicate potential exploration targets. According to Green and Craig (1984), models of
increasing complexity in such exploration strategy are:

(i) A Zeroth Order Model (assuming that a given rock type, when outcropping it
produces the same sensor response);

(ii) Proportional Mixing Models (sensor is influenced by a mixture of rocks);

(iii) Distance-Weighted Mixing Models (sensor is influenced by adjacent rock masses
more than by distant ones); and

(iv) Complex Models with Ancillary Data (using additional datasets, for example
integrating vegetation-distribution to explain the contribution of pixel brightness in
Landsat data, or a digital elevation model to account for gravity anomalies).

The limited success in the application of multivariate pattern-recognition techniques to
obtain more useful geological maps is probably a consequence of the lack of sound
geological and geophysical rationales in which the models are adequate to predict natural
complexity. In this area much research is now necessary.

Table 2.1 shows a list of the sources of possible errors in GISs. How can we represent
errors in a GIS? To answer this question, we can imagine a computer representation of a
map in which each polygon is defined by a set of fuzzy arcs or segments, each consisting
of error bands within which the positioning of objects has greater uncertainty or
ambiguity than outside. We can also analyze the nature of map unit boundaries and
characterize their often statistical nature, as done by Burrough (1986) who distinguished
abrupt boundaries, those dividing a trend, and the ones resulting from sampling
variations. Indeed, geological observations leading to a map, are associated to an inherent
uncertainty which is generally recorded in fieldnotes and seldom transferred to a final
cartographic representation. This is mostly due to mapping tradition and to the
unavoidable simplification in map generalization (and in spatial interpolation as well).

The recent developments of GISs now allow to capture, store, represent and process such
fuzzy objects using the concepts of fuzzy sets. A membership function in fuzzy set theory
(Zadeh, 1965; Kaufman 1975) is used to represent the degree of membership of a cell
(pixel, polygon, sub-polygon, segment, or point) to a set. According to Burrough (1986)
such a function can be used to model the vagueness of map unit ‘impurities’ in the
combination of attributes in map overlaying processes for the construction of thematic
maps for resource assessment or mineral exploration.
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A generalized representation for the integration of geoscience data in GISs was proposed
by Chung and Fabbri (1993) who considered most maps, and enhanced or classified
images after photointerpretation, as the end results of delicate decision processes. In
mineral exploration, for instance, only such results should be used to obtain favourability
functions with respect to a given exploration target. If we consider our results in the form
of M layers of sets of map units in a study area where a given exploration target is
sought, a proposition can be formulated for each pixel in the study area, "that the pixel
contains a mineral deposit of a given type."

The probability of either continuous or non-continuous observations can be quantized,
i.e., expressed in convenient intervals which can be regarded as evidences of the
proposition. A subsequent transformation can be computed to obtain a relative
favourability index function for each layer which provides measurements related to the
‘sureness’ that the proposition is true given the evidence at the pixel in each layer. Such
sureness can be interpreted in various ways: as a probability, a certainty, a belief, a
plausibility, possibility or compatibility, and further combined in a compound function
which integrates the favourability functions from all the m layers. Sureness can range
between O (low) and 1 (high). Those authors provided different interpretations of the
favourability function as: (1) conditional probability, (2) certainty factor (Shortliffe and
Buchanan, 1975), (3) Dempster-Shafer belief function (Shafer, 1976), and (4) fuzzy logic
(Zadeh, 1965).

They considered some methods of estimation for such interpretations in three separate
situations in mineral exploration: (a) there are few or no recorded occurrences of
mineralization existing in environments similar to that of the study area; (b) there are
known occurrences in the study area; and (c) there are known occurrences only outside
the study area.

Chung and Fabbri (1993) defined data representation as a transformation of an experience
of the real world into a computational domain. As such, it must comply with models and
rules to provide us with useful information. For this reason, the quantitative
representation of spatially-distributed map patterns or phenomena plays a pivotal role in
integration because it determines the type of combination rules applied to them. The
difficulties of understanding the limitations (both application dependent and probabilistic)
associated with the construction of favourability functions have to be resolved to obtain
useful thematic maps for exploration, for geological hazard assessment, or for
environmental impact assessment. A GIS is an ideal tool for this development.

2.3. INTERACTION WITH THE DATA

The capability to easily interact with the data is at the root of any database management
system (DBMS). In GISs, however, spatial databases require interaction with spatial
objects and some spatial functions are outside the standards of conventional query
languages such as the Structured Querying Language (SQL) for relational database
systems (ANSI, 1989). SQL is a database interface (a language) for applications which
can be expressed in terms of tables. Spatial data can be mapped into such tables,
however, this type of mapping or representation leads to unnecessarily complex queries.

For instance, overlays which require a spatial operation between data layers, are not

directly computable within the conventional set operators of SQL. Egenhofer (1992)
discussed non-standard extensions of SQL to incorporate geometrical and pictorial spatial
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operators. According to him, they seem to burden the language making retrievals overly
complex and inefficient. Other solutions, beside spatial extensions of SQL, are to process
the queries to convert the spatial operators into more standard queries, or to disassemble
the queries into more manageable components to retrieve the data which are later
processed using special-purpose user-supplied programs to perform the GIS operations.

SQL is based on 5 relational operators, termed ‘selection’, ‘projection’, ‘Cartesian
product’, ‘set union’ and ‘set difference’, in addition to a few extensions for operations
on ‘tuples’ (unique combinations of values in rows of relational tables), such as
‘aggregate functions’ and ‘views’. The SQL syntax is based on a clause termed SELECT-
FROM-WHERE. For example, to retrieve the mine owners of all gold occurrences in
NTS 76N/2 in Table 2.2, the following query can be formulated:

SELECT occurrences.owner_#, occurrences.name, occurrences.file #

FROM occurrences, commodities, occurrences commodities

WHERE commodities.name = ’gold’ and occurrences. NTS # = *76N/2’ and
occurrences.occ_# = occurrences_commodities.occ_#

The result of this query can be the display of a table such as:

Occ. # Owner # Name File #
3 3 PISTOL L. 502693
3 4 TURNER L. 506486

An introduction to the structural query language can be found in Korth and Silberschat
(1986). Beside the management of spatial data and of the associated attribute data, GIS
processing uses a variety of analysis functions. Aronoff (1989) grouped these functions as
follows:

(1) retrieval/classification/measurement (spatial data and attributes are retrieved but only
the attribute data are modified or created);

(2) overlay operations (between data layers);

(3) neighbourhood operators (to evaluate the characteristics of the area surrounding a
speecified location);

(4) connectivity functions (to accumulate values over the area being traversed).

In many GISs, special command languages or algebras facilitate the interaction for
analysis and modelling tasks. Table 2.5 lists several modelling expressions from a raster-
based GIS which has built-in capabilities of a relational database and of an image
processing system.

Modelling algebras can vary considerably from system to system and can make use of
keyboard entries, of mouse selectable menus or of icon assisted navigation tools,
including facilities for generating more powerful commands and ad hoc icons, i.e.,
special purpose algebra using available commands or programming new commands. Some
systems allow a sequence of operations to be recorded as a batch file, that can be edited
at will, assigned a new command name and used as a new function or a new
macroinstruction. Other systems make use of interactive icon-assisted environments such
as WINDOWS. The main purpose of modelling algebra is to facilitate the generation of
more complex processing tasks.
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TABLE 2.5. INTERACTIVE EXPRESSIONS FROM THE MODELLING LANGUAGE
OF ILWIS (Valenzuela, 1988; Gorte et al., 1988; ITC, 1992), A GIS WITH
EXTENSIVE ANALYTICAL TOOLS

)

@

3

4

®)

MAP2: =TABLE.COLUMN[MAP1]

Reclassification of a raster map, MAP1, according
" to attribute values in column COLUMN of table
TABLE, associated to MAP1.

LAL: =((band7-band5)/(band7 + bands)) + 1%¥127

Store on disk the raster map LAI (leaf area index)
resulting from subtracting band5 from band?7,
dividing their difference by their sum, adding the
value 1, and multiplying the results by 127. Band7
and band5 are the names of the input raster
images.

MAP_C:=IF(MAP_A>20,MAP_B+3 MAP B-2)

IF the values in MAP_A are larger than 20 THEN
add 3 to MAP_B, ELSE subtract 2 from MAP B.

SLOPE()=SQRT(@1*@1+@2*@2)*100

Create function SLOPE. @1 and @2 indicate
parameters to be substituted by image names
during interaction. Here they represent the height
difference (gradient) per pixel in the X resp. Y
direction.

SL_MAP: =SLOPE(MAP1,MAP2)

MAP1 and MAP2 are the two variables for @1
and @2.

MAP2: =NBMIN(MAP1#)

NBMIN is a neighbourhood aggregation function
which finds the minimum value. #[] is a select
neighbourhood operator for a 3 X 3 window
where the neighbor positions are:

123

456

789
# alone indicates the entire 3 X 3 window.

(6) ITER:MAP:=NBMIN(MAP1#-+NBDIS)

Calculate a distance map from an initial map,
MAP1. Stops only if map MAP does not change
any more. ITER is the iteration function and
NBDIS is a distance filter which uses the following
constant values:

757

- 505
757
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2.4. DATA SYSTEMS AND DATA TRANSFER
2.4.1. Overview of data systems

An important trend in the geosciences is the clear move towards microcomputers and
workstations as GIS platforms. This guidebook is concerned with low-cost analytical
systems to be used as decision tools in resource exploration or in environmental
applications. More expensive systems designed for cartographic production are either
peripheral to such applications or represent final platforms on which to transfer the
information once the decisional strategy has taken a stable form. Table 2.6 depicts the
main capabilities of some selected PC-based systems. The criterion for the selection of the
systems listed in Table 2.6 was the availability of the systems to large numbers of users
and the variety of different characteristics in their design. It should be noted that the list
is by no means complete and does not try to identify the ‘better’ systems.

The development of GISs is dynamic and there are several tens of systems available on
the market. Such systems as GISs, are still far from being subjected to satisfactory
evaluations because even very complete benchmarks do not seem to reveal all the
idiosyncrasies and weak and strong points of systems that might appear under a real
world use. In the table we can see that PC-DOS is the most common operating system
and that few GISs use also OS2 or the Maclntosh operating system. Most analytical
systems, even if they can handle and process vectorial data structures in a limited way,
make provision for vector-to-raster conversions for the analytical process. All systems in
the table have extensive digitizing capabilities, however, only a few possess an internal
database management system. Those which do not, generally rely on external DBMS and
have provision for table import/export from/to some of the most common systems (e.g.,
ORACLE or dBase IV). In particular, some systems are hybrid GISs and image
processing systems (e.g., IDRISI, ILWIS), or are mainly image processing systems
(ERDAS, EASI/PACE) or GISs (PC-Arc/Info, SPANS, PAMAP) or computer aided
design and drafting systems (AutoCAD). The selection of a particular system for given
tasks should be based on whether their design fits the desired tasks. Some systems such as
IDRISI and ILWIS were designed within academic environments as teaching tools, and
for that reason they are particularly simple to use. Prices for PC-based GISs range from a
few hundred to a few tens of thousands of dollars.

2.4.2. Spatial data transfer

As we have seen in Section 2.2, several spatial data structures exist which imply different
topologic encoding or different tessellation models. Gutpill (1991) discussed different
levels of abstraction in a spatial database as follows: (a) the real world as it exists; (b) the
conceptual data model relevant to a specific need but independent of data structures;

(c) the logical data model which defines data organization (data structure); and (d) the
physical data model which specifies machine implementation of data structure (file
structure). The implication in those abstraction levels is that a spatial database is the result
of modelling reality by constructing a knowledge base where conceptual and logical data
models are represented in a specific physical model. Such a process of abstraction and of
representation should then be reversed in order to transfer the data from one system to
another using different physical data models. The conceptual data model in the source
system should be well understood so that the appropriate data structure can be rebuilt in
the target system. Data exchange, also termed data import/export, can be obtained as:

(1) direct transfer from system A to system B; (2) using a ‘switchyard’ mechanism, which
translates incoming data structures into an intermediate structure and then from that to an
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TABLE 2.6. MAIN CAPABILITIES OF SELECTED PC-BASED GEOGRAPHICAL
INFORMATION SYSTEMS (modified after Fabbri and Valenzuela, 1989)

Operating system

Data structure

Digitizing capabilities
Internal database
Topologic information

Image processing
Analytical capabilities
Command language
Menu-user
interface
I 3-D display
| | Dual
| | monitor
N
| e
SYSTEM v v VVVV YV VYV VY
*AutoCAD PC,-DOS Vector X X X X
MAC
*EASI/PACE PC,-DOS Raster X X X X X X XX
MAC
*ERDAS PC,-DOS Raster X X X X XX
*IDRISI PC,-DOS Raster X X X X X
ILWIS PC,-DOS Vector/ X X XX X X X XX
Raster
*MIPS PC,-DOS Vector/ X X X X
Raster
*PAMAP PC,-DOS Vector/ X X X X X XX
Raster
*PC-ARC/ PC,-DOS Vector/ X X X X X X X
INFO PS-2,-DOS
*PMAP PC,-DOS Raster X X X X

*SPANS (PC) PC,-DOS Raster/ X X X X X X XX
PS-2,-0S/2 Vector/
Quadtree
*STRINGS PC,-DOS Vector X X X X X XX
*TERRITORY  PC,-DOS Vector/ X X X X X
MGT. SYS PC,-DOS Quadtree
*TOPOLOGIC PC,-DOS Raster/ X X X X X X
Vector/
Quadtree

*Extracted and modified from:
Special report GIS Technology ’89: Results of the 1989 GIS World Geographic Information
System Survey. Published by: GIS World, Inc., P.O. Box 8090, Fort Collins, Colorado
B0526, U.S.A., July 1, 1989. ‘

Note: Also consulted The 1991 GIS World Software Survey, GIS World Inc.

external data structure; or (3) using a widely accepted intermediate neutral exchange file
format. Obviously, in going from mechanism (1) to mechanism (3), we constrain the
exponential increase in computer programs required for the transfer of data structures
from/to each system pair.

A general description of a spatial database in a GIS is "a collection of spatial and

non-spatial information in which feature attributes and feature relations are stored and are
accessible". Spatial data transfer must handle the spatial data model, the non-spatial data
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and the feature relations in a satisfactory manner. Usually, it is necessary to disaggregate
the original data structure (i.e., the polygons) to a ‘common denominator’ simple
structure (i.e., line segments), perform the transfer to the new computer environment of
the target system, and then rebuild a new data structure in the latter, maintaining all the
relationships between features.

At present, many GISs provide ample options for data transfer of vector data, raster data
and of attribute tables. For PC-based systems, like the ones mentioned in Table 2.6, the
most common formats are listed in Table 2.7.

In constructing a spatial database, careful planning is required to properly evaluate the
cost of data transfer to integrate information from different sources. Such cost can be
considerable in view of the incomplete standardization which still exists for data formats
and for their documentation. It is often necessary for a user to become familiar with the
characteristics of possibly unavailable systems and of their data formats to be able to
import data on formats provided by those systems. Hopefully, such complexities will be
disappearing with the development of new accepted data standards and more
general-purpose data exchange programs for all GISs.

TABLE 2.7. SOME WIDELY USED PHYSICAL DATA FORMATS FOR
PC-BASED GISs

VECTOR RASTER ATTRIBUTE TABLES
USGS-DLG-E USGS-DEM for CCT  dBASE-DBF
AutoCAD-DXF ERDAS-LAN dBASE-SDF
Intergraph-SIF ERDAS-GIS LOTUS-DIF
Arc/Info-LIN (Generate)  Arc/Info-NAS DELIMITED(ASCII)
ERDAS-DIG Windows-bitmap-bmp

ASCII

TIFF

2.5. CONCLUDING REMARKS

The construction of a spatial database is a complex and time consuming task in data
analysis, in information extraction and in representation for analysis. If the final target is
the development of predictive models, it becomes critical to view a GIS as a
decision-making tool where the process of developing a computational model from a
conceptual one can take place. Such a process is likely to bring a GIS quite far from a
production system for automated cartography. Unfortunately, it is still uncommon in
many public institutions to take such aspects into consideration. For this reason, often
analytical tasks are performed on production systems for automated cartography at great
financial and labour costs. Hopefully, the implications in the diagram of Fig. 2.11 will
become common knowledge with the progress in GIS applications in spatial data analysis
and modelling.

This chapter discussed data capture and data representation. Knowledge of spatial and
non-spatial data structures and of their relationships in a geographical information system
is essential for the integration of information for modelling. A brief mention of interaction
with the data within a relational database management system was followed by an
overview of PC-based GIS and image processing systems for remotely sensed data.
Finally, the transfer of spatial data between different systems and some examples of
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FIG. 2.11. Representation of the dilemma between GIS modelling and cartographic
production.

powerful image algebra concluded the analysis of spatially distributed data. These
concepts are fundamental for the formulation of computational spatial problems and for
their solution.
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3. VISUALIZATION
3.1. INTRODUCTION

The development of inexpensive high-resolution colour graphics for computers has
revolutionised spatial data interpretation, exploiting the human ability to recognize spatial
relationships on images. In this chapter, the hardware and software concepts used to
display colour images on computer screens and on hardcopy are briefly reviewed. To
begin, a typical sequence of display operations of data held in a GIS are described to
illustrate how a digital picture is composed from the spatial database.

A typical cartographic image is built up with a series of display steps, as illustrated by the
example in Fig. 3.1. Normally, the display is in colour, but in this case we have made a
black and white picture. A desktop mapping package was used to generate this display,
with data from a database built with a GIS. The database consisted of raster images, maps
digitized in vector format, and point datasets with associated attributes. The data are from
Eastern Shore Nova Scotia and have been used in a mineral potential mapping project.
For this figure, the goal is to see where the Devonian granite outcrops lie with respect to
the Bouguer gravity field, and then to superimpose the locations of known gold
occurrences. The display is a fairly typical one in that several different data types and
data structures are involved (areas, line and points), but the end product is a graphical
rendition, initially on a monitor, and subsequently in hard copy. We will briefly run
through the display operations:

(1) The Bouguer gravity values were measured at gravity stations. These are sample
points on a spatially continuous gravity surface. The gravity values were first
interpolated on to a grid to make a raster image. The range of continuous values was

Eastern Shore, Nova Scotia

Bouguer Anomaly mgals
[:]< 12
[CJeto 12
s s
1o

0 showing
A minor production
O medium production

Geological Contact

Devonian Granite

FIG. 3.1. Layers of information combined on a digital image. The effectiveness is
somewhat lost without the use of colour. An interpolated raster image (gravity), a
digitized geological map (vector), and a point file with attributes (gold occurrences) are
combined with a variety of graphical symbols. Annotations (legends, scale, labels,
graticule) are important cartographic elements.
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subdivided into eight intervals, to simplify the picture. Grey-tone patterns were
assigned to gravity classes, and the interpolated surface displayed on the computer
monitor. The legend was sized and placed in position, interactively.

(2) The geological map started out in a vector format, having been digitized from a
paper map. Each line was associated with attributes identifying the class of the
polygon to right and left. This permitted the selection of particular lines, in this case
the granite contacts, from a file containing all the geological boundaries. They were
displayed using dotted lines, out of a variety of possible line symbols line
thicknesses. The legend for lines was placed interactively. In addition, the vectors
for the coastline were plotted as a solid line.

(3) The gold occurrences were classified into three groups, based on the amount of
known gold production. The production figures were one of the fields in an attribute
table linked to the points. In this case, the occurrences are discrete point objects, not
sample points as in the case of the gravity stations. Three different symbols were
used for display, and the legend for the points placed interactively.

(4) A scale bar, a North arrow and a title were added. Other annotations could have
included a graticule, labels and textual notes.

The whole set of operations was controlled interactively with an on-screen cursor and the

tools of a graphical user interface (GUI). Having composed the cartographic image on the
monitor, the same graphical instructions were used to generate a PostScript file, an ASCII
file accepted for printing on a variety of devices, both in black and white and in colour.

The resolution of the image on the screen is the distance on the ground corresponding to a
pixel. This is often unrelated to the resolution of the data in the database. For example, if
a data layer in raster format with 4000 rows and 4000 columns is stored on the disk is
displayed on a screen with 1000 by 1000 rows and columns, the display is only using
every 4th pixel in each direction and the original data is decimated to fit on the screen.
Conversely for a raster on the disk that is smaller than the screen raster, some pixels are
replicated to achieve a particular scale. When vectors are displayed on a raster device,
the lines are automatically converted to raster during the display process.

The scale of the display of a cartographic image can be altered by either a hardware
zoom or a software zoom. In a hardware zoom, the effect is simply that of magnifying a
portion of the screen, without changing the image resolution. Individual image pixels are
replicated, and as the zoom factor increases, the image becomes progressively more
‘blocky’. A software zoom is often more useful but slower, because the full resolution
present in the database is preserved (Fig. 3.2). A hardware zoom of a raster image that
has been coverted to a vector format, for example, produces a ‘staircase’ appearance,
whereas in the equivalent software zoom, the lines are as smooth as the scale of original
digitizing will allow. Graphical metafiles, such as PostScript files, preserve the spatial
resolution of the database and are particularly desirable for hardcopy display, being
independent of the resolution of the graphics board and monitor.

Graphical output from GISs can be directed to devices other than video monitors, such as
inkjet or laser plotters. In some cases, the contents of the video monitor (actually the
display memory, as discussed below) are simply ‘dumped’ as a raster image whose
resolution is the same as the screen raster. Alternatively, a digital plot file is created for a
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FIG. 3.2. The distinction between a hardware zoom (B) and a software zoom (C).

specific hardware device, such as a large-format raster or vector plotter. In other cases, a
device-independent graphical file is created, often called a graphical metafile. Metafiles
contain graphical instructions for raster and vector data, and can handle scalable fonts and
special characters of various types. Computer programs that convert graphical metafiles to
a format suitable for printing on a particular output device are known as device drivers,
and are often supplied when a particular printer is purchased. A popular device-
independent graphical format is PostScript, now widely used for both black and white,
and colour, printers.

3.2. DISPLAY HARDWARE FOR DIGITAL IMAGES

The typical setup for video-display hardware is shown diagrammatically in Fig. 3.3.
When displaying a data item, the display software module fills the appropriate locations in
the display memory. This memory is subdivided into a number of bit planes, each one
capable of storing a binary image with a fixed number of rows and columns. The number
of bit planes determines the number of possible colours that can be displayed at any one
time. For example, if there are 8 bit planes, then the number of colours is 2%, or 256.
This display memory occurs physically on many machines as a single graphics card. Also
on the card is a hardware lookup table (LUT) that converts the colour values on the

DIGITAL
[ IMAGE ON 1o DISPLAY DISPLAY »> DISPLAY L-»{ TO ANALOG | — COLOUR

STORAGE DEVICE PROGRAM MEMORY LuUT CONVERTER MONITOR

=l

FIG. 3.3. A typical hardware setup for graphical display.
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image into red green and blue (R,G,B) components. The digital R,G and B signals pass
through a digital-to-analogue converter and finally to the display monitor. The value of
each image pixel is converted to a voltage level, which governs the intensity of an
electron beam at a specific location in the CRT. The CRT phosphors which occur as a
lattice of individual dots, are excited to differing degrees by the intensity of the beam. On
colour monitors, each pixel location has a trio of red, green and blue phosphors, and an
associated trio of electron guns which separately excite the R,G and B phosphors to create
colour images.

The amount and configuration of display memory on a particular graphics card varies
considerably. In specifying the configuration, usually three number are used, such as
1024 x 768 X 8. This means that there are 1024 rows and 768 columns of pixels, and
each pixel can have a colour value from 1 to 2%. A configuration of 512 X 512 X 24
indicates an image with 512 rows by 512 columns and 2 colour values at each pixel.
Many image processing systems use 24-bit display memory, allowing three 8-bit images
to be displayed simultaneously. For example, in order to display a Landsat image, a
magnetics image and a gravity image simultaneously, 8 bits (256 colour numbers) are
used for each image. The Landsat values might be assigned to the red colour guns,
magnetics to green and gravity to blue, or some alternative combination, producing a
colour composite image.

3.2.1. Colour

The human eye has an exceptional ability to perceive subtle colour differences and to
recognize colour patterns. The photoreceptor cells on the retina of the eye are of two
types, the rods and cones. The cones are believed to be associated with colour perception.
According to the tri-stimulus theory of colour vision, the cones are of three kinds, each
one responsive to one of the three primary colours of light, namely red, green and blue.
Any colour can be produced by adding together red, green and blue light in various
combinations. The theory is that humans perceive colour by the relative intensity of the
stimuli on the red, blue and green cones. Colour TV and video monitors work on the
same principle. At each dot on the screen, a red, green and blue phosphor is present that
can be excited in varying proportions. When only the red phosphor is excited, the dot
appears red. When all three phosphors are excited together to the same intensity, the dot
appears grey. The screen is composed of a lattice of dots, which together create a visual
image in colour.

The primary colours can be arranged at three corners of a colour cube (Fig. 3.4). In the
lower corner of the cube, all three primary colours are of zero intensity, and the result is
the colour black. The colour corresponding to any point in the cube can be described by
the displacements on the red, green and blue (R,G,B) axes. The diagonal axis cutting
across the cube is an intensity axis, ranging from black at (R,G,B) = (0,0,0) at the
origin, to white at (R,G,B) = (100,100,100), where intensities are expressed in percent.
Elsewhere in the cube, colours are defined by their R,G,B values; (50,50,50) is dark
grey, (0,0,100) is bright blue, and so on. Red, green and blue colours are called additive,
because new colours are obtained by their adding them to black. The additive colours are
used for video display devices, but subtractive colours are used in the dyes and inks used
for many colour hardcopy devices.

The subtractive primary colours can also be represented in the colour cube. They are
cyan, magenta and yellow (C,M,Y) as shown in the remaining corners of Fig. 3.4. Cyan
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FIG. 3.4. Colour cube model, with additive primaries (R,G and B) in one set of corners,
and the complementary subtractive primaries (C, M and Y) in the other corners.

is formed by adding blue and green light, magenta by adding blue and red, and yellow by
adding green and red. Dyes and printers ink use the subtractive primaries to produce
other colours by subtracting their complementary colours from white. Colours are thus
defined on an R,G,B scale for video displays, and on a C,M,Y scale for most printing
and plotting purposes.

One of the problems with the colour cube model is that linear changes of position within
the colour cube do not lead to a corresponding linear change in colour perception by the
human eye. An alternative colour model that attempts to overcome this problem is the
intensity, hue, saturation (IHS, or HSI) formulation. The IHS model is geometrically
related to the RGB colour cube as shown in Fig. 3.5. The intensity axis is the same for
both models, increasing from 0% (black) at the origin to 100% (white) at the top. The
location of a point on any plane normal to the intensity axis is defined using polar
coordinates, where hue is the angular distance and saturation is the distance from the
centre. Hue thus ranges in value from O to 360 degrees; the origin is arbitrary, but is
normally either at pure red or pure blue, increasing counter-clockwise. The IHS space can
be pictured as a hexcone, with pure colours lying round the top edge. Intensity is a
measure of the brightness of the colour. The addition of white light produces less
saturated, paler colours.
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FIG. 3.5. The relationship between the RGB colour cube and the IHS hexcone, after
Harrison and Jupp (1990).
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The main advantage of the IHS model is that hue describes the human perception of
colour better than a red, green and blue combination. For example, an orange hue can be
modified, making it brighter by changing intensity, or paler by changing the saturation,
adjustments that are difficult to guess at intuitively in R,G and B space. Similarly,
saturation and intensity can be held constant, and hue can be altered to a neighbouring
value in the IHS hexcone, often counter-intuitive in RGB space. In image processing
systems, the IHS model is often used for colour enhancements, followed by
transformation to RGB for display. It can also be effectively used for displaying multiple
datasets. For example, Harris et al. (1990) produced very effective combinations of
geological maps with radar In which the geology was assigned to hue, radar to intensity
and saturation to a constant value. In Fig. 3.6 (see Plate 1) the IHS colour model has
been used to combine airborne radiometric data with airborne radar. In this case the
display transformations have been carried out in two steps. First the eU, eTh and K
variables were assigned to R G and B colour channels. An RGB to IHS transform was
then carried out, from which the Hue was retained, but the Intensity was set to the radar
reflectance and the Saturation set to a constant of 155 (on an 8-bit scale). Finally the THS
was transformed back to RGB for display. The hardcopy was produced in this case on an
optical filmwriter. The image shows the Coldwell alkaline complex, a large alkaline
intrusion, on the north shore of Lake Superior, as discussed by Graham and Ford (1991).
The yellow circular feature is the intrusion. The town of Marathon is near the lake shore
in the SE corner of the complex. Note that the radar brings out the topographic relief and
drainage features, whereas the colour (hue) indicates variation in the radioelement
composition of the rocks in the area. By setting the saturation to 155, the colours are
pastel shades, whereas if the saturation was set to 255, the colours would be stronger.
The overall result is to produce an effective combination that reveals both structural and
compositional trends that aid in geological interpretation. Having briefly touched on THS
colour space, we now return to the basis of RGB space and its digital implementation.

The display hardware uses a LUT to define the actual colours that are stored in the
display memory. The simplest kind of colour LUT or ‘palette’ is shown in Table 3.1.
Each digital number is linked to a trio of colour intensities, defining the red, green and

TABLE 3.1. COLOUR LOOKUP TABLE LINKING COLOUR
NUMBERS TO RED, GREEN AND BLUE INTENSITY VALUES
(the full table would contain entries for all the digital numbers from 0 to 255)

Digital Red Green Blue Resulting
number intensity  intensity  intensity colour
0 0 0 0 Black
1 255 0 0 Red
2 200 200 0 Yellow
49 240 100 80 Brown
254 0 0 255 Blue
255 255 255 255 White

1All colour plates can be found at the back of this document.

50



blue. The appearance of the image can be changed instantaneously in many systems, by
changing the display LUT. In image display systems with 24 bits per pixel, capable of
simultaneously displaying three 8-bit images as a colour composite image, there are three
LUTs, one for varying the intensity range of each of the three primary colours separately,
as illustrated in Table 3.2.

TABLE 3.2. THREE LOOKUP TABLES FOR DISPLAYING THREE SEPARATE IMAGES AS
A RED, GREEN, BLUE COLOUR COMPOSITE

IMAGE 1 IMAGE 2 IMAGE 3
Digital Red Digital Green Digital Blue
number intensity number intensity number intensity
0 0 0 255 0 160
1 26 1 220 1 170
2 30 2 215 2 185.
62 119 62 180 62 147
254 227 254 15 254 38
255 255 255 10 255 22

3.3. COLOUR HARDCOPY PRINCIPLES

Raster plotters that use inkjet, thermal wax and electrostatic principles are now widely
used for hardcopy. Each pixel in the raster image becomes one dot, or a matrix of dots,
on the output medium. Optical filmwriters that transfer images on to photographic film
are popular also for production of high quality hardcopy. Although hardcopy technology
changes rapidly with time, the general principles of making hardcopy of raster images are
likely to remain the same. The most important principle for images reproduced with inks
or dyes is that colours are determined using mixtures of the subtractive primaries, cyan,
magenta and yellow. Because combinations of these are limited in colour range, the
appearance of mixing is simulated by a matrix of closely spaced dots made up of binary
mixtures of the subtractive primaries. The eye then integrates and blurs the dots
simulating particular colours.

For example, inkjet plotters create a raster of dots by squirting fine drops of cyan,
magenta and yellow ink on to paper or transparent material. Whereas on a video monitor
the additive primaries are added to black to produce a particular colour, on a hardcopy
the subtractive primaries are ‘removed’ from white. At each inkjet pixel, the inkjets are
either ON or OFF, giving rise to eight possible binary combinations, as shown in

Table 3.3. In practice, most plotters also use a separate black ink, because the black
produced by mixing C, M and Y has a brown fringe, caused by the edges of the dots not
being in perfect register.

As the dot size and ink colour cannot be changed, the range of output colours produced
by direct mixing is very restricted. One method used for producing a larger range of
colours is a process known as dithering. Dithering works by using a matrix of dots to
represent an image pixel. The dots in this dither matrix can be filled by any of the
colours shown Table 3.3. The eye blurs the dots together, integrating the various colours
to give the appearance of new colours. Dithering matrices are usually 2 X 2, 3 X 3 or
4 X 4. A typical dot size for a table-top plotter is about 0.2 mm diameter. This means
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TABLE 3.3. COMBINATIONS OF BINARY
MIXTURES OF THE THREE SUBTRACTIVE
COLOURS, CYAN, MAGENTA AND YELLOW

CYAN MAGENTA YELLOW COLOUR

OFF OFF OFF WHITE
OFF OFF ON YELLOW
OFF ON OFF MAGENTA
ON OFF OFF CYAN
ON ON OFF BLUE
ON OFF ON GREEN
OFF ON ON RED
ON ON ON BLACK

that each pixel occupies 0.8 mm X 0.8 mm, so that an image 250 pixels wide requires a
page that is 20 cm wide. Large images are plotted using decimation and/or plotters with
small dots.

A 4 X 4 dither matrix composed of sixteen dots that are either ON or OFF produces
seventeen possible combinations for a given ink colour, as shown on Fig. 3.7. The dot
order shown here comes from Harrison and Jupp (1990). The ordering is very critical,
because inappropriate ordering can lead to distracting geometric patterns, such as
herringbone or twill. The order in the matrix has been chosen to avoid horizontal, vertical
and diagonal line structures. The ordering discussed by Harrison and Jupp is used in an
IP system called microBRIAN, and is such that no pair of adjacent cells contains
sequential numbers, and all groups of 4-adjacent cells sum to 34 (see Fig. 3.7).

To plot an image where the colours are defined by an RGB colour palette first requires a
conversion to a CMY palette. For a 4 X 4 dither matrix, the intensities range from O (all
OFF) to 16 (all ON), so that an 8-bit intensity range of 0-255 must be converted into the
range 0-16. The red is plotted on an inverse cyan scale, the green on an inverse magenta
scale and blue on an inverse yellow scale. For the sake of simplicity, assume that the
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FIG. 3.7. Arrangement of dots in (4 X 4) dither patterns used by the microBRIAN image
processing system. A. Numerical code defining dot patterns. B. Dot configuration for
intensity values 0-16. As the intensity increases by 1, a new dot is added, whose position
is defined by the code in A. Thus the dots for intensity 5 are the same as the dots for
intensity 4, with the addition of a single new dot in position 5. C. Codes for a (4 X 4)
dither cell surrounded by 8 neighbouring cells (partial). Any configuration of 4 adjacent
dots have numerical codes that sum to a constant value (34).
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RGB and CMY values have been compressed to the range 0-16, then an RGB of (16,0,0)
is equivalent to CMY of (0,16,16), an RGB of (4,12,4) is equivalent to CMY of
(12,4,12), RGB of (0,0,16) is CMY (16,16,0), and so on. Then each of the subtractive
primaries is dithered with the same dither matrix, as shown in the example of Fig. 3.8. In
practice, a straight conversion of RGB to CMY produces unsatisfactory results because
additive colours are perceived rather differently than subtractive colours. A non-linear
stretch of the image histogram improves contrast in the darker colours before plotting.

RGB = (10, 2, 12) CMY = (6, 14, 4)

® . [ J . ® . ® ® ® . ®
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CYAN MAGENTA YELLOW
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FIG. 3.8. Dither cells for RGB to CMY for ink-jet colour hardcopy.

3.4. VISUALIZATION OF SURFACES

In plan view, a continuous field variable, such as topographic elevation, is traditionally
displayed as a map using contour lines. Although contours are effective for visualizing a
surface, colour coded digital images, with colour palettes carefully selected to give the
illusion of changing intensity, convey greater realism than contours. Images of surfaces in
plan view can be made even more realistic by the use of hill shading, which uses
information about the illumination source. Regions from where the source are not visible
are in shadow. Hill-shading algorithms are found in most IP systems and GISs. Broome
(1988) provides a computer program for hill-shading geophysical images, where the
position of the sun can be interactively controlled with a computer mouse. Instead of
shading being produced by topographic relief, the geophysical variable being mapped is
treated as elevation. With hill standing magnetic dykes appear as topographic features on
a magnetics image (see Fig. 3.9). As can be seen, the original image (top) shows long
linear magnetic responses of the dykes. The next two images have been enhanced by hill-
shading, greatly improving the definition. By changing the illumination direction, the
orientation and texture of features in the image are changed and enhanced.

Even more realism can be introduced by means of perspective and isometric displays. In
a perspective view, the size of objects varies inversely with distance from the viewer.
Often graphic display systems create 3-D views with a ‘wire-frame’ model of a surface.
The wire frame is a series of profiles parallel to the rows and or columns of the original
grid (for a raster case), viewed by a perspective or isometric transformation. In
perspective display the effect is for parallel lines to converge with increasing distance, an
important depth cue for human perception. Additional realism can be added by removing
the edges and surfaces that are hidden from the observer by the solid surface. Triangular
meshes, as produced by Delaunay triangulation for example, can also be viewed as wire
frames. Simple but effective graphical overlays are produced by ‘draping’ one surface
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FIG. 3.9. Shaded relief transformations for visualization of dykes on a magnetics image.
A. Untransformed image. B. Shaded relief image, with illumination from NNE. C. Same,

but with illumination from WNW. (By courtesy of Dr A.N. Rencz, Geological Survey of
Canada.)
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over the wire frame of another surface. For example, a geological map can be draped
over a topographic map, as shown in Fig. 3.10 (see Plate 2). Three dimensional
representations can be rotated and viewed from different directions, yielding information
about spatial inter-relationships may not be so readily perceived with other visualization
methods.

Still further realism can be achieved by treating surfaces as being semi-continuous area
objects, adding surface colour, texture and illumination, smoothing the geometrical
artifacts of the model geometry, and creating depth cues such as the variation in haze due
to atmospheric conditions, as discussed by McLaren and Kennie (1989) and Kraak (1989).
These authors also discuss ray-tracing. As the name implies, this method involves
following rays of light from the viewpoint into a 3-D model. Simulated rays are traced as
they are reflected and refracted by objects in their path. Highly realistic views can be
produced, but the method is computer intensive.

Readers interested in 3-D modelling should consult papers in the books edited by Pflug
and Harbaugh (1992), Turner (1992) and Raper (1989).
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4. PROCESSING OF SPATIALLY DISTRIBUTED DATA

Spatially distributed data sets may consist of millions of individual observations, which
must be processed correctly in order to be of use in decision making. The first goal of
data processing is to make the data sets ‘free’ of errors, geographically linked and
comparable with each other. Secondly, the aim is to enhance and extract important
features and to predict new targets similar to known objects. The processing order
approximately follows the steps explained in Sections 4.1-4.5. Most of these methods are
applicable for both raster (pixel) and vector (point) data. Modern GIS facilities can
manipulate both raster and vector data easily and can convert between these two formats.

4.1. PREPROCESSING

The original data in the user’s database may not fulfil the criteria of ‘homogenous’ and
‘free’ of errors. Corrections and homogenization operations are therefore required.

For practical purposes, preprocessing of raw data is done in specific order, so that the
correction procedure will be easier and the result will be better. The following order is
recommended:

1. Description of the possible errors in (amplitudes of) the raw data due to various
sources and mathematical modelling of the errors.

2.  Removal of the amplitude errors through the inverse of the error function. Notice
that the sample grid locations are retained at this stage. The amplitude corrections
here include destriping, edge matching and levelling.

3. Geometric corrections should only be made after amplitude corrections because then

there is no danger of mixing erroneous data with correct data by changing their

relative geographical positions.

Merging, warping and mosaicking of geometrically corrected data sets.

Data editing: histogram operations, pan-zoom, including legends, lists, scale bars,

corridors, boolean operations and data structure transformation such as

vector/raster/table conversions.

6. Visualizing variable, sample and feature spaces.

bl

Steps 1-6 are outlined in the following sections.
4.1.1. Corrections for data and geometry

The source of errors in the raw data sets is mostly a result of inexact calibration,
instantaneous operation disturbances, inexact geographical positioning of the measuring
instruments and the effects of man-made interferences.

Geoscientific data usually exist in one of four main format types: scattered field data
using XY-map coordinates, airborne survey XY-profile data, aerial or orbital survey
optical or scanner detector imagery in pixel array form and character data.

Field data are mostly immediately georeferenced to base maps or by GPS (global
positioning system). However, old base maps may contain location errors which are
difficult to correct. Generally, the location accuracy is best in the field measurements but
naturally amplitude errors might occur due to drift of measuring instruments or change of
analysis methods from area to area. Correction of geological, geochemical and
geophysical field measurements is therefore briefly reviewed.
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The way to standardize geological observations is to take samples from various
formations and verify the rock type by laboratory testing.

Geochemical data sets may vary depending on sample media and analytical methods used
and therefore histograms of the data from adjoining map sheets may need levelling and
standardization. This is normally made by equalizing the mean/median, standard deviation
and skewness of two narrow stripes on both sides of the common border line. In practice
this can be done by parametric levelling, non-parametric normalization, fractile
normalization and Clarke normalization (Darnley 1994).

The important geophysical corrections include Bouguer reduction for gravity
measurements (Heiskanen and Moritz 1967), subtraction of temporal variation and
rotation to pole for magnetic measurements (Telford et al. 1976), eliminating linear drift
and thunder storm peaks from electromagnetic data (Telford et al. 1976). Radiometric
measurements are frequently corrected due to variations in humidity, background,
striping, pressure, temperature and height (Multala 1981). The errors in the data may
cause adjacent profiles or areas look different. These differences can be minimized by the
standardization methods for geochemical data mentioned above.

For airborne geophysical data the corrections are generally the same, but some additional
features must be taken into account:

- Altitude, pressure and humidity variations may be high and therefore, along a profile
there is a need for linear or nonlinear correction, i.e. destriping.

- The adjacent flight areas can be most conveniently levelled if the same border line is
measured twice i.e. during both flying phases.

- The geographical accuracy is better if a GPS system was used for navigation.

Geometric positioning accuracy of geophysical measurements is usually so high that no
additional geometric corrections are needed.

Accuracy of aerial or orbital photos and scanned images is dependent on the capacity of
the sensor and conditions during imaging:

The most important characters of a sensor are:

- Radiometric resolution i.e. smallest detectable exposure change (NE Ap or NE Aog);

- Spectral resolution i.e. band widths of the channels (um);

- Spatial resolution, dependent on the instantaneous field of view and flying height and
velocity (m);

- Geometric accuracy, i.e. how the image geometry relates to the geometry of ground
objects.

The conditions for remote sensing may vary from time to time according to:
-~  Illumination;
- Atmospheric absorption;

- Contrasts between the object and its background;
- Movements of the platform (carrying the sensor) in relation to the object.
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These features are corrected as follows: Radiometric corrections are carried out by
coefficients calculated from atmospheric models. Spatial resolution is corrected by an
inverse FFT (fast Fourier transformation), if the MTF (modulation transform function) is
known (see Siegal and Gillespie 1980, p. 177). However, the MTF is not often published
by the manufacturer of a sensor. In this case the MTF has to be derived from the data
itself.

Image striping is caused by different responses from each detector in the sensor array.
For example, in Landsat MSS and TM images it appears as a repeated scan line of
erroneous density. Corrections to these defects are made by various destriping methods.
A quick and easy way is to match, i.e. to compare and normalize histograms of the
defected lines to the histograms of the neighbouring lines. This means that the number of
greytones per intervals (between maximum and minimum greytones) in a defective line is
made approximately equal to the number of greytones per the same intervals in an
adjacent nondefective line. Histogram matching removes erroneous scan lines effectively
if the image is fairly ‘smooth’, i.e. without sudden peaks (see Sabins 1987, p. 240).

More sophisticated tools for destriping also exist, such as convolution and Fourier
filtering. Convolution filtering provides exact knowledge of the MTF or a study of the
detector response from the image. The respective error is modelled in a convolution
matrix whose dimensions match the number of sensors in the imaging system. If the MTF
is known, the striping will disappear when the data is multiplied by the inverse FFT of
the MTF. If the MTF is not known, the amplitude of the FFT reveals as peaks those
features which must be removed, usually by wedge shaped filters. The inverse FFT of the
filtered spectrum is free of scan lines.

4.1.2. Geometric corrections

Geometric errors are a serious problem in remote sensing. Geometric distortions are
corrected by modelling the distortion with control points and removing the error by
mathematical (digital) ‘rubber sheeting’.

The principles of the most common geometric distortions in Landsat MSS imagery are
shown in Fig. 4.1. The flow chart for correction is shown in Fig. 4.2. GIS and image
processing software usually contains tools for geometric rectification of RS data to any
well-known map projection, i.e. Mercator, Transverse Mercator, Oblique Mercator,
Space Oblique Mercator, Cassini, Lambert Conformal Conic, Albers Equal-Area Conic,
Stereographic and Azimuthal Equidistant Projection (McDonnell 1979, IMSL/IDL 1992).
Mathematical procedures for each of these corrections are clearly described by Bernstein
et al. (1975).

The location of each data point is adjusted with respect to the corresponding point on the
base map. This means that every corrected point will be georeferenced and therefore easy
to combine with any other georeferenced map. However, the correction operation ‘moves’
the points changing interpoint distances. If the input image is a pixel image, as in the case
of satellite data, the regular grid requires resampling and/or interpolation of new grid
points. The most popular methods for these are nearest neighbour resampling, bilinear
interpolation or cubic convolution.
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4.1.3. Image registration

Once the first image or the data set of an area is geometrically corrected and
geographically referenced it may be necessary to have two or more images in geometric
conformity, i.e. in registration with each other. This is the usual case in mineral
exploration and resource assessment, because the decision must be based on all available
geodata at each point of the area. Registration is also necessary when temporal changes of
the environment are studied using repetitive remote sensing actions. Extremely precise
geometric corrections of the various scenes must be made so that corresponding ground
objects in all scenes are assigned to the same geographical location and are thus in spatial
register.

If the respective data sets (e.g. pictures) contain geographically identical locations with
the same geometry of objects, these locations can be used to register a later data set with
the former one. This procedure can be continued to create a large multiple georeferenced
file of data sets.
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FIG. 4.1. Geometric distortions of Landsat images. (From Bernstein and Ferneyhough
1975, Fig. 3.)
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FIG. 4.2. Flow chart for correcting geometric distortion, space-to-space mapping (Colwell
et al. 1983, Figs 21-23).

4.1.4. Merging, warping and mosaicking

After amplitude and geometric corrections are accomplished, the georeferenced data sets
can be merged ‘vertically’ and warped ‘horizontally’. Merging means forming a
multivariable data set for a given area. Warping means compiling one map from two or
more pieces which have a common border line. Both these operations are quite straight-
forward, and therefore they are often carried out by user-made software. However, all
well-known GIS and image processing systems naturally have their own procedures for
merging and warping. The problem is essentially one of digital reading and writing of
corrected data sets sequentially in a framework of a specific format and data structure.

A more sophisticated approach is needed when partly overlapping multitemporal corrected
data sets are combined to cover a larger area. Though amplitude and geometry are
corrected in each separate set, differences may still occur which in many cases have to be
minimized in order to get a ‘beautiful’ continuous map or an image mosaic. These
differences may be caused by factors such as seasonal variations in the ground objects or
by change of the sensor system.

61



The differences between two adjacent images A and B can be minimized by studying the
data values in the overlapping area. Histograms of a common area AN B can be used to
formulate a linear or nonlinear operator which equalizes the histogram of the common
area of image A to that of B of the same area. This operator is used to transform the
whole image A to be blended with image B. However this fusion may still require
equalizing of first and second derivatives in the border area. Finally, an optimal cutting
line is chosen to eliminate duplicate data in the overlap region.

4.1.5. Data editing

Data editing means a number of minor digital operations, which are classically made in
the photolaboratory and on a digital clipboard: zooming and panning correspond to
enlarging and moving a picture. Histogram operations are used to adjust the greytone
frequency of the histogram to make the picture informative for the eye. Boolean
operations between two or more binary pictures correspond to the logical operations
’AND’, "OR’, "NOT’. A corridor is a marginal zone around a line e.g. a weakness zone
around a fault. Table to vector to raster and vice versa format conversions are very
important and have to be carried out with care. In modern GIS tools sophisticated legends
can also be included in the edited pictures.

4.1.6. Variable space, sample space and feature space

One dimensional variable space is an ordered set of measurements of variable X along the
X-axis. A one dimensional histogram shows the number of observations per intervals
along the X-axis. A histogram is a statistical discrete approximation of a mathematical
probability density function.

A two dimensional variable space is generated by all ordered pairs of measurements of
two variables X, and X,, spaced in a rectangular X,-X, coordinate system. The name for
its graphic plot is a scatter diagram or scatter plot (Fig. 4.3). Scatter diagrams are widely
used to describe graphical interrelations between two variables, because statistical
relations such as correlation can be ‘seen’ from this diagram (Fig. 4.3). Variable spaces
of dimensions greater than two can be created mathematically (also in computers
memory), but it is difficult to visualize higher than three dimensional scatter plots. Three
dimensional scatter plots can be stereodisplayed or visualized by animated movement.
Two or higher dimensional histograms can be calculated from the respective variable
spaces.

If we change the roles of variables and observations, i.e. observations form the coordinate
axes and a variable is situated as a point (vector) in this space, then a sample space is
formed.

The original variables or samples may not always be suitable for further analysis. New,
transformed, ‘better’ variables called features are often needed and calculated by methods
explained in subsequent chapters. The corresponding space, where the original variables
are replaced by the features is thereafter called feature space (FS).

Variable space, sample space and feature space form the basis for most statistical
operations, i.e. statistical quantities are measures characterizing these spaces. Regression,
variance, discriminant, principal component, and factor analyses, classification and many
other computations are carried out by studying the distribution of points in these spaces
using analytical geometry and linear algebra.
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FIG. 4.3. Scatter diagrams of observations for two variables X, and X,. (a) linear
correlation between X, and X, (b) nonlinear relation, (c) no correlation, (d) no
correlation.

4.2. SIGNAL PROCESSING

Methods originally created for the processing of sequential electromagnetic
telecommunication signals are also widely used to restore, enhance and analyze
2-dimensional map and image data and to detect spatial patterns. Patterns which can be
suspected as important features of targets can be enhanced by this kind of signal
processing. Therefore this processing is also called spatial feature extraction. Spatial
feature means shape and texture around one observation point or a pixel. Through spatial
feature extraction the variables are transformed into new variables, features, and the
variable space is therefore called feature space.

Equivalent feature extractions can be made either in the data domain or in frequency
domain. Data domain means the 2-dimensional map or a picture itself where the X-Y
coordinates indicate locations of the measurements. Frequency domain means an
orthogonal space, where the map is approximated by a series of regular waves of different
frequencies, phases and amplitudes.

4.2.1. Linear methods
Widely used spatial transformations used for frequency filtering are Fourier and

Hadamard transformations, filtering in the frequency space and inverse transformation of
the filtered image (Gonzalez and Wintz 1987).
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A discrete 2-dimensional Fourier transform pair is given by the equations:

F(u,v) :(I/NM)Z Zfét:_gu(ux/Mwy/M]
y X

1 2 (e M+vyIN)]
Fop=3>3 Fuy
u A4

fu yy = two dimensional image

X, y = geographic location of a pixel

where u=0,1,2,..,M-1, M = number of elements/line
v=20,1,2,...,N-1, N = number of lines
x=01,2,.., M1
y=0,1,2,.., N-1
j =+

According to Fourier theory, any map or picture data can be understood as a sum of
sinusoidal waves of different frequences, phases and amplitudes. Therefore, any map can
be decomposed into these separate wave components. These components are neatly
expressed by a Fourier spectrum (Fig. 4.4), where the coefficients of low frequency
waves lie in the central area and the coefficients of high frequencies lie further from the
center. The coefficients of the wave components are also ordered according the
propagation direction of the waves (Fig. 4.4).

The use of a Fourier spectrum is a way of finding periodical and directional phenomena,
which can be seen as peaks or lines in the spectrum.

FIG. 4.4. (a) Airborne electromagnetic in-phase map and (b) its Fourier-spectrum,
amplitude.



Fourier transforms are commonly used for decreasing some frequency components of an
image. This is made through low-pass, band-pass, high-pass filtering (Fig. 4.5) or
directional filtering. Low-pass filtering smoothens and high-pass filtering sharpens the
image. Band-pass filtering enhances middle frequencies. Low-pass filtering can be used to
reduce high frequency noise and high-pass filtering to sharpen a low-contrast image.
Directional filtering is used for example to enhance lineaments of certain orientation. The
respective low-reject, band-reject etc. filters are used if some error signals or noise of
specific frequency are to be eliminated or reduced from the original image.

As was stated earlier, an image can be restored using the MTF of an imaging system.
Siegal and Gillespie (1980, p. 179) show various cases of how the filter is designed when
noise is absent or present.

The Fourier transform is based on sine and cosine waves, whereas a Hadamard transform
decomposes an image into a sequence of rectangular waveforms. The use of the
Hadamard transform is analogous to that of Fourier transform, but the Hadamard

-V %% z
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',A area of coefficient = 0

d e

FIG. 4.5. (a) High-pass, (b) low-pass and (c) band-pass filters in frequency space.

The frequencies covered by zero coefficients are removed and the areas of unit coefficients
are preserved in the resulting filtered image; (d) electromagnetic airborne in-phase
component of a 60 km X 75 km area; (e) high-pass filtered version of the map in (d).
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transform works best in the case of high contrast graphic pictures or maps with fewer
greytones. A small number of Hadamard coefficients can accommodate most of the
variance in a dataset into the first few coefficients (Gonzales and Wintz 1987).

A discrete 2-D Hadamard transform pair of an N X N image f(x, y) is given by the
following equations.

H@, v) = (UN),EE(x, y)(-1)T> @00+ ol

f(x, y) — (1 /N)VEHEH(U, V)(—I)E[b (x) b (W) + b (y)b V)]

where N = 2% x, y, u and v assume values in the range 0, 1, 2,..., N-1

and b,(z) is the k:th bit in the binary representation of z. Notice that the dimension N
must be equal to 2" where n is an integer. For example n = 10 gives an image (of
dimension) 1024 X 1024 pixels.

Fourier (and Hadamard) transformation can be used for spatial pattern recognition.
Pattern P is found from an image A(P) by the following Fourier operation:

KX) = F'(F(P) - F(AP)))

where
K = cross correlation image
= Fourier transform
F! = inverse Fourier transform
F* = complex conjugate of the Fourier transform

Filtering for enhancement, restoration and pattern recognition can also be made in the
data domain by convolution. The most simple convolution is a moving average over a
map. Consider moving a window with any weighting coefficients and calculating a
weighted moving average over the map. This operation is a discrete convolution in the
data domain. Convolution (®) and Fourier filtering are equivalent:

fx,y)y®gXx, y) <=>F@,v) G(u,v)or
f® g=F!(F G)

This short notation concerns the continuous function f which is convolved by g. The
result is equivalent to multiplication of their respective Fourier spectra F and G.

4.2.2. Nonlinear filtering

Transform encoders can be made to adapt to local image structure. This is especially
helpful if a map is composed of areas having greatly different variance or frequency
contents. This is usual in geophysical field and airborne survey data. For example,
continuation of a linear volcanic formation can be seen through sedimentary cover with
the aid of an adaptively filtered magnetic map. Airborne, shuttle and orbital synthetic
aperture radar (SAR) data also often reveals such variations because different rock types
are expressed by different frequency contents of the surface morphology.
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Simple adaptive filters may be designed by modifying the formula of the high-pass
convolution filter for an image X(x, y) (Fahnestock and Schowengerdt 1983)

Y(x, y) = a[X(x, y) - (1-b) Xx,y)] +c¢
=a[(l-b) Xx,y) - X"x,y) +bXx,y)] +c¢

This is a normal high-pass filter in a K by K window at location (x, y). Y(x, y) is the
output, X(x, y) is the input and X™(X, y) is the average of pixel values in the moving
window. The scalar b controls the relative proportions between the input and the high-
pass component. The scalars a and ¢ control total contrast and mean of the output

Y(x, y).

Peli and Lim (1982) suggested following filter which is adapted through functions T; and
T, depending on the local mean.

Y(x, y) = a[T; X"(x, y)) - X(x, y) - X*(x, y)) + T, X"(x, y))] +¢

Proportions of high-pass (X - X™) and low-pass (X™) in Y are balanced by the formulation
of the functions T, and T,.

Harris (1977) proposed that the rate of high-pass is divided by the local standard
deviation S(x, y) in the window

Y(x,y) = A[l/S(x, y) - (X(x, y) - X"(x, y))] +C

This filter increases high-pass variation in smooth areas and decreases high-pass in rough
areas. Both the window size and the weighting function may be formulated to adapt to the
local circumstances in the map.

4.2.3. Mathematical morphology

Mathematical morphology is an approach to image processing which is based on the
theory of sets. In a digital image, a group of objects of a same type is represented by the
set of pixels belonging to the objects. Those pixels are located within a larger set of
pixels comprising the entire image space in which other types of objects and the
background are also identifiable as different sets of pixels. Exploration and measurement
of the desired objects is obtained by scanning the image with small images or probes (also
termed structuring elements) that provide measurements of specific characteristics, such
as dimension, orientation, and distribution, to enable the geometrical separation of the
objects. When a model is available for the interpretation of the geometrical properties of
the objects in an image, the approach can provide the background for extrapolation and
for prediction. According to Serra (1982), set theory can be used to construct a picture
algebra by developing criteria and models for image analysis, for example considering the
morphology of binary images (black and white), of grey-tone functions, and of random
sets (Matheron, 1975).

Most of the computations to be performed on images for morphological characterization
are of local nature, for example, edge detection, thresholding, thinning, skeletonizing,
and object counting. Thus a function is evaluated that, for each pixel, takes into account
the values of a subset of neighbouring pixels (not excluding the pixel itself). Local
operators or neighbourhood operators may be used for detecting both geometrical and
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topological features, in order to ‘understand’ the image. This section is a brief
introduction to morphological transformations or morphological filtering which
exemplifies how simple transformations can be sequenced for feature extraction in
geological applications of digital remote sensing. In addition, a brief discussion is
provided of the usefulness of mathematical morphology filters in modelling data
integration and in spatial analysis in general within geographical information systems.

Simple examples of shape-sensitive filters can be generated by small binary kernels which
identify the pixel positions, within a neighbourhood, which are used to compute a
function whose result will decide the value that an image pixel, corresponding to the
centre kernel pixel, will be assigned. Figure 4.6(a)-(i) shows kernels with centre pixels
underlined to simplify their mapping. The "1’s" indicate pixel locations which are used in
the computation, e.g., to compute the maximum (minimum) value of the image pixels
corresponding to them. The "x’s" correspond to the pixel values that are ignored. We can
also consider the kernels in Fig. 4.6 as small images, and transform one by using either
itself or another image kernel. For instance, by using the kernel in (a) to compute the
maximum value for all the corresponding pixels in (b), we obtain the image in (c). A
similar result is obtained transforming (g) with (h) to generate the image in (i). Sweeping
an image with a structuring element, means to translate the latter so that its centre pixel
overlies all the image pixels in sequence and for each overlay, a pixel value is computed
in the resulting image. The computation of minima is termed an ‘erosion’ while the
computation of maxima is termed a ‘dilatation’: this conveys the concept of shrinking or
of expansion, respectively, of the boundaries of the objects in the image. By sequencing
such transformations, i.e., eroding an image and then dilatating its erosion (or dilatating it
and then eroding its dilatation) sets of transformed images are obtained which are
contained in (or contain) the original or the previous image in the sequence. These
transformation sequences are termed opening and closing, respectively. Their effect is of
‘sieving’ the objects according to their size in one or two directions of the image raster
(generally square, sometimes hexagonal). Kernels (d) to (i) in Fig. 4.6, identify particular
directions or senses of direction; kernels (a) to (c) are isotropic and work in several
directions.

For binary images (two valued, e.g., 0 and 1, or white and black) topology sensitive
filters can be used which map all the pixel neighbourhood configurations which
correspond exactly to the kernel configuration. In Fig. 4.6(j)-(m), the mapping of small
convexities, small concavities, vertical straight segments of length 5 pixels, and oblique
segments of 5 pixels are shown. Matching 0’s and 1’s are computed while the x’s identify
"don’t care pixel value positions."

Appropriately designed sequences of transformations can represent strategies for the
extraction of the desired information or of the desired objects from an image. The
approach leads to the initial separations of particular aspects in a ‘granulometric’ sequence

for later reassembly or reconstruction of the objects having acceptable geometrical or
distributional characteristics.

A simple example of morphological filtering of a one-dimensional signal by a 3-pixel long
horizontal kernel is shown in Fig. 4.7. In the illustration it becomes evident how closing
identifies the dark valleys that can be isolated by subtracting the original signal from it.
Conversely, opening leads to the identification of the bright peaks which are then isolated
by subtraction from the original signal. The analysis of images using structuring elements
of sequentially greater lengths and of different orientation leads to complex structural
analyses as it will be discussed later when reviewing some applications.
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FIG. 4.6. Examples of structuring elements kernels used in mathematical morphology
filtering. (a)-(i) can be used for either binary or grey-level images (erosion, dilatation,
opening, closing); (j)-(m) are topology-sensitive kernels that can be used for binary
images (hit-or-miss transformations such as connectivity number, histogram of given
directed lengths, etc.).

An application of morphologic filtering, termed ‘top-hat’ transformation, is described in
Fig. 4.8 (see Plate 3). The image of the aeromagnetic anomaly pattern, for a study area
around Bathurst Inlet in the Northwest Territories of Canada, which was provided by the
Geological Survey of Canada as an array of average gamma values for square cells of
side 812 m, was resampled to 100 m pixel resolution. The values of the gamma readings
were rescaled between the values O and 255, i.e. to one byte. The grey level image for a
800 pixels X 600 lines subimage is shown in Fig. 4.8(a), where the sets of bright peaks
identify high readings which correspond to highly magnetic objects (diabase dykes and
gabbro sills). Several structural trends can be observed, NW-SE, E-W, and some N-S
orientations. The extraction of bright peaks in all directions was obtained using the
circular (octagonal) structuring element in Fig. 4.6(b) twice (i.e., a circular element of
diameter 9 pixels). Fig. 4.8(b)—(d) show the result (the grey level were stretched between
0 and 255) of the erosion (max) by it, of the opening (max and min), and of the
subtraction of the opened image in (c) from the original image in (a). The binarization of
the image of the subtraction, shown in Fig. 4.9(a) (see Plate 4), was obtained by
thresholding (grey level slicing) it at values greater or equal 2. This complex three-step
transformation is termed top-hat transform in mathematical morphology (Serra, 1982).

To verify the correspondence of this feature extraction process, the overlay is computed
in Fig. 4.9(b) with the structural data about faults, diabase dykes and the square cells
around mineral occurrence pixels digitized from a 1:250 000 geological map (Roscoe,
1984). From this illustration it can be seen that the E-W trend of dykes is
underrepresented in the map. A systematic enhancement of aeromagnetic data was not
used to produce the reconnaissance mapping which produced the geological map.
Evidently, contour maps of aeromagnetic anomaly did not allow a satisfactory visual
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FIG. 4.7. Examples of morphologic transformations on a one-dimensional signal (or
cross-section of a grey level image) by a linear structuring element of length 3 pixels. (a)
in grey the result of a dilatation (max); (b) in grey the result of a closing, i.e., an erosion
following a dilatation; (c) in grey the result of an erosion; (d) in grey the result of an
opening, i.e., a dilatation following an erosion.

feature extraction. Many observations of E-W trending diabase dikes remained as field
notes and were not represented on reconnaissance maps during fieldwork at 1:50 000.

The isolation of the E-W trend in the aecromagnetic anomaly image of Fig. 4.8(a) was
performed in Fig. 4.9(c) by computing a top-hat transformation using a vertical
structuring lineament similar to the one shown in Fig. 4.6(e), but of length 7 pixels
(equivalent to iterating (¢) three times). The binary image of the extracted horizontal
anomaly in Fig. 4.9(c) was then ‘cleaned’ of all short horizontal segments of length less
than 9 pixels. This is displayed in Fig. 4.9(d), overlaid with the structural data. The two
Figs 4.8 and 4.9 (Plates 3 and 4) illustrate some common transformations which can be
used in image analysis.
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The following is a review of some of the fundamental research on the general principles
applied in mathematical morphology and on the relationships between conventional and
morphologic filters. Studies on the properties of morphologic filters demonstrated that
translation invariant and increasing transformations can unify linear, median, and order-
statistics filters under one roof (Maragos and Schafer, 1985; 1987a, b). This is done by
representations as minimal combinations of morphological erosions or dilatations.
Applications of morphologic filters can provide‘systematic algorithms for image
processing and analysis for tasks such as nonlinear image filtering, noise suppression,
edge detection, region filling, skeletonization, coding, shape representation, smoothing
and recognition. Several results reviewed by Maragos (1987) lead to a unified image
algebra for operations and processes. Recent tutorials on both binary and grey level image
analysis using mathematical morphology were provided by Maragos (1987) and by
Haralick et al. (1987). The latter two articles offer extensive background on the properties
of morphologic filters to be employed in the construction of processing strategies.

In remote sensing, two applications clarify how processing strategies can be constructed
using morphological filters in combination with more conventional image processing
techniques. Destival (1986) used mathematical morphology to extract the patterns of
villages and roads from a SPOT scene. She observed the textural and tonal appearance of
fields, roads and villages in the different channels of the scene under study (highly
contrasted villages, homogeneous fields, roads as clear but interrupted peaks of varying
width). A succession of gradient operators, skeletons and openings isolated the villages.
Top-hat transformations were then used to clear first the dark noise and then to extend the
bright roads. Binarization of road pixels was followed by closing filtering to connect them
and to reconstruct interrupted roads into a connected network. The relative importance
assigned to different pieces of roads enabled to optimize the sequence of steps to generate
an acceptable village and road pattern extraction. The complexity of the analysis and the
identification of several alternative strategies and results in this application revealed the
duality between ground context knowledge and the experience gained of the digital
context: it has to be resolved by interpreting one in terms of the other.

Flouzat and Moueddene (1986) developed a framework to aid geological interpretation of
a Landsat MSS scene (bands 5 and 7) using mathematical morphology for the study of the
pattern of an anticline in a forest vegetated area. Sites of strong slope with forest and
shaded areas corresponding to low reflectance pixels were extracted by classification.
Morphologic filtering was used to increase the compactness of pixels (and of pixel
clusters) before classification (nested sequences of grey tone openings and closings, e.g,
one erosion, followed by two dilatations, followed by another erosion, by a same
structuring element). Binarization provided the noisy silhouettes of the anticline which
was then subjected to nested opening and closing to eliminate the black and the white
noise. This was followed by skeletonization (line thinning which maintains pixel
connectivity), pruning (the elimination of small branches in thin line objects), and the
elimination of isolated pixels to generate the thin skeletons of the silhouettes. The latter
were then direction labelled (i.e., each pixel was assigned a direction value within its
neighbourhood) to extract only the silhouettes with a particular orientation. The strategy
lead to the identification and subsequent filling of holes corresponding to shaded areas
(umbras, i.e., a disturbance caused by the orientation of relief elements) and to the
determination of the main structural directions.

Durand and Flouzat (1985) used shape characterization by mathematical morphology to
quantitatively analyze the visual aspect of the classes resulting from the classification of a
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SPOT image over rice fields in Mali. In particular, they performed textural analysis and
structural reconstruction of mixed classes to obtain more compact entities with sharp
edges, therefore improving their identification. The same technique was applied by Fabbri
et al. (1993) to the results of supervised and unsupervised classification of Landsat MSS
in northern Canada in order to identify viable general-purpose processing strategies.

Poujade and Laurore (1990) proposed a classification method which uses the contribution
of both spectral and textural criteria. An optimal morphologic operator was identified by
using different sizes and shapes of structuring elements and the associated statistics. The
application problem was the extraction of urban zones and specific crops from SPOT
satellite images. Several textural classes extracted were compared (i.e., crossed or
correlated) with the spectral classes by computing the number of pixels belonging to both
and by analyzing variation of the pixel properties with the different sizes of structuring
elements. This enabled the identification of maxima of correspondence.

In a more general approach to texture analysis, Dougherty et al. (1989) proposed to use
local morphologic granulometries (standardized sequences of opening and closing to
obtain a normalization of size distributions) to partition textural domains. Rather than
constructing a single size distribution based on the entire image, local size distributions
are computed over moving windows within the image. Regions of various textures can be
isolated when the local statistics is found to be homogeneous over a given subregion.

Martel et al. (1989) analyzed the pattern of free air gravity anomaly for gridded data at
1/4 degree intervals over the Indian Ocean (0° to 45° S, 55° to 105° E). The data were
converted into 0-255 integer values (bytes). They used morphological filters (opening and
closing by differently oriented linear structuring elements) to perform: (1) peak and valley
detection, (2) orientation analysis, and (3) period-icity search. They observed that, unlike
the usage of fast Fourier transforms, morphologic processing using local operators is not
affected by the physiography of the area studied, which is subdivided in zones by ridges
and through. Also, the simplicity of the processing makes it easier for the final results to
be interpreted. Fabbri and Kushigbor (1989) used a similar approach in a study of the
aeromagnetic anomalies shown in Figs 4.8 and 4.9 (Plates 3 and 4),

Morphological filters have also been used for the elimination of noise from satellite
imagery such as the speckle in radar images (Safa and Flouzat, 1989) and for destriping
defective SPOT images (Banon and Barrera, 1989).

The variety of applications described here, is only an indication of how shape analysis can
contribute to the modelling of spatially distributed data. Early examples of spatial models
for data integration in mineral exploration and for microtextural analysis were discussed
by Fabbri (1984) who generalized image processing to geological applications.
Mathematical morphology techniques can additionally be seen as generalizations of many
spatial transformations common in geographical information systems and in spatial
reasoning by expert systems, as discussed by Fabbri (1991).

4.3. SPECTRAL ENHANCEMENT

In addition to the extraction of spatial features, such as frequency components, texture,
geometrical and morphological properties from a given variable, it is sometimes necessary
to create new variables by enhancing the individual observations separately from their
surroundings. Spectral enhancement or spectral feature extraction is carried out by
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operations which are made for only one sample or pixel at a time. Through the following
operations the variables are transformed into features and therefore the original variable
space is spectrally transformed into feature space.

4.3.1. Histogram transformations

A histogram of a map or an image is a list of numbers each indicating how many
measurements fall into intervals between maximum and minimum of the data. This list is
often graphed by a sequence of columns or an X-Y plot. A histogram is a discrete
analogy to the probability density function.

The purpose of histogram modification is mainly to improve the visual impression of an
image or to prepare data for further statistical analyses which require a normalized
distribution. A visual impression of an image is ‘good’ if the grey level histogram is
nearly a normal distribution having an ‘appropriate’ mean and standard deviation. The
mean is set equal to the mean greytone and variation is scaled to satisfy the perception of
a human eye (Fig. 4.10). Statistical treatments like factor analysis require that the
histogram be (0, 1) standardized, i.e. the mean must be equal to 0 and standard deviation
equal to 1.

A histogram can be modified by a level transformation function (Fig. 4.10). Its discrete
form is called a look-up-table. Any form of the histogram can be obtained by designing
and applying an appropriate level transformation function (Gonzales and Wintz 1987).
Image processing and GIS software usually have interactive tools for histogram
modification.

There are some special cases of histogram modification which are often used: histogram
equalization and linearization produce a uniform histogram for the output image.
Normalization produces a normally distributed output histogram and optimization
transforms the histogram so that the output image is the best possible for the human eye.

4.3.2. Spectral enhancements for multichannel remote sensing data

Remote sensing is based mainly on elecromagnetic wavelengths between 0.3 um - 60 cm.
Most alteration minerals can be identified by wavelengths between 0.4-2.5 um with a
spectral resolution 4 nm, i.e. 0.004 um. Therefore 525 channels are needed ideally for
such mineral identification. Nearly all minerals can be identified by wavelengths 1-25 um
using a spectral resolution of 4 nm. Airborne and satellite sensors usually have less
spectral resolution capacity because the channels are wide and the number of channels is
limited. Therefore one has to study carefully spectral reflections from the object under
consideration. For instance the Landsat TM sensor has 7 channels each covering

>1000 nm.

The detailed reflectance model of an object is therefore designed according to the data
from imaging or field spectrometers. This model will thereafter be approximated by the
‘rough’ channels of the satellite or other sensor. In many cases this has produced
successful results (Simpson et al. 1991, Smith 1977, Goetz et al. 1982).

The approximation of the fine spectral reflectance model by a few wide channels is also

made by band ratioing. For example, the following Landsat band (Lillesand and Kiefer
1987, p. 594) ratios are used:
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FIG. 4.10. The effect of the histogram transformation of an image. (a) Grey-level
transformation, (b) input image, (c) output image.
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Ratioing of the bands reduces the effect of brightness variations due to topographic slope.
At the same time, however, ratio images increase noise thus making interpretation more
difficult. Band ratioing is also a widely used technique for gamma radiation
measurements, because the damping effect due to water can be reduced in this way.
U/Th, K/Th and U/K are the usually computed new variables (Kuosmanen et al. 1988).

Vegetation indices are vegetation-sensitive combinations of red (Red, 0.6-0.7 um) and
near infrared (NIR, 0.7-1.1 um) channels of sensors. The red band records chlorophyll
absorption and NIR-band records the strong reflectance of healthy leaves. The simple
vegetation index (V1) and the normalized difference vegetation index (NDVI) are defined
by Lillesand and Kiefer 1987, p. 597 as:

VI = NIR/ Red
NDVI = (NIR - Red) / (NIR 4+ Red)
These are extensively used for monitoring large areas of green vegetation (see Sabins

1987, pp. 321-323 and plate 14 A).

For the NOAA (National Oceanic and Atmospheric Administration) AVHRR (Advanced
Very High Resolution Radiometer) images (Lillesand and Kiefer 1987, p. 594) these
correspond to (Bl and B2 are the intensities of respective bands):

Vljoaa = B2/ Bl

NDVIoaa = (B2 - Bl) / (B2 + Bl)
For the Landsat TM imagery they are calculated as (TM4 and TM3 are the intensities of
the respective bands):

Vi, = TM4/TM3
NDVIy,, = (TM4 - TM3) / (TM4 + TM3)

The normalized difference vegetation index, which has been successful in mapping
biomass in equatorial regions, does not work at all with Boreal coniferous forests (Hime
et al. 1992). Therefore Héame et al. (1992) developed a more sophisticated Boreal
Biomass Index using Landsat TM data:

BIOMASS = C * V
LoV + 1) =

-43.1 + 2.18 TM2 - 3.38 TM5 + 16.7 TM3/TM2 - 0.81 TM4/TM3 + 24.8
TM5/TM1 + 43.7 TMS5/TM2 - 53.7 TM7/TM1 + 12.1 TM7/TM3 - 0.02
TM3*TM2 + 0.04 TM5*TM2 + 0.01 TM7*TMS5

where V= stem volume (m>/ha)
TM1-TM7 =  the intensities in channels 1 through 7 of the Landsat
Thematic Mapper image
Ln = natural logarithm
C= constant, suggested value 90
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4.3.3. Simultaneous processing of many variables/features

Modern computer facilities have remarkably increased our capacity to combine many
geoscientific variables or inferred features. Geochemical analyses from soil and bedrock
samples may produce data for up to 40 variables, geophysical airborne or field surveys
can produce 20 variables and satellite sensors 10 variables or more particularly if
multitemporal data is included. Imaging spectrometry may lead to as many as 256
variables!

Simultaneous studies of groups of these variables can lead to improved recognition and
definition of ‘fingerprints’ for exploration targets, geological formations and
environmental hazards. Simultaneous studies are carried out by sandwiching maps of
different variables and by statistical studies of variable, feature or sample spaces. In
normal processing strategy these are both made alternately by digital image processing.
Processing strategy is discussed later in the text in Section 4.3.5.

A statistical approach to studying many variables simultaneously can be of value in:

(a) studying relations between variables/features or samples and increasing contrasts
between variables;

(b) decreasing dimensionality, i.e. decreasing number variables by replacing them by
important features such as factors in a factor analysis;

(¢) gaining new knowledge about different populations and their mutual relations;

(d) finding characteristic set of features ‘fingerprints’ for the known occurrences;

(¢) forming a statistical model from the above characteristic features for

(f) classifying the data set to find all similar targets.

All the cases from (a) to (f) are investigated through studying geometric properties
occurring in the variable, sample and/or feature space. The techniques used for many
variables is also applicable to many features and samples. Therefore, in the following
sections, the term feature space (FS) is mainly applied instead of variable space.

The theoretical background to multivariate statistical methods is well treated in various
textbooks (Davis 1973, Agterberg 1974, Young and Calvert 1974, Fukunaga 1990).
Choosing of a suitable processing strategy is dependent on the structure of the feature
space. Therefore, in this report, particular emphasis is paid to the application aspect,
which is especially related to the structure visible in feature space.

In the following section some typical structures of feature spaces are shown, and suitable
statistical approaches are recommended.

Principal component analysis (PCA)

Variables represented by maps or images may sometimes seem to be so similar that their
colour combination does not show the targets of interest by different colours. The
combination is therefore similar to one of the component variables and mutual correlation
between the variables is high. The feature space expressed by a scatter diagram is built up
of an elongated ‘cloud’ of observation points (Fig. 4.11). Maximal elongation, i.e.
maximal variation directions of points is revealed by principal component analysis.
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FIG. 4.11. Principal components in scatter diagrams of variables X, and X,. (a) positive
high correlation, (b) negative high correlation, (c) variables not correlated and the PCs
are at random.

In the cases of high (positive or negative) correlation (Fig. 4.11 (a) and (b)) mutual
contrasts of X, and X, can be enhanced by choosing new cordinate axes along and
perpendicular to the major elongation of the scatter cloud. The new axes are called
principal components PC 1 and PC 2. The principal components are orthogonal and
therefore uncorrelated. The new coordinates of observations (projected onto the new axes .
PC 1 and PC 2) are called principal component scores and the correlation coefficients of
the PC axes and X,-X, coordinates are called principal component loadings. Calculation
of PC:s is based on the variance-covariance matrix of the original variables (Davis 1973).

Principal component analysis is sometimes able to separate populations of points (see
Siegal and Gillespie 1980, p. 200) expressed by clusters in FS (Fig. 4.12(a)).

Variation in the observation set may be caused by many populations, as in the case of
multispectral satellite or gamma radiation data. PCA usually gives a very effective first
impression of these populations (Fig. 4.13, see Plate 5). Principal component analysis can
naturally be applied in more than two dimensions. This technique is in practice effectively
used when there are up to 30 variables.

FIG. 4.12. Principal component axes in the case of separate populations in FS. (a) PCA
is applicable, (b) PCA is not able to separate clusters.
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Factor analysis (FA)

Just as principal component analysis was used to find uncorrelated new variables (PC:s)
and therefore enhance contrasts between groups of variables, factor analysis is used to
reduce a number of variables to a few significant uncorrelated factors which can explain
the total variation in the observation set. Reducing the number of variables may often be
necessary if the computer programs available are not able to handle such a large number
of original variables. The original variables are standardized prior to FA and therefore the
new variables, namely factors, become comparable to each other. Factor analysis of this
type, when the variables are replaced by factors, is called R-mode factor analysis.

Generally, factor analysis is applicable to the same cases of feature space as for PCA (see
Figs 4.11 and 4.12), mainly to study one population. FA is a powerful tool for separating
derivatives within a single population, e.g. both the extreme end-members and the in-
between-members. A typical example is discrimination of rock types based on chemical
analyses of samples representing a magmatic differentation sequence.

The search for factors is also carried out by seeking directions of maximal variation in
FS. Some statistical assumptions are however made about the nature of population from
which samples were taken; namely the original random variables X; are multivariate
ormally distributed and one can predict a suitable number (p) of orthogonal factors to be
extracted from m original variables (p must be less than m).

The factor model (Davis 1970, pp. 500-533, Fukunaga 1990, pp. 399-417) can be
expressed as:

X=X Lf7 e
where:
f. = r’th commonr factor
l; = loading of j’th variate on the r’th factor
¢ = unexplained variation over variable X

If p=mand éj = 0 then the problem becomes equivalent to principal component
analysis.

Just as PCA utilized variance-covariance matrix to calculate new variables PC:s, factor
analysis utilizes the correlation matrix. In factor analysis each original variable is
standardized to have a mean = 0 and standard deviation = 1. Standardization transforms
the former variance-covariance matrix into a correlation matrix. Eigenvectors of this
matrix express elongation directions of the scatter diagram and eigenvalues show the
amounts of elongation (variance) in these directions. A factor f; is a vector in the
direction of an eigenvector its length being equal to square root of the eigenvalue =
standard deviation in this direction. The correlation coefficients between factors and
variables are called factor loadings and plots of the standardized data on the factor lines
are called factor scores.

The communality of a variable is calculated as a sum of respective squared factor
loadings. If communalities of each variable are near 1 this means that the factor model is
appropriate, if communalities are near O the model is not good. It is possible to iterate the
factor model by ‘varimax-rotation’ so that a better position for the factors and therefore
better communalities are obtained.
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Q-mode factor analysis studies the interrelations between multivariate samples instead of
variables. Therefore it is an effective method for arranging a series of samples into a
logical order so that their relations to each other are revealed.

Q-mode factor analysis commonly utilizes cosine theta (cosf) matrix (instead of the
correlation matrix) as the basic criteria for determination of the eigenvectors and
eigenvalues and thus the factors. Q-mode factor analysis is often used in a similar way to
cluster analysis, which is explained below.

Examples of using R-mode and Q-mode factor analysis in geology are given by Davis
(1973) on pages 473-532.

Clustering, discriminant analysis and classification

Unsupervised classification or cluster analysis is used when the data structure in FS is
unknown and we want to study overall grouping of the samples. Clusters can be found by
studying the centers of concentration of samples, concentration gradient or correlation
coefficient between samples. In the case of a small number of samples (or variables) the
results of hierarchic clustering can be shown by a dendrogram (Fig. 4.14).

In many instances the samples cover many populations having mutually different features
which occupy partly separate fields in feature spaces (Fig. 4.15).

1 Syenite
19 Monzonite

2 Syenite
15 Syenite

3 Syenite

7 Diorite

[ 18 Monzonite
16 Quartz syenite

4 Monzonite

8 Quartz diorite

9 Gabbro
10 Gabbro

5 Diorite
J 20 Diabase
17 Altered syenite
6 Diorite
11 Norite
I—— 12 Norite
[ 13 Hypersthene gabbro
14 Hypersthene gabbro

L 1 | .
0.94 0.96 0.98 1.00
Correlation

FIG. 4.14. Results of cluster analysis for chemical analyses of igneous rocks. Dendrogram
reveals the relations between different variables X,-X,, The clustering shows essentially
the same arrangement as Q-mode factor analysis (from Davis 1973, Fig. 7.36).
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FIG. 4.15. (a) Distribution of samples from two different model populations divided by a
discriminant function d(X;, X;,) = 0. (b) Additional samples from the same region are
classified to respective populations 1 or 2 by the same function.

If we know these two model distributions from past experience, we can formulate an
optimal boundary d(X;, X;) = 0 between these two distributions and divide the feature
space into two regions. Once the boundary is selected, we can assign a new sample
without a class label to population 1 or population 2 depending on whether d(X;, X,) < 0
or d(X,, X,) > 0. We call d(X,, X;) a discriminant function or a decision boundary. A
network which detects the sign of d(X;, X,) is called pattern recognition network, a
categorizer or a classifier. In order to find a classifier, we must study characteristic
features of each model population in our data set to find a proper discriminant function.
This process is called learning or training, and the samples used to design a classifier are
called learning or training samples.

What is theoretically the best classifier for given distributions? This problem is known as
statistical hypothesis testing. Bayes classifier is the best classifier in the sense that it
minimizes the classification cost. This means that Bayes classifier maximizes our money
if we get 1 $ for each correctly classified sample and lose 1 $ for every misclassified
sample. Bayes principle is fully explained by Fukunaga (1990).

However, implementation of an optimal Bayes classifier is often difficult because of its
complexity, especially if the feature space has very many dimensions. Therefore simpler,
so-called parametric classifiers are used, based on assumptions concerning the density
functions of the desired populations or on the discriminant functions. Linear, quadratic or
piecewise parametric classifiers are most commonly used (see Fukunaga 1990,

pp. 124-180).

When no parametric structure can be assumed for the density functions of the populations
explored, nonparametric techniques such as the Parzen and k-nearest neighbour
techniques can be used for estimating the density functions (see Fukunaga 1990,

pp- 254-297).

Traditionally however, discriminant analysis and classification are regarded as separate
methods:

- The purpose of discriminant analysis is to separate all subsequent samples into
previously known groups which can be separated according to d (X, X,)
(Fig. 4.16(a)). d (X,, X,) is fully determined by the old samples, i.c. the training
samples. '
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- The purpose of classification — within a set of samples — is to label some samples
as belonging to classes, which emerge during the classification process
(Fig. 4.16(b). d (X,, X,) is determined through studying the structure of the FS
versus distribution of the training samples, if they exist.

decision boundary decision boundaries
d (X1X2) -4 (XyX2)

Class 2

h
cg}: old samples

A = new samples

I

a X1 b X1

FIG. 4.16. Difference between (a) discriminant analysis: partitioning of the whole FS into
three predetermined groups and (b) classification: labelling some samples into classes
emerged during classification.

Within the scope of this report, only a few commonly used discriminant and classification
methods are briefly mentioned. The interested reader may become further acquainted with
the topics by reading the excellent textbooks by Krishnaiah and Kanal (1982) and
Fukunaga (1990).

The discriminant function is designed to yield maximal separation of populations indicated
by the training samples. Examples of linear, nonlinear, piecewise linear and piecewise
nonlinear functions are illustrated in Fig. 4.17.

Classification methods are used to properly extract ‘fingerprints’ of desired populations
(like ore deposits) from a large sample set. According to these fingerprints analogous sites
for further exploration are searched for. Supervised classification uses training samples to
identify potentially favourable classes in FS. In the geosciences the commonly used
methods are box classification, maximum likelihood and k-nearest neighbour methods
(Fig. 4.18).

In box classification the dimensions of classes (boxes) are determined by mean and
standard deviation (in the direction of coordinate axes) of the training data in relation to
the structure of FS. In the maximum likelihood method the classes are determined by the
mean and covariance matrix of the training data in relation to the FS. Therefore the shape
of a class is an ellipsoid elongated along the direction of highest variation. K-nearest
neighbour classes in FS occupy space (around training data points) where distance to the
nearest training point is less than a chosen constant limit. These classes are often made to
adapt the FS structure according to the mutual orientation or density of the points in the
FS. In these cases direction sensitive Mahalanobis distance and density sensitive density
gradient are used respectively.
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FIG. 4.17. Different types of discriminant functions: (a) linear; (b) nonlinear; c) piecewise
linear; (d) piecewise nonlinear. The distribution of observation points is described by
contour lines. The numbers 1, 2 and 3 refer to different populations.
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FIG. 4.18. Three classification methods illustrated by ‘favourable’ classes. (a) box
classification; (b) maximum likelihood ellipsoids, (c) k-nearest neighbour classes.
Distribution of all samples is shown by the same density contour line in all cases.
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The final classification results may seriously differ from each other depending on the
selection of the classification method. This can be easily understood when we see that the
decision surfaces in each method occupy partly nonoverlapping areas in the FS

(Fig. 4.18).

4.4. PROCESSING STRATEGIES FOR A GEOLOGIST

A processing strategy is of course dependent on the objectives of the study, nature of the
input data and available finance, manpower and instrumentation. However, if our
intention is to process a large data set composed of many spatial variables and training
data, the processing often follows a certain strategy. In a more simple situation we may
require only a part of this strategy.

The general flow chart (Fig. 4.19) can be split into a number of more detailed flow
charts.

Exploration for ore deposits is always an iterative process, where attention is focused
iteratively from large areas to small areas. The loop in Fig. 4.19 from "E" back to
"Observations" is made in order to iterate the work from reconnaissance scale to regional
and to detailed fieldwork scale.

Observations

N

Data Base

Processing

®—

Integration
modelling

Final targets

FIG. 4.19. General flow chart for finding geological or environmental targets. A and E
are the links to processing.
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Feature extraction

Spectral = Spatial

Grouping of
features (variables)

Multidimensional
classification

return to the beginning;
next iteration using new
variables and/or more
v detailed data

=) >

FIG. 4.20. Main processing steps. The links A, B, C, D and E are also good points for
visualization of results. The external links A and E are shown in Fig. 4.19.

Processing involves four main steps (Fig. 4.20). The links A and E to the general flow
chart are shown in Fig. 4.19.

All steps except grouping of variables have been explained in the previous chapters.
Feature extraction is a process of attempting to clarify the relations between the training
data (such as ore deposits) and their characters in the spatial data (maps, images,

variables) and feature spaces. It results in a reduced number of variables, significant
features, and reduced — but more significant — amount of spatial variation (Fig. 4.21).
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features (variables)
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Checking the criteria”
for classification

Feature data
FIG. 4.21. Spatial and spectral feature extraction A and C are external links (see
Fig. 4.20) and Vs are internal links, which are all also places for visualization.

Grouping of features and variables is extremely important. Due to geological, geophysical
or hydrological, etc. factors the different indications of targets (e.g. an ore deposit) may
not be necessarily superimposed in one geographical location but indications may occur in
several places. Therefore it is necessary to enclose those features (variables) where an
indication occurs in the one and same location to the same group (Fig. 4.22).
Multidimensional classification is made separately for each such group.

The choice of models for multidimensional classification is often facilitated by visual
inspection of the groups of features and the training data in the feature spaces (Fig. 4.23).

The results are mostly checked by bootstrapping (Jain et al. 1989) or a similar method in

either the laboratory or in the field by checking every predicted target. Bootstrapping is a
method of studying how each training datum is found by supervising the classification
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!

FIG. 4.22. Grouping of features into groups of ‘similar’ occurrence of training data.
C and D are external links (see Fig. 4.20). C, D and V also refer to visualization of the

products.

Study of distribution of
training data in the feature
spaces of groups

Choosing a classification method
(decision surfaces, prediction subspaces)
for each group

Classification
and
Checking of classification results
by bootstrapping and/or field checking

5

FIG. 4.23. Different phases necessary for classification. D and E are external links (see
Figs 4.19 and 4.20). D, E and V are good places for visualization.
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based on the rest of the training data (Fig. 4.23). After the critical examination of the
produced classes, the results are ready for integration modelling. The classification
method used does not necessarily produce ‘correct’ results, therefore some iteration cycles
are needed. After these steps the products are ready for further integration modelling (see
Fig. 4.19).
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5. INTEGRATION MODELLING
5.1. PREREQUISITES FOR MODELLING

Many phenomena which are observed at the earth’s surface or occur at depth below the
surface are of a complex nature. This is true both of processes related to man’s activities
and to ore forming processes. Efforts to understand these phenomena are centered usually
around comparing a number of similar instances of such phenomena. They are focussed
often on a few aspects of interest with the idea of seeing how they are related. Deepening
understanding of these phenomena have resulted in the development of models through
which this understanding can be expressed. Thus, a deepening understanding of the
movement of contaminants in soils or the migration of ore-forming fluids in rocks has
been achieved by the development of mathematical models based on the physics and
chemistry of flow through porous media. In many instances however, the processes are of
such complexity that conceptual rather than mathematical models are the most that can be
realized.

In this chapter different kinds of numerical models are presented that will serve as
conceptual models of certain aspects of these phenomena. For some purposes, one needs
very general models which can be applied widely even though they cover few aspects of
any particular situation to which they are applied. For other purposes one needs
specialized models which cover more aspects of a particular situation, but which are less
widely applicable. Most phenomena can be studied through several models depending
upon which aspects one is interested in. In choosing an established model through which
to study a particular situation, one tacitly accepts the premises on which the model was
built. These will usually include some conventions concerning the way in which the
model is to be applied to a particular situation.

In the examples considered in this chapter, the emphasis is to make it possible to make
predictions. Two considerations need to be kept in mind when one tries to develop
numerical models for this purpose. Firstly the model should be easy to work with, and
secondly it should take into account all significant characteristics and fit them well. These
two criteria may well act in opposition. For example, a mineral deposit model can be
constructed that makes use of a small set of indicator variables whose values can be
approximated in a relatively small area. However, in a survey that encompasses a large
area or a region far removed from some control area, regional differences can be a
significant factor and a more generalized approach may be required.

The two criteria appear not only in the choice of an established model for a particular
situation, but also in the development of new models. Some aspects of a model will be
devised to fit the characteristics under consideration. Others will be devised to make the
model easy to work with. The implications of these two criteria for the purpose of
prediction are discussed more fully in this chapter.

The most general model which we will consider involves the language of sets. Nearly all
of its aspects arise from the collections of terminology used in describing phenomena on
which such models are based. These models can be applied to any situation in which one
is concerned about putting collections of objects together and splitting them apart in a way
that characterizes the phenomena being studied and distinguishes them from other
phenomena. In addition to its breadth of application these models have a second great
value. They are of such generality that they can often be used as the basis for more
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formal mathematical models that can be used to describe or represent specific states of
nature and that form the basis for more accurate predictions. We begin our discussion
with the language of sets and a perspective on the occurrence of uranium deposits in
sandstones.

5.2. THE LANGUAGE OF SETS

One of the few statements that can be made with confidence about uranium deposits is
that they compose a volumetrically insignificant part of the rocks in which they are found.
Granger and Warren (1978) stated, for instance, that in roll-type deposits, the width of
ore-grade uranium (>0.1 percent U,;05) in a typical roll-front deposit is commonly less
than 10 m. The oxidized tongue of the roll extends 10 km or more parallel to the
direction of groundwater flow. Whereas a roll-front deposit can commonly be traced for
several kilometers, the tongues of oxidized rock can have an areal extent of tens of square
kilometers. Such oxidized tongues make up but a small fraction of the sedimentary basins
in which they are found, and these basins commonly exceed several thousand square
kilometers in area. A uranium deposit makes a difficult target.

Not surprisingly, considerable attention has been given to searching for indicators that
effectively increase the size of targets offered by uranium deposits. Geological factors that
control the occurrence of uranium deposits ultimately will prove to be the most valuable
indicators in searching for and for assessing the likelihood of occurrence of such deposits.

The basic situation is shown in Fig. 5.1. An undiscovered ore body, (A/1000), occupies
an insignificant fraction of an area, A, being explored or being assessed. Surrounding the
ore body is a ten times larger area, (A/100), which reflects a geochemical halo associated
with the ore body. For a roll-type deposit, such an area would be represented by a zone
of pyrite redeposition. Recognizing this zone would have the effect of either increasing
the chances of discovery of the deposit or else increasing the credibility of a statement
that an undiscovered deposit exists. Surrounding the area of mineralization is a larger
area, (A/10), which represents ground favourable for the occurrence of a deposit. For
roll-type deposits, this would include areas underlain by a porous, permeable, fluvial
sandstone unit.

Thus, knowledge about the occurrence of roll-type uranium deposits can be used to justify
broad, regional-scale, geological mapping to identify favourable areas for the occurrence
of undiscovered deposits, and detailed geological and geochemical investigations within a

A10 A/1000

A/100

FIG. 5.1. Diagram showing the different relative sizes of targets in exploration.
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favourable area can be used to delineate probable locations of such deposits. Similar
reasoning can be applied to different types of mineral deposits. In general, diverse types
of data need to be collected and organized in a way that reflects the presence of a hidden
deposit. In analyzing diverse types of data, the language of sets is helpful.

The preponderence of the evidence suggests that categorical data collected in studies
related to the occurrence of uranium deposits is the most valuable in terms of delineation
of areas most likely to contain undiscovered deposits. Taking porosity as one example, it
is necessary only to determine whether the rock can be characterized by a certain porosity
or whether it lacks that porosity. In the case of rock alteration, it is essential to determine
whether or not the host rock is altered and so forth. In general, recognition criteria for
evaluating the favourability for undiscovered deposits rely either on the combination of a
set of indicator variables whose values are above or below some threshold value or else
are present or absent within an area being explored or assessed. Most often, it is the
combined presence-absence of a set of variables that leads to predictors of undiscovered
mineral deposits. Such combinations give rise to a logical model that makes use of the
language of sets and that results in a predictive model. We turn now to a discussion of
favourability as it applies to the occurrence of uranium deposits. The discussion however
could just as well focus on anomalies associated with environmental hazards.

5.3. THE LOGIC OF FAVOURABILITY

The favourability for the occurrence of a uranium deposit can be represented as a function
of a set of attributes whose combined presence (or absence) is associated with known
deposits of this type. In its simplest form, each attribute can be considered as a variable
whose values are represented by two mutually exclusive states, presence and absence. In
exploration as in resource assessment, the task lies in the proper selection of the set of
attributes used to express the favourability of occurrence. Later, we will discuss the
methods for assigning weights to such attributes in order that their relative importance can
be taken into account. In the present discussion, we limit attention to a single attribute (E)
and its relation to the occurrence of a uranium deposit within a given area (A). For this
purpose, consider Fig. 5.2 which shows a set of locations within area (A) which contains
uranium deposits (D). Bear in mind that the set of locations is not meant to convey any
sense of geographical location. The spatial aspects of these models will be discussed later.

FIG. 5.2. Diagram showing the set of locations of deposits (D) within area (A).
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The ideal situation is to choose an attribute (E) whose presence coincides with the set of
locations of uranium deposits (D). This situation is shown in Fig. 5.3.

Taking A as the set of all possible locations, the relationship in Fig. 5.3 can be expressed
as a statement of conditional probability

P{D | B} =1,

that is, deposits occur if and only if E is present. In this situation, E is a necessary and
sufficient condition for the occurrence of a uranium deposit. Such an attribute is a perfect
discriminator and constitutes a perfect guide to undiscovered uranium deposits. For
uranium deposits, the obvious candidate is natural radioactivity. Radioactive surveys have
proved most valuable for locating uranium deposits at or near the surface. For uranium
deposits at depth, the situation is significantly different. In these situations, a variety of
types of measurements are needed. The situation is similar to that shown in Fig. 5.4 in
for some cases the presence of E is associated with the occurrence of a deposit and in
other cases, it is not.

For an attribute to be useful, it is desirable that P{D | E} > P{D | (not E)}, that is, the
probability of a uranium deposit is greater when E is present than when E is absent. The
extreme case occurs as shown in Fig. 5.5 in which uranium deposits occur only when E

is present.

In this case, the probability is given as P{D | (not E)} = 0, that is, the absence of E
precludes the occurrence of a deposit at the location. Such an attribute is a necessary
condition for the occurrence of uranium deposits. In the case of roll-type uranium
deposits, the presence of a zone of pyrite redeposition is a necessary condition for the
occurrence of this type of deposit. However, not all zones of pyrite redeposition will
result in the formation of a uranium deposit. The absence of such a zone precludes
however the existence of such a deposit. In the search for hidden deposits in which the
situation is that there are no attributes whose presence is sufficient, efforts are directed at
identifying attributes whose presence is regarded as necessary for the occurrence of such
deposits. In general, different attributes are required to define favourability.

A

FIG. 5.3. Diagram showing the ideal relationship between the set of uranium deposits (D)
and the set of attributes (E). An occurrence of E is a necessary and sufficient condition for
the occurrence of D.
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A

FIG. 5.4. Diagram showing the typical relationship between the set of deposits (D) and
the set of attributes (E). D occurs some of the time with E and E occurs some of the time

with D.

E,\

A

FIG. 5.5. Diagram showing the relationship between the set of deposits (D) and the set of
attributes (E). The nonoccurrence of E precludes the occurrence of D. E is a necessary
condition for D.

5.4. LOGICAL OPERATIONS WITH SETS

Rarely is a single attribute adequate to define the favourability of undiscovered deposits or
for that matter of most phenomena. More often, it is some combination of attributes
whose combined presence (or absence) is used as a measure of favourability. First, we
consider logical combinations. Later, we will examine linear combinations. If now we
expand the concept of an attribute (E) to represent some logical combination of variables
X, and X,, we can represent the state of E as defined by the logical combination shown in
Table 5.1.

TABLE 5.1. DECISION RULES FOR COMBINING ATTRIBUTES WHICH DEFINES THE
STATE OF ALL POSSIBLE COMBINATIONS OF PRESENCE AND ABSENCE OF
VARIABLES X, AND X,

X, X, X, or X, X, and X, not X,
present present present present absent
present absent present absent absent
absent present present absent present
absent absent absent absent present
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Given these relationships, the state of any compound logical expression (E) involving
more than two attributes, X,, X,, X, for instance, can be evaluated, as for example

E = (X, or X)) and (not X,).

In this example, if X; and X, represent two related textural properties of a sandstone
body, the presence of either of which is considered favourable for the occurrence of a
uranium deposit and if X, represents a third textural property independent of X, and X,,
the presence of which is considered unfavourable, the above expression can be considered
a host rock textural factor that is favourable only if X, or X, or both are present and X, is
absent. The effect of such a logical combination is first to create a compound attribute (X,
or X,) that increases the degree of necessity for defining favourability and second to
create a subset (not X,) that increases the degree of sufficiency for defining favorablilty.
The conditional probability of the combined effect is closer to 1 as compared to the
conditional probability taking each attribute separately.

Using different combinations for a variety of attributes, genetic-geological models were
developed for assessing the favourability for undiscovered uranium deposits in the
Westwater Canyon Member of the Morrison Formation, San Juan Basin, New Mexico,
USA. An example of the genetic-geological model used to assess the favourability of
undiscovered trend-type uranium deposits is shown in Table 5.2.

TABLE 5.2. DECISION RULES FOR ASSIGNING FAVOURABLE STATE TO ATTRIBUTES
ASSOCIATED WITH TREND TYPE URANIUM DEPOSIT MODEL

Geological factor Attribute Favourable state
Host-rock deposition net sandstone thickness (ft) 200-280

sandstone/mudstone ratio 2.5-7.0
Alteration preparation sandstone colour grey

mudstone colour grey

thickness of interval of ilmenite

magnetite destruction (ft) >0
Preservation state of oxidation reduced

Thus, the host-rock deposition factor was considered favourable whenever the net
sandstone thickness and the sandstone/mudstone ratio fell within the stated interval; the
alteration preparation factor was considered favourable whenever the sandstone colour and
the mudstone colour were grey and the thickness of the interval of the ilmentite-magnetite
destruction was nonzero; and the preservation factor was considered favourable when the
ground was reduced. The overall favourability for uranium mineralization was represented
by the combination of all three geological factors. By applying this model to a part of the
San Juan basin that had been explored for trend-type deposits, an odds-ratio that
compared the odds that an endowed (mineralized) or unendowed (nonmineralized) cell
would be evaluated as favourable or unfavourable respectively, with the odds that an
unendowed or endowed cell would be evaluated as unfavourable or favoutable
respectively, was calculated to be 34.1. Probability and odds are related by the expression
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O = P/(1-P) where P is the probability and O is the odds. Such result is interpreted as
indicating that it is 34.1 times better than if the cells were evaluated by chance. It
demonstrates the predictive capability of models defined by logical combinations of
attributes.

There is a large body of literature in which models defined as logical combinations of
indicator variables have been applied in mineral exploration, resource assessment, and
environmental studies. An excellent introduction to the principles of logic and the use of
digital geographical informations systems can be found in Robinove (1986) and Ripple
(1989).

5.5. PROBABILISTIC MODELS

As stated at the outset, a major objective using models is to be able to make predictions
and the use of logical combinations of attributes in predicting the likelihood of occurrence
of undiscovered deposits is one approach. What is commonly desired however is a
statement that expresses the likelihood within a probabilistic framework. Such a
framework is provided by the application of Bayes’ theorem (Duda et al., 1978) which
can be considered as an extension of the language of sets discussed earlier. Using the
definition for a deposit D and attribute E, the conditional probability of a deposit
occurring given the presence of the attribute can be expressed as

P{D | E} = P{E | D}P{D)/P{E}

where P{D} and P{E), in the context described by Chung et. al. (1992), represent the
probabilities of occurrence defined as the proportion of all unit areas containing a deposit
D and attribute E, respectively. The left side of the above equation is referred to as the
posterior probability of D given E whereas P{D} is referred to as the prior probability of
D. Thus, the quantity

P{E | D)/P{E}

serves as a multiplier that relates the posterior probability of D to the prior probability.
The greater the above quantity, the more important the attribute in predicting the
occurrence of a deposit. As discussed by Chung et. al. (1992), information about

P{E | D} comes from studies in and around mineral deposits whereas information about
P{E} comes from regional geological mapping and studies around mineral deposits.
Consider the following example contributed by Ludington and Cox (pers. comm., 1990)
that involved estimating the relative importance of the age of a pluton in predicting
whether the pluton has an associated W-skarn deposit. For this example, 1:500 000 scale
maps of Nevada, USA. were used to estimate the total number of plutons, the number of
plutons with associated W-skarn deposits, and the number of plutons that were Cretaceous
in age. Of the 55 total plutons with associated W-skarn deposits, S0 were Cretaceous in
age so that P{E | D} = 50/55 = 0.91. There were 207 total plutons so that P{D} =
55/207 = 0.27. Of the 152 plutons without associated W-skarn deposits, 67 were
Cretaceous age so that P{E} = (50 + 67)/207 = 0.56. Thus,

P{D | E} = (0.91/0.56) X 0.27 = 1.6 X X 0.27 = 0.43.

Knowing a pluton is Cretaceous in age raises the probability of its having an associated
W-skarn deposit from 0.27 to 0.43, or 1.6 times greater than if the age of the pluton is
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not considered. Similar calculations could be made for any number of other attributes that
possibly would increase the probability even more. This simple example illustrates how a
logic model can be elevated to a probabilitistic model. We turn now to the problem of
constructing rules for prediction that are based on a large number of attributes.

5.6. CLASSIFICATION

In order that predictions can be made in situations that involve a large number of
attributes, it is often necessary to combine the attributes into a smaller number of rules.
In classification, one forms rules to decide to which class a sample belongs. The
construction of prediction rules proceeds by some systematic analysis of the set of data
containing values of the attributes. In constructing prediction rules there are two goals:
constructing the most accurate prediction rule possible and constructing the decision rule
which gives the most insight. The latter goal is important in that, in an effort to predict,
the question becomes, "Which of the attributes contain significant prediction information
and why?" For example, the implication is that geological factors used to define
favourability are related to the processess of formation of the deposits. Such information
gives insight into the results obtained when a favourability rule is applied.

A simple prediction rule that is not accurate gives misleading insights. However, in
situations where the goal is to gain understanding about the phenomenon of interest, and
to understand the influence of various attributes on the prediction, an easily understood
and interpreted prediction rule is to be preferred to a mathematically complex rule of
comparable accuracy. Thus, the two goals in constructing prediction rules are not
contradictory.

5.6.1. The Prospector mineral consultant system

We look first at the rules of classification that were embodied in the Prospector mineral
consultant system developed originally at SRI International (Duda, 1980) and subsequently
modified and expanded at the US Geological Survey (McCammon, 1989). The original
Prospector was an expert system designed to aid geologists in exploring for hidden
mineral deposits. The system consisted of a set of rules that guided the geologist through
a series of questions that led to a conclusion about the relative chances of locating a
hidden deposit of a particular type at a given location. A typical session involved the
geologist first describing the characteristics of a particular prospect such as the geological
setting, structural controls, and Kinds of rocks, minerals, and alteration products present
or suspected. The system compared these observations with mineral deposit models stored
in a knowledge base, noting the similarities, differences, and missing information. The
system then engaged the geologist in a dialogue to obtain additional relevant information
and used that information to make an assessment of the mineral potential of the prospect.
The goal was to provide the geologist with advice that could normally only be obtained by
consulting authorities on many different types of mineral deposits. The most noteworthy
success of the system was the prediction of a hidden extension of a major
copper-molybdenum deposit in eastern Washington using exploration data (Campbell et.
al., 1982). To this day the system remains as one of the most successful attempts to
model the task performed by geologists engaged in mineral exploration.

Within the Prospector system, the ‘model’ refers to a body of knowledge about a

particular class of mineral deposit. The knowledge stored in the system is represented by
a set of rules that are encoded in the form of an inference network. Thus, in place of a
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set of attributes, there is a set of assertions (inference rules) each of which is true or false
depending on the evidence that is presented to the system by the geologist. As the
evidence is presented, the assertions may be definitely established, whereas others may
become only more or less likely. Associated with each assertion is a probability value.
The ‘connections’ in the inference network determine how a change in the probability of
one assertion will affect those of other assertions. In general, an inference rule has the
form

IF E THEN (to degree LS, LN) H,

which means "The observed evidence E suggests (to some degree) the assertion H"
(hypothesis). The two parameters LS and LN establish the ‘strength’ of the rule and
specify how the probability of H is to be updated given the existence of E. The
sufficiency measure LS is defined by

LS = P{E | H}/P{E | (not H) }.

An inference rule for which LS is large means that the observation of E is encouraging
for H. In the extreme case of LS approaching infinity, E is sufficient to establish H in a
strict logical sense. On the other hand, if LS is much less than unity, the observation of E
is discouraging for H, in as much as the observation of E diminishes the chances of H
existing.

A complementary relation describes the situation in which E is known to be absent so that
the necessity measure LN is defined by

LN = P{(not E) | H}/P{(not E) | (not H)}.

If LN is much less than unity, the known absence of E diminishes the chances of H
existing. In the extreme case of LN approaching zero, E is logically necessary for H. On
the other hand, if LN is large, the absence of E is encouraging for H. The overall
structure of the Prospector model for a Western-States (USA) sandstone uranium deposit
is shown in Fig. 5.6.

In Fig. 5.6, the uppermost node corresponds to the overall conclusion about the
favourability of a given prospect for the occurrence of this type of deposit. The nodes
below represent the major factors relevant for establishing the occurrence of this type of
deposit. Each factor is established based on the evidence (observations). For example,
Fig. 5.7 defines what is meant by an admissible host rock.

The evidence relevant to establishing an admissible host rock is grouped into two
categories, the first pertaining to necessary conditions and the second regarding
favourable conditions. The necessary conditions are defined as a logical conjunction of
three factors. All three factors must be present to satisfy the necessary conditions for
admissible host rock. The terminal or ‘leaf’ nodes in Figs 5.6 and 5.7 correspond to field
evidence (observations). The evidence may consist of the presence or absence of a
particular attribute or it may represent a particular value or range of values. In any case,
the evidence is weighed according to its relative degree of sufficiency and necessity in
establishing the next higher factor.

In general, any assertion H is either a logical combination of other statements, or is the
consequent of one or more inference rules. Assuming the conditional independence of
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attributes related to the next higher factor, the posterior odds O(H | E) are obtained by
multiplying the prior odds by all of the likelihood ratios so that

O(H|E) = [I_,LS]*O(H)

where O(H) = P{H)/(I-P{H}) and n represents the number of attributes related to the next
higher assertion (H). If some of the E;s are known to be false, LN; is substituted for LS,.
This can be considered as a general statement of Bayes’ Rule. For example, in Fig. 5.6,
the prior odds of favourable tectonic and regional conditions for the Western-States
sandstone uranium deposit model is 0.0526 = 0.05/0.95. If the evidence supports the
hypothesis for favourable tectonic setting, admissible host rock, and favourable host but
rejects the hypothesis for favourable sedimentary tectonics, the posterior odds are
calculated as 8.5 = (9* 12* 15*.1)*0.0526. Thus, the posterior probability of favourable
tectonic and regional conditions becomes 0.90 = 8.5/9.5. We shall see shortly that the
above equation is also the basis for the weights of evidence method of combining
evidence, except that the weights of evidence is in a logarithmic form.

The design of an inference network requires the identification of the various assertions,
the organization of the assertions into a hierarchical structure, the determination of the
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FIG. 5.6. Inference network for the Western-States sandstone uranium deposit model after
Gaschnig (1980). The prior probability and the LS, LN values are given for each factor
specified in the network.
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FIG. 5.7. Inference network for admissible rock factor in Western-States sandstone
uranium deposit model after Gaschnig (1980). The prior probability and certainty values
are given for each factor specified in the network.

types of relations that exist among assertions, and the estimation of the degrees of
sufficiency and necessity of the attributes used to determine the overall favourability of
occurrence of a particular deposit type. The magnitude of the task depends upon the size
and complexity of the model being developed. The typical model in the Prospector system
contained 60 assertions involving 80 attributes. The earlier models were designed largely
for exploration. The later models were designed more for regional resource assessment.
The later models required fewer assertions involving fewer attributes and were developed
in a shorter time. As a final development, a model for porphyry copper was designed that
was used to select drilling sites with spatial data (Duda et al., 1977; Duda et al., 1978,
Katz, 1991). This development gave rise to another method applied to the problem of
target selection in mineral exploration, the weights of evidence method.
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5.6.2. The weights of evidence method

The weights of evidence method is also based on the general statement of Bayes’ Rule in
logarithmic form

log,O(D|E)=Y" wik+10g60(D)
i=1

where the superscript k refers to the presence or absence of a binary
pattern Ei, and

w for ; th pattern present
Wk = W, for ; th pattern absent
0 for ; th pattern missing

where W,* = log, LS and W; = log, LN, and D is the number of
deposits per unit area. The logarithmic form of the model results in the addition (rather
than multiplication) of terms, and in weight factors that are positive or negative and
usually less than 3. Weights defined in this manner are straight forward to interpret.

For a well-explored control area, it is assumed that a set of indicator variables are known,
and are to be used as predictors of undiscovered deposits of some particular type.
Furthermore, it is assumed that the locations of a number of deposits of this type are
known. From these data, it is possible to calculate values of W,"and W, directly. The
prior odds are also calculated from the data. The set of binary patterns represented by the
set of indicator variables is used to generate an output pattern that can be used to predict
or at least express the likelihood of occurrence of undiscovered deposits of the type being
modeled. The weights of evidence are easy to interpret, simple to program, missing data
can be accommodated, and patterns with complex spatial geometry can be modelled with
the same computational effort as those with simple geometry.

In applying the weights of evidence method (or the Prospector method), it is assumed that
the binary patterns are conditionally independent with respect to the deposits. This does
not mean that the predictor pattern need be uncorrelated with each other, but that they be
uncorrelated with respect to the deposits. As an extreme case, if two predictor maps are
the same, as would occur if a map was replicated, then exactly the same deposits would
occur where both patterns were present, and tests for conditional independence would
fail. If, however, two maps were moderately well-correlated with one another (more than
would be expected due to chance), deposits predicted by each pattern might well be
different, and tests of conditional independence might be satisfied. In practice, some
conditional dependence always is present, and judgement is required in deciding whether
some patterns should be rejected from the analysis, or whether some patterns should be
combined to create compound patterns (using Boolean operators) thereby circumventing
the problem. An advantage to the weights of evidence method is that the weights are
determined directly from the data. This can lead to the discovery of spatial relationships
that were previously unknown, which may in turn lead to the recognition of new deposit
models. The disadvantage is that it is not normally possible to incorporate knowledge that
is not explicit in the data, although in principle there is no reason why a hybrid approach
could not be applied, overriding weights determined from actual data with estimates
provided by experts.
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To illustrate the application of weights of evidence, consider the maps in Figs 5.8-5.13
(Plates 6-8) which show some of the layers of spatial data used in a study of gold
potential in the eastern portion of the Meguma terrane, Nova Scotia, Canada. A number
of small gold deposits shown in Fig. 5.8 occur within the study area. Out of 68 mineral
occurrences, 35 have recorded gold production. The gold occurs in quartz veins within a
sequence of early Paleozoic turbidites. The weights of evidence method was used to
estimate the spatial distribution of gold potential by combining evidence from geological,
geochemical and structural maps (Bonham-Carter et al, 1988; Bonham-Carter et al.,
1990; Agterberg et al., 1990). The present discussion differs slightly from the earlier
work in that only the 35 deposits with actual production have been used in the
calculations instead of all of the occurrences and a slightly different set of maps has been
used. This same set of maps will be used to illustrate the logistic regression method and
fuzzy logic method to be discussed later.

The first step in weights of evidence is to select the maps to be used as evidence and to
convert them to binary patterns. The second step is to combine the maps together to
produce a posterior probability map that shows the spatial distribution of gold potential.
The first step uses the weights of evidence to determine the binary patterns that optimize
the spatial association between the points and each map pattern. The weights are then
applied to the binary patterns.

Consider first the calculation of the weights for a binary pattern (Is and 0s) generated by
reclassifying the 3 map units in Fig. 5.8 into 2 map units (Goldenville Formation = 1,
Halifax Formation and Devonian granite = 0). Each deposit is assumed to occupy a small
unit area, and all areal measurements are in terms of these units. The quantities that must
be taken from the maps as input for the calculation of the weights are: (1) the area of the
binary pattern (B), (2) the total number of deposits (D); (3) the number of deposits
occurring on the pattern, (R); and (4) the total area (T) considered. The computing
formulae for the weights are:

P[BID] _ log RT-D)

W* = log ————
*[Bl(-D)] * D(B-R)

W-log FICBD \  (D-R)(I-D)
¢ P(-B)[(-D) ~ “*D(T-B-D+R)

(7 = not)

The OR operator takes precedence over arithmetic operators in these expressions. Taking
the unit area as 1 km?, the area of the Goldenville Formation (B) is 2016 units, the
number of deposits within the Goldenville Formation (R) out of a total of 35 deposits (D)
is 34, and the total area (T) is 2945. Inserting these numbers into the equations yields the
following values for the weights: W* = log, [34(2945-35)/35(2016-34)] = 0.355, and
W = log, [(35-34)(2945-35)/35(2945-2016-35+34)] = -2.412. The areas underlain by
the Goldenville Formation are thus assigned a moderate weight (0.355) whereas the areas
of the Halifax Formation or the Devonian granite are assigned negative weights (-2.412).
The difference, C = W* - W, is defined as the contrast, equal in this case to 2.767. C is
a convenient overall measure of the spatial association of the deposits with the binary
pattern. The weights for W* and W~ are opposite in sign except in the case when they are
both equal to zero. This occurs when the number of deposits occurring within a binary
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pattern is equal to the number expected due to chance, i.e., when R/D = B/T. A
FORTRAN program for calculating weights together with a sample output is given in
Appendix 5.A. The program includes the calculation of the standard deviations of the
weights.

The prior probability used in the prediction step is usually assumed to be equal to the
deposit density, or D/T. Odds (O) and probability (P) are related by the relationship O =
P/(1-P). The prior log odds (also known as prior logit) is equal to log.[(D/T)/(1-D/T)].
Thus, for the Nova Scotia study area, the prior probability of a deposit in a 1 km? area is
35/2045 = 0.0119 which is equivalent to a prior logit of -4.421. Given the presence of
the Goldenville Formation, the posterior logit is -4.421 + 0.355 (prior logit plus W* )
which converted to a posterior probability equals 0.0169. Given the absence of the
Goldenville Formation, the posterior logit is -4.421 - 2.412 (prior logit plus W") which
converted to a posterior probability equals 0.0011. Thus, the knowledge that the
Goldenville Formation is present increases the probability of a deposit per 1 km?* from
0.0119 to 0.0169. The knowledge that the Goldenville Formation is absent decreases the
probability from 0.0119 to 0.0011. Therefore, a binary map of the Goldenville Formation
of a deposit could be re-labelled a gold probability map, based on the presence or absence
of a single attribute. We consider next how the weights of evidence can be used to make
objective decisions in converting multi-class grey-scale maps to binary maps.

Suppose that we wish to convert the anticline map (Fig. 5.13, Plate 8) into a binary map
SO as to maximize the spatial association between the proximity to anticlines and the
known gold deposits. Which distance should be chosen as a threshold? One approach is to
calculate the weights of evidence for a series of cumulative distances, and to inspect the
variation of weights and contrast as a function of distance. The results of these
calculations are shown in Table 5.3.

TABLE 5.3. WEIGHTS OF EVIDENCE FOR THE 35 GOLD DEPOSITS AND THE
PROXIMITY TO ANTICLINE AXES (Notice that the contrast, C (the difference between
the weights), is a maximum at a distance of 1.5 km. At this distance, 29 out of 35 deposits
occur, although the cumulative area of the distance buffers is only 1497 km? out of the total
area of 2945 km?)

area of unit cell 1 km?
total area 2945 unit cells = 2945 km?
Class area pnts WA s(W™) W s(W°) C dist (m)
1 617 18 .9150 23901 -.4920 .2430 1.4070 0-500
2 998 23 .6726 .2110] -.6619 .2896 1.3345 500-1000
3 1497 29 .4959 1875 -1.0612 4091 1.55701 1000-1500
4 1848 29 2817 18721 -.7823 .4094 1.0640| 1500-2000
5 2133 30 .1706 1839  -.6633 4486 .8339] 2000-2500
6 2343 30 .0754 1838 -.3615 .4491 4369 2500-3000
7 2444 30 .0325 1837 -.1753 4495 20781 3000-3500
8 2531 30 -.0030 1837 0179 .4499 -.0209| 3500-4000
9 2607 30 -.0326 .1836 2219 .4506 -.2546( 4000-4500
10 2654 30 -.0510 .1836 .3769 4511 -.4280| 4500-5000
11 2715 30 -.0739 .1836 .6164 4522 -.6903] 5000-5500
12 2757 31 -.0564 .1806 5970 .5054 -.6534] 5500-6000
13 2945 34 > 6000
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In Table 5.3, 29 out of 35 known deposits occur within 1.5 km of the nearest anticline,
and at this distance the contrast reaches a maximum value. This suggests that a binary
pattern be generated for a threshold value of 1.5 km. Notice W™ is actually at a
maximum for the distance class closest to the anticlines. If, however, the binary threshold
is applied at this distance (500 m) the resulting binary pattern is rather small in area and
only 18 out of 35 of the deposits occur in this distances. Notice that W~ is at a maximum
at the third distance class suggesting that beyond 1500 m, the posterior probability should
be more strongly downweighted than for distances beyond 500 m. By selecting the
distance at which the contrast is maximized, the combined information from W* and W~
is used effectively. In practice, however, the selection of thresholds is often not so easily
made as in this case, and subjective judgement must be applied to supplement the weight
calculations. It should be noted that instead of using cumulative distance classes,
non-cumulative distances also allow the calculation of weights, one weight per class. A
problem with multi-class weights of evidence is that where only a small number of known
deposits are available, the resulting weight function is unstable, that is, it fluctuates
erratically for adjacent classes. In an application of multi-class weights of evidence for
predicting seismicity in Western Quebec, Goodacre et al. (1993) discuss a smoothing
method to overcome this problem.

By assuming that the anticlinal pattern and the Goldenville Formation pattern are

conditionally independent of the known deposits, the posterior logit is calculated by
adding together at each location the prior logit and the weight for each binary map
(W™ for presence, W~ for absence).

The result is a probability map having 4 classes, corresponding to the 4 possible
combinations of two binary patterns. Some of these classes will have a posterior
probability greater than the prior and some will have a posterior probability less than the
prior. However, if the conditional probability assumption is satisfied, the quantity

(area X posterior probability) summed over the four classes can be interpreted as the
predicted number of deposits and which should equal the observed number of deposits

(D). The results are shown in Table 5.4.

TABLE 5.4. POSTERIOR PROBABILITIES FOR THE OVERLAP CONDITIONS OF TWO
BINARY MAPS (The expected number of deposits is the posterior probability times the area.
Note that the total expected number of deposits is 39, as compared to the observed number of 35,
indicating that these two binary maps are not completely conditionally independent. The prior

probability is 0.0119 [+ = pattern present, - = pattern not present])

Overlap Geology | Anticlines Area Posterior Gold deposits
class map map Probability | Observed | Predicted

1 + + 1230.08 0.0274 29 33.70

2 - + 786.73 0.0059 5 4.64

3 - - 661.07 0.0004 1 0.26

4 + - 267.37 0.0018 0 0.48

Total 35 39.08

The number of predicted deposits is 39 compared to the number of known deposits of 35.
This indicates a minor problem with the assumption of conditional independence. As a
consequence, the result is to slightly overestimate the posterior probabilities for locations
where both patterns are present.
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Using the same approach, each of the multi-class maps in Figs 5.8-5.13 (Plates 6-8) has
been converted to binary form. The weights and their standard deviations are summarized
in Table 5.5.

TABLE 5.5. SUMMARY TABLE OF WEIGHTS OF EVIDENCE FOR THE SIX BINARY
PATTERNS

Pattern Al s(W™) W s(W)) C Name
1 0.496 0.188 -1.061 0.409 1.557 lanticlines
2 1.127 0.234 -0.589 0.251 1.717 |As, Basalm Fir
3 0.222 0.210 -0.323 0.290 0.546 1G-H contact
4 0.355 0.173 -2.412 1.001 2.767 [Geology
5 1.133 0.412 -0.857 0.578 1.989 |As, lake sed.
6 0.376 0.280 -0.170 0.214 0.546 |U/Th reatio
Prior probability 0.01188
standard deviation 0.00200
Prior log odds -4.42065

standard daviation 0.17004

A posterior probability map shown in Fig. 5.14 (Plate 9) (with a maximum of 2% or 64
possible overlap conditions) was generated and classified into 10 classes on the basis of
area percentiles.

Regions with known deposits occur in zones with elevated posterior probabilities, as
expected. For example, 8/35 deposits occur in the top 2 percent of the area, 16/35 occur
in the top 5 percent of the area and 19/35 occur in the top 10 percent of the area. In
addition, the deposits rated in the highest probability classes include all of the largest of
the known deposits, despite the fact that the individual deposits are not weighted in the
calculations. Thus, the model reflects reasonably well the distribution of the known
deposits. More importantly from an exploration point of view, the map shows a number
of regions where the potential to find new deposits is favourable (i.e., locations which
have overlap with the indicator patterns similar to the known deposits) yet where no
mineral occurrences have been reported. These target areas could be prioritized in any
exploration follow-up.

There is always the possibility that some of the favourable prediction zones are ‘false
positives’, and conversely some unrevealed deposits are not predicted. Nevertheless, the
weights of evidence method serves to focus attention on possible targets in future
exploration.

The weights of evidence method does not produce an estimate of the number of
undiscovered deposits. Such an estimate must be made independently. If such an estimate
is made, the estimate can be then used to calculate the prior probability, thereby simply
increasing all the posterior probabilities. However, the rank order of areas by probability
is unaffected, and it is this ranking that gives the spatial distribution of relative
favourability.

5.6.3. The FINDER system

In the search for hidden targets such as in the case of mineral exploration, it is often
useful to take into consideration the size, shape, and orientation of the targets being
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sought. In this connection, a new method (FINDER) has been developed that makes use
of the area of influence (Singer and Drew, 1976) and Bayesian statistics to aid in the
selection of target areas on the basis of one or more variables and multiple observations
(Singer and Kouda, 1988). The FINDER system employs geometric probability and the
normal probability density function to integrate spatial and frequency information to
produce a map of probabilities of target centers.

Missing values can be accommodated and FINDER can estimate. the number of deposits.
Target centers can be mineral deposits, or any other target that can be represented by a
regular shape on a two dimensional map. Areas of influence include not only circular,
elliptical, and annular shapes, but also sectors of annuli and rectangles with offset centres.
The spatial statistics for each of the variables used to delineate the hidden targets being
sought are characterized in a control area and the results applied by means of FINDER to
the study area. In a test on kuroko-type deposits (Singer and Kouda, 1988), FINDER was
able to identify all of the major known deposits in the Hokuroku District, Japan and
suggested other favourable areas, one of which contained a discovery that was
subsequently announced. More recently, FINDER was applied to the search for
epithermal vein gold-silver deposits in southwest Kyushu, Japan (Singer and Kouda,
1991). A preliminary version of the FINDER program was published by Singer (1985).

5.6.4. The fuzzy logic method

There is a middle ground in the search for data integration models that bridge the gap
between knowledge-driven and data-driven methods. Although the knowledge that is
possessed by experts is not always explicit in the data, the data can be interpreted through
the judgement of the expert. In large part, this can be accomplished by means of fuzzy set
theory that was first systematically formulated by Zadeh (1965). A fuzzy set E is a set of
ordered pairs:

E={&x, m® | xCX}

where X is a collection of objects and ug(x) is called the membership function or degree
of compatibility of x in E. The range of pp(x) is usually defined in [0,1] where O
expresses nonmembership and 1 a full membership. With respect to a given set of data, a
membership can be assigned to each observation according to the strength of its evidence
which supports some higher inference about the presence or absence of a specified target
or of some physical process. Thus, a membership can be attached to an observation
according to the accuracy of the data and the interpreter’s expertise.

Defined this way, imprecise and incomplete information, represented using fuzzy sets,
can be manipulated and processed using fuzzy set operations. One of the more robust
operations for combining (aggregating) sets of attributes E;, E,, ..., E, due to
Zimmerman and Zysno (1980) is defined as:

Rex) = @I p, )4 A - (1-p X)) (x<X,0<y<1)

where
v is defined as an operator that is intended to balance the tendencies of overcompensating
and undercompensating the effects due to any pairwise dependencies that may exist among
the attributes. For instance, the use of a y-operator applied to attributes with high and low
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degrees of membership compensates for the tendency to overvalue (or undervalue) the
result of combining an attribute having a high degree of membership with an attribute
having a low degree of membership.

Although the concept of indicator patterns is appealing, because combining evidence in
this form is relatively easy to understand and interpret, it is sometimes difficult to treat
evidence in this fashion. For example, in the ‘distance to anticline’ map discussed for the
weights of evidence method, the favourability of this factor is more likely to be some
function of distance than a binary ‘yes’ or ‘no’. One way of modelling multi-class
evidence is to use fuzzy sets instead of classical sets. In a classical set, membership of the
set is either yes (= 1) or no (= 0), whereas in a fuzzy set, membership can lie anywhere
in the range (0, 1). Thus, if we consider as a set ‘all locations favourable for gold
deposits’, we can construct a membership function for the anticlinal evidence which is
either binary (= 1 for locations closer than 1.5 km, O otherwise) or fuzzy (= 1 at zero
distance, and decaying to O at, say, 3 km). Rather than expressing fuzzy membership as a
continuous mathematical function, it is usually more practical to specify discrete values as
illustrated in Table 5.6. The membership functions shown in the tables reflect the
subjective judgement of an exploration geologist. The functions need not necessarily
increase or decrease monotonically. However, the membership values must be in the
interval (0, 1). The functions are sometimes called ‘possibility’ functions; they should not
be regarded as probabilities, because they do not satisfy the rules of probability density
functions.

Having assigned membership functions to all the spatial datasets that are to be used as
evidence, the next step is to combine the fuzzy evidence with fuzzy logic operators. This
involves combining two or more input membership functions to produce one output
membership function. Many fuzzy logic operators have been proposed, see for example
the book by Zimmermann (1985). We will briefly describe five fuzzy operators, as
discussed by An et al. (1991), in a paper describing the use of fuzzy logic for predicting
base metal and iron deposits by combining geological geophysical datasets.

The fuzzy OR is simply the maximum of the input membership functions. Thus at a
particular location, the class of each of the evidence maps is used to ‘look-up’ the
corresponding membership function values from tables, and whichever map has the
maximum function value determines the value of the output membership function. For
example, given a location underlain by the Halifax Formation and where the lake
sediment As is class 4, then the membership function of the two-map combination is
max {0.25,0.50} = 0.50. Any number of maps can be combined simultaneously. The
disadvantage of this operator is that any single location in which only one dominant piece
of evidence prevails, there is no ‘increased’ effect of two or more favourable pieces of
evidence occurring together.

The fuzzy AND is similar to OR, except that the minimum is used instead of the
maximum. Thus at any one location the output is controlled by the 18 January 1994
presence of the least favourable evidence, which is usually unsatisfactory. For the same
example above, the output is min {0.25, 0.50} = 0.25.

The fuzzy algebraic product is simply the product of the membership function values. For
the example above, the product is (0.25 X 0.50) = 0.125. The fuzzy algebraic sum is
defined as

sum = 1 - product (1-membership function).
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TABLE 5.6. FUZZY MEMBERSHIP FUNCTIONS FOR
NOVA SCOTIA GOLD DEPOSITS

Proximity to anticlinal axes map

lﬁVIap Class Legend Membership
Anticlines 1 <0.5 km 0.75
2 0.5-1.0 0.70
3 1.0-1.5 0.65
4 1.5-2.0 0.60
5 2.0-2.5 0.55
6 2.5-3.0 0.50
7 3.0-3.5 0.40
8 3.5-4.0 0.30
9 4.0-4.5 0.20
10 4.5-5.0 0.10
11 > 5.0km 0.05
Geological map
|_ ap Class Legend Membership
Goldenville
Geology 1 Formation 0.95
Halifax
2 Formation 0.25
Devonian
3 Granite 0.05
Airborne radiometrical map
|'_l\fap Class Legend Membership
U/Th ratio 1 High 0.05
2 . 0.05
3 0.05
4 0.10
5 0.30
6 . 0.50
7 Low 0.60
Biogeochemical map
{ﬁV[ap Class Legend Membership
As-Balsam Fir 1 >73.5ppm 0.85
2 16.0-73.5 0.80
3 7.3-16.0 0.75
4 5.2-7.3 0.70
5 3.9-5.2 0.60
6 3.2-3.9 0.40
7 2.8-3.2 0.20
9 2.4-2.8 0.10
10 0.3-24 0.05




TABLE 5.6. (cont.)

Lake sediment geochemical map

ﬁ\/lap Class Legend Membership
As-Lake seds. 1 >73.5-166 ppm 0.80
2 112-142 0.75
3 52-112 0.70
4 28-52 0.50
5 17-28 0.30
6 12-17 0.20
7 7-12 0.10
8 2-7 0.05

Proximity to contact between Goldenville and Halifax formations

Map Class Legend Membership
[Distance to contact 1 <0.5 km 0.50
2 0.5-1.0 0.45
3 1.0-1.5 0.40
4 1.5-2.0 0.35
5 2.0-2.5 0.20
6 2.5-3.0 0.10
7 3.0-3.5 0.05
8 3.5-4.0 0.01
9 4.0-4.5 0.01
10 4.5-5.0 0.01
11 >5.0 0.01

For the two map example, sum = 1-(1-0.25)(1-0.50) = 0.625. Neither the fuzzy product
nor the fuzzy sum are very satisfactory on their own, but they can be combined with a
fuzzy gamma operator to produce a compromise result.

The gamma operation is defined as the algebraic product raised to the power (1-y)
multiplied by the algebraic sum raised to the power vy, where v is a parameter in the
range (0, 1). For the example above, and selecting v = 0.95, the output is
(0.125%%%)(.625%%) = 0.5767. An et al. (1991) discuss the choice of suitable gamma
values. The results of applying the gamma operation are appealing, because they produce
a reasonable compromise between conflicting sources of evidence.

Figure 5.15 (Plate 9) shows the result of applying the gamma operation to the Nova
Scotia datasets, followed by classifying the result into 10 classes as shown. Surprisingly,
even by choosing arbitrary membership functions, the results look reasonable, with the
major known deposits being satisfactorily predicted.

One of the advantages of this approach is that several alterative sets of membership
functions, possibly generated by a variety of exploration geologists with conflicting views,
can be tried out by simply adding new columns to the membership function tables. The
resulting predictive maps can then be compared and the sensitivity of the results to
varieties of opinion assessed.

110



5.6.5. The Dempster-Shafer method

An interesting and powerful knowledge-driven approach for combining map evidence uses
the idea of belief functions and the Dempster-Shafer rule of combination. The idea is that
instead of estimating a single belief function (superficially similar in concept to fuzzy
membership functions), two functions are estimated for each evidence map, one being a
lower bound of belief and the other an upper bound. The interval between the functions is
called an ‘evidential interval’ and represents the uncertainty or lack of precise knowledge
about the evidence. This means that P {E} does not neccessarily equal 1-P{(not E)},
except when the evidential interval shrinks to zero, in which case the Dempster-Shafer
method is the same as the Bayesian method. The approach has been used by Moon
(1990), (Moon et al., 1991) and (Chung and Moon, 1991) for mineral exploration. The
advantage of this approach is that it explicitly handles the uncertainty in estimating the
membership function. Like the fuzzy membership functions, belief functions are usually
estimated subjectively by a mineral deposit expert. The output using this method is not a
single predictive map, but a pair of maps, one showing the lower bound, the other the
upper bound, thereby directly incorporating uncertainty into the results.

5.7. REGRESSION

In regression, one forms rules to predict some numerical value. The construction of
regression prediction proceeds by some systematic analysis of the set of data containing
values of the attributes together with the related values of the attributes to be used in the
prediction rule. Regression differs from classification in that one wants to predict some
numerical value, and not a class. Such a prediction for instance might be the probability
of occurrence or it might be the undiscovered endowment or it might be the value of
some environmental variable. Whatever the purpose, the standard approach is through the
use of linear regression in some form. In this section, we will consider a number of
different approaches to the problem of prediction using regression methods. We consider
first a method for estimating undiscovered metal endowment within large areas. The
results are based on a presumed relationship between a numerical measure of geological
favourability and the spatial distribution of metal endowment.

5.7.1. One-level prediction

The method was first developed for estimating the undiscovered uranium endowment in
the San Juan basin, New Mexico (McCammon et al., 1986) as a part of the National
Uranium Resource Evaluation (NURE) program conducted by the Department of Energy
from 1973 to 1980 (US Department of Energy, 1980). The method came about largely
because the extensive amount of data collected as part of this program dictated that the
consolidation of such a large quantity of information into a succinct evaluation of the
potential uranium resources be explained in an explicit, traceable manner. For the San
Juan basin study, it was possible to grid all of the data that were collected, namely, the
lithologic and petrographic characteristics of the main host rock unit, the locations of the
exploratory drilling, and the discovered uranium endowment (defined as the quantity of
U,O; contained in material with a grade of at least 0.01 percent U,0y). Using these data,
it was possible to relate the geological favourability with the discovered uranium
endowment in the explored portion of the basin, and using this relationship, to estimate
the undiscovered uranium endowment in the remaining unexplored portion of the basin.
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In applying the method, it is assumed the quantity of geological information is sufficient
to allow calculation of (1) a numerical measure of favourability, (2) the extent of
exploration, and (3) the discovered endowment for a suitably defined grid of equal area
cells (for the San Juan basin study, the area was divided into square cells approximately

4 km on a side). In this context a favourability measure is defined to be some calculatable
function of the data. High values are associated with the occurrence of deposits of the
type represented by the model under consideration and low values are associated with
nonoccurrence of such deposits.

Metal endowment within the unexplored portion of a favourable cell (i.e., a cell for
which the favourability measure is greater than a specified favourability threshold level) is
estimated to be proportional to the discovered endowment found within a suitably chosen
control area which has been explored. It is assumed that the geological factors that control
the occurrence and distribution of deposits throughout the area being assessed (the study
area) are the same as the factors that control the occurrence and distribution of deposits
within the control area Because each unexplored cell is determined to be either favourable
(endowed) or unfavourable (unendowed), the procedure has been named one-level
prediction.

A fixed endowment to be assigned to a unit area of the unexplored, favourable portion of
the model area is calculated by dividing the total discovered endowment within the control .
area by the area of the explored, favourable portion of the control area. Each unexplored
or partially explored cell in the model area is classified as favourable if the favourability
measure is greater than or equal to the selected favourability threshold and is classified as
unfavourable otherwise. The estimate of undiscovered endowment in a favourable cell is
the product of the calculated fixed endowment times the area of the cell (or the area of
the unexplored portion of a partially explored cell). Cells determined to be unfavourable
are estimated to contain no endowment. The estimate of the total undiscovered
endowment in the model area is then the sum of those endowments assigned to
unexplored or partially explored cells.

The measure of the error generated when the fixed endowment is assigned to a unit of
unexplored, favourable area is defined as the absolute value of the difference between
errors due to overestimating and to underestimating the endowment per unit area in the
control area. If the favourability threshold level is set too high, the method tends to
underestimate the true endowment whereas if the threshold level is set too low, the
method tends to overestimate true endowment. Using a method best described as trial and
error, a threshold level is selected that tends to minimize these two errors. The result is a
per unit or area-normalized error measure. To estimate the error for the calculation of the
total undiscovered endowment in the model area, the area-normalized error measure must
be adjusted to reflect the size of the area being assessed.

One-level prediction was used to estimate the undiscovered uranium endowment in the
San Juan basin, New Mexico (McCammon et al.,1986). Discovered uranium endowment
data were obtained from uranium properties, published reports, news releases, company
stockholder reports, and unpublished information. In order that estimates of the
discovered endowment could be made for each cell, orebody plan view maps were
superposed on a grid and the tonnage portion of each orebody was assigned to the cell
according to the area covered by the orebody. Information on the extent of exploration
was derived from orebody and drillhole location maps compiled from published and
unpublished sources. A value of the fraction of area explored was assigned to each cell
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based on the number and distribution of drill holes and the area underlain by orebodies.
Stratigraphic data for the main host rock unit, the Westwater Canyon Member of the
Morrison Formation, were obtained from 1800 geophysical logs and 40 measured outcrop
sections. Petrographic data were obtained by microscopic examination of chip samples
from 40 petroleum test wells, core descriptions of 9 test holes, 50 company exploration
logs, and 14 measured surface sections.

These data and knowledge gained from past studies of uranium deposits in the San Juan
basin were used to select five separate control areas on the basis of the different deposit
types identified and on the extent of exploration in and around areas of known uranium
deposits. The geological characteristics associated with each cell were assigned a level of
favourability with respect to each of the five deposit models used in the study. For each
of the models, a favourability threshold level was selected and estimates of undiscovered
uranium and estimation error were calculated. These estimates were summed to yield the
estimate of the total undiscovered uranium endowment and the estimated total error.

Using the one-level prediction method, the total undiscovered uranium endowment for the
main host rock unit, the Westwater Canyon Member, was estimated at 2.6 million tonnes
U,0; with an estimated error of 0.25 million tonnes U;O;. This estimate was roughly
twice that obtained by the U.S. Department of Energy (1980) in the National Uranium
Resource Evaluation (NURE) program but similar to results from the assessment by
Harris and Carrigan (1981), who used a method different from the method of the
Department of Energy. The strengths and weaknesses for all three methods are discussed
in Harris (1984).

An artificial example is provided which contains a variety of combinations of inputs for a
given set of cells. The data are shown in Table 5.7.

In this example, the area to be assessed has been divided into 25 cells. Of these 25 cells,
19 are defined as being within the model area and 6 are defined as being outside the
model area. Cells within the model area are designated by m, the model area indicator
function (i.e., m = 1).

Of the 19 model area cells, 5 comprise the control area. Cells within the control area are
designated by v, the control area indicator function (i.e., v = 1). Some of the cells within
the control area have discovered endowment (i.e., cells for which d, the discovered
endowment, is greater than zero) whereas other cells (i.e., d = 0) do not. However, all
cells in the control area have been explored to some extent (i.e. p, the fraction explored,
is greater than zero). In general, cells defined as the control area will be explored to a
considerable extent and usually, but not always, will contain discovered endowment.

In applying the one-level prediction method, it is assumed that all cells within the model
area can be assigned a degree of favourability. However favourability is defined, each cell
within the model area shown in Table 5.7 has a declared value of f, which represents the
degree of favourability. As stated earlier, higher values of f are more likely to be
associated with the occurrence of deposits of the type represented by the model whereas
lower values are more likely to be associated with the nonoccurrence (absence) of
deposits of the type represented by the model.

A judgement needs to be made about the threshold level for f. The proper choice and the
methods used to make this judgement are beyond the scope of this example. For our
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TABLE 5.7. ARTIFICIAL EXAMPLE DATA FOR ONE-LEVEL PREDICTION
(Variable symbols for the table are: m = model area indicator function, v = control area
indicator function, p = fraction explored, f = favourability, and d = discovered endowment)

I Column {
l Row | Variable 1 ] 2 | 3 l 4 ] 5 I
5 m 0 1 1 1 1
v 0 0 0 0 0
P 0 0 0 0 0
f 0 2 4 5 6
d 0 0 0 0 0
4 m 1 1 1 1 1
v 0 0 0 0 0
p 0 0 0.2 0.2 1
f 2 3 4 2 5
d 0 0 200 100 400
3 m 1 1 1 1 0
v 0 1 1 1 0
P 0 0.2 0.8 0.8 0
f 3 4 2 5 0
d 0 0 200 300 0
2 m 1 1 1 1 0
v 0 0 1 1 0
P 0 0.2 0.2 1 0
f 4 2 3 5 0
d 0 0 0 100 0
1 m 0 1 1 0 0
v 0 0 0 0 0
P 0 0 0.2 0 0
f 0 1 3 0 0
d 0 0 0 0 0

purpose, the judgement is made that a favourability greater than or equal to 3 defines the
threshold value.

To assist in the calculation of the results obtained in the one-level prediction method, a
QuickBasic subroutine is provided in the Appendix 5.B. Comments within the subroutine
explain the calculations to be performed in order to determine the calibration constant, the
total endowment, and the error associated with the estimate of the endowment.

The calculated results for the artificial example in Table 5.7 are shown in Table 5.8.
For a threshold value of 3, the calculated calibration constant is 272.7. This value
represents the average endowment per favourable cell within the control area. The
calculated area normalized error measure is 36.4.

For the model area, the calculated total undiscovered endowment is 2563.6, the total

endowment is 3863.6, and the calculated error associated with the calculated undiscovered
endowment is 237.3.
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TABLE 5.8. CALCULATED ONE-LEVEL PREDICTION RESULTS FOR DATA IN
TABLE 5.7

One-level prediction Value
Favourability threshold 3
Total size of control area 5
Size of explored part of control area . 3
Size of favourable part of control area 2.2
Discovered endowment in control area 600
Calibration constant 272.7
Total size of model area 19
Size of explored portion 4.8
Size of unexplored portion 14.2
Total discovered endowment 1300
Total undiscovered endowment 2563.6
Total endowment 3863.6
Area-normalized error measure 36.44
Calculated error 237.3

In the above example, it was assumed that all cells within the model area could be
assigned a degree of favourability and that each cell within the model area value, f,
represented the degree of favourability. In general, the favourability is defined as some
type of function that relates the observations (evidence) to a particular model. As pointed
out earlier, the evidence is related to the factors that define such a model. Typically,
favourability is defined as a weighted linear combination of factors, f,, each of which
contributes information about the presence (or absence) of some stage of the model. For a
model involving n factors, the favourability is expressed as

f = alfl + a2f2 + ... + anfn

For a given set of f;’s defined by a particular model which can be evaluated for a set of
cells within a control area, it is possible to determine the weights, a;, in such a way that
the f;’s match the degree of favourability (assigned) of each of the cells in the control
area. The weights, a;, are determined by solving the matrix equation

(X’X)a = \a

where X’ is the transpose of X and where A is the largest eigenvalue of the product
matrix (X’X). X is the m X n matrix of variables for m control cells. For cells outside
the control area for which observations (evidence) are made, the favourability can be
calculated using the linear model defined above. As an example of this type of model,
Table 5.9 shows the characteristic weights applied to the attributes that were shown in
Table 5.2.

In this instance, the weights were calculated using the data for 5 control cells such that
for each cell, each attribute was assigned a value +1 if favourable, and -1 otherwise. The
weights refer to attributes that have been transformed in a similar manner. Because the
weights are nearly equal, the favourability of a cell outside the control area can be
determined simply by adding the number of attributes that are judged to be favourable.
This reduces to a model in which favourability is defined by the number of elements in

a set.
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TABLE 5.9. CALCULATED CHARACTERISTIC WEIGHTS FOR ATTRIBUTES
ASSOCIATED WITH TREND TYPE URANIUM DEPOSIT MODEL

Geological factor Attribute Characteristic weight
Host-rock deposition net sandstone thickness (ft) 0.17
sandstone/mudstone ratio 0.17
Alteration preparation sandstone colour 0.17
mudstone colour 0.17
thickness of interval of
ilmenitemagnetite destruction 0.15
Preservation state of oxidation 0.17

5.7.2. Logistic regression

In some sense, favourability is a measure of probability. Thus, for a group of cells for
which some cells contain mineral deposits and some cells do not, and there are data
available for all cells, a model which has received widespread attention is the logistic
regression model defined by

f = e (ayfy +a2f2+...+a,,rn)l(1 +e {24y +a2f2+...+a,,r,,))

where f represents a probability between O and 1 and the a;’s represent the weights
applied to the data represented by the f’s. The estimates of the weights can be obtained
using nonlinear methods. A logistic model therefore makes it possible to determine the
probability of occurrence directly given a set of data in a control area. Such a model can
then be applied to cells outside the control area.

As the name suggests, the logistic regression model also deals with log odds or logits.
Both logistic regression and weights of evidence are examples of log-linear models.
However, the logistic model involves the calculation of only one coefficient for each
predictor variable, plus a constant, instead of a pair of weights. Instead of modelling the
relationship between each predictor pattern and the deposit pattern independendy, logistic
regression involves the simultaneous determination of all the coefficients. No assumption
of conditional independence is required. In practice, the logistic coefficients may be
difficult to interpret on an individual basis, a problem similar to regression analysis in
general.

Table 5.10 shows the logistic coefficients for the six binary predictor maps used in the
weights of evidence methods for the Nova Scotia example.

In Fig. 5.16 (Plate 10), the probability of a gold deposit per unit area is shown as a map,
based on the logistic equation. The probability values have been classified into the same
area percentile classes as used in Fig. 5.14 (Plate 9), allowing direct comparison of the
two methods. As can be seen from Fig. 5.17 (Plate 10), the differences between the two
predictions are minor.
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TABLE 5.10. SUMMARY OF LOGISTIC COEFFICIENTS FOR THE SIX BINARY MAP
PATTERNS

Pattern Coefficient St. dev. Name

0 -8.22 1.08 constant

1 1.28 0.46 anticlines

2 1.54 0.35 As, Balsam Fir

3 0.62 0.37 Contact between Goldenville and Halifax Formation
4 2.19 1.03 Geology

5 0.11 0.47 As, lake sediments

6 0.24 0.36 U/Th ratio

Both logistic regression and weights of evidence are useful methods. Weights of evidence
is easier to interpret, and is invaluable for deciding how to generate the binary patterns.
Logistic regression is valuable as a check on the consequences of conditional dependence.
Reddy et al. (1991) discuss the application of the logistic model to predicting base metal
potential in a greenstone belt in Manitoba, Canada.

5.8. LOCAL SPATIAL MODELLING

This section deals primarily with the study of locally spatially referenced data and
associated statistical models and processes. It may seem that it is sufficient to build a
proper physical model, in which the data are independent observations from Poisson
random variables with means determined by a particular transform of a true underlying
map. Unfortunately, in many situations, the inverse problem of inferring the true
intensities is illposed for this to provide a satisfactory solution. This is particularly true in
environmental studies that involve such intensities associated with nonpoint source
pollution or yearly point source outputs. In these types of studies, a stochastic model for
the true underlying structure is needed that is at once globally flexible, yet locally
constrained to produce severe discontinuities only when there is convincing evidence of
their existence in the data.

Historically, the analysis methods of local spatial modelling have been limited by sparse
sampling. Modern data acquisition methods now have greatly circumvented this sampling
limitation. The overall result has been the development of databases that provide a high
spatial resolution and a synoptic realization of a given process under study. The challenge
in the use of these newer data sources is to summarize eloquently and to increase
understanding of enormous quantities of information. There are many open research
problems in the area of visual data-analytic techniques. For example, how does one
display the uncertainty connected with contour lines on a statistical map, and what is an
effective way of displaying more than one spatially expressed variable? Part of the answer
to this question lies in the geostatistical analysis of spatial data.

Like most of the other methods that have been discussed in this chapter, geostatistics is
mostly concerned with local spatial prediction. Much of the emphasis is based on the
spatial prediction method known as kriging, a term coined by Matheron (1963) in honour
of D.G. Krige, a South African mining engineer.

117



What sets geostatistics apart from the methods discussed earlier in the chapter is the
notion of dependence among the data that is defined by the distance between successive
sampling points. Specifically, suppose that the differences of variables lagged some
distance (h) vary in a way that depends only on h so that

var (Z(s+h) - Z(h)) = 2v(h) for alls, s + h

where the spatial index s is 2- or 3-dimensional. The function 2-(h), which is a function
only of the difference between the spatial locations s and s+h, has been called the
variogram by Matheron (1963).

The computation, interpretation, and modelling of variograms form the basis of many
studies of small areas in ore reserve estimation and pollution prediction. In effect, the
variogram model is used to define the spatial correlation structure and controls the way
that kriging weights are assigned to sample data that are used to interpret the particular
phenemenon of interest. A large literature exists on fitting variogram models based on
various assumptions about the underlying spatial structure. It is a subject which is beyond
the scope of this chapter and we refer the reader to the literature for the details. Two
recent references that provide an excellent introduction to geostatistics are Isaaks and
Srivatstava (1989) and Cressie (1991).

5.9. SUMMARY

In this chapter, we examined a variety of models for integrating data collected in mineral
exploration, resource assessment, and environmental studies. The primary aim in using
these methods is to make credible predictions based on the data. The path to more
accurate and reliable prediction in our opinion may lie in the blending of expert
knowledge and the data. There is a large body of knowledge that exists outside the data
and it is this knowledge that provides the basic framework upon which credible
predictions can be made. Expert knowledge provides us with the rules; the data provide
us with the evidence. The optimum strategy in our opinion is to devise methods for
transforming the data in a way that reflects the true nature of the underlying phenomena.
Such transformations must be consistent with the models that are used to represent the
phenomena being investigated.

Some methods for transforming data include (a) probability measures, (b) favourability
measures, and (¢) membership functions. For each method, a separate set of assumptions
is required. Each set of assumptions depends upon the particular goals of the
investigation. Whatever method is used, a basic requirement is that the dependencies
among the data are accounted for. Such a requirement is necessary in order to avoid bias
in the results. Bias can be reduced or eliminated by the use of logical combinations,
statistical correlation, or by reformulation of the model. In all cases, every effort should
be made to remove potential bias.

In this chapter, we have avoided discussing the actual implementation of methods into a
GIS. Most GISs provide some capability for modelling, although this is often limited.
Many GISs provide a modelling language, specifically designed for combining maps (in
raster or vector mode) with arithmetic, Boolean and other operators. The language may
also permit the use of conditional statements, reference to attribute tables, and the use of
user-defined functions. Of the methods described in this chapter, it will certainly be
possible to program Boolean and fuzzy logic operations. It may also be possible to set up
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Prospector-type inference networks and weights of evidence models. It may even be
possible to program models using Dempster-Shafer, one-level prediction and logistic
regression. A popular alterative approach for such specialized models is to use the GIS
for data compilation and for the construction of maps, then to export ASCII files in a
convenient data structure to an external software package, and finally return the results to
the GIS for further display and analysis. This approach offers a measure of flexibility in
that use is made of the GIS for ease of data input, transformation and display, yet permits
specialized modelling software to be developed independently of a particular GIS’s
requirements.
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Appendix 5.A

FORTRAN PROGRAM FOR CALCULATING WEIGHTS OF EVIDENCE

program odds
character*1 q
print *, ' area of study region 7'
read *, s
print *, ' area of binary map pattern 7'
read *, b
print *, ' area of unit cell?'
read *, unit
print *, ' no of deposits on pattern?'
read *, db
print *, ' total no of deposits ?*
read *, ds
if (db.le.ds) goto 6
print *, ‘error '
stop
s=s/unit
b=b/unit
pbd=db/ds
pbdb=(b-db)/(s-ds)
wp=alog(pbd/pbdb)
vp=1./db+1./(b-db)
sp=sqrt(vp)
pbbd=(ds-db)/ds
pbbdb=(s-b-ds+db)/(s-ds)
wm=alog(pbbd/pbbdb)
vm=1./(ds-db)+1./(s-b-ds+db)
sm=sqrt(vm)
c=wp-wm
sc=sqrt(vp+vm)
priorp=ds/s
vprip=priorp/s
sprip=sqrt(vprip)
sprilo=sprip/priorp
prioro=priorp/(1-priorp)
prilo=alog(prioro)
cpp=exp(prilo+wp)
cpp=cpp/(1.+cpp)
cpm=exp(prilo+wm)
cpm=cpm/(1.+cpm)

print 2, db,ds,b,s,wp,sp,wm,sm,c,sc,c/sc,priorp,sprip,prilo,

+sprilo,cpp,cpm

format(//////' Number of deposits on pattern ' £10.2/
+ ' Total number of deposits ,£10.2/
+ ' Area of binary pattern (unit cells) ',£10.2/
+ * Total area (unit cells) '£10.2/
+ W+ '£15.4/
+ ' Standard deviation of W+ '£10.4/
+ "W- '£15.4/
+ ' Standard deviation of W- ',£10.4/
+ ' Contrast '£15.4/
+ ' Standard deviation of Contrast £10.4/
+ ' Contrast/Standard deviation ,£10.4/
+ ' Prior probability f15.4/
+ ' Standard deviation of prior prob  ',f10.4/
+ ' Prior log odds f10. 4/
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+ ' Standard deviation of prior log odds ',{10.4/
+ ' Cond prob of deposit given pattern ',£15.4/
+ ' Cond prob of deposit given no pattern',f15.4///)

print *, 'another case 7'

read(*,(a)’) q

if (g.eq.'Y'.or.g.eq.'y) goto 1
stop
end

Example output

Number of deposits on pattern 34.00

Total number of deposits 35.00

Area of binary pattern (unit cells) 2016.00

Total area (unit cells) 2945.00

W+ .3551
Standard deviation of W+ .1730
W- -2.4125
Standard deviation of W- 1.0005
Contrast 2.7675
Standard deviation of Contrast 1.0154
Contrast/Standard deviation 2.7256
Prior probability .0119
Standard deviation of prior prob .0020
Prior log odds -4.4206
Standard deviation of prior log odds .1690
Cond prob of deposit given pattern 0169
Cond prob of deposit given no pattern 0011
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Appendix 5.B
A QUICKBASIC SUBROUTINE FOR CALCULATING

THE RESULTS OBTAINED IN THE ONE-LEVEL PREDICTION METHOD

SUB onelvl (t%, c%, m%(), v%(), p(), d0), f0, fc, c, di, ud, x, fv, xv, xu, vt, a, e)

1
1
]
1
1]
'
t
t
1
]
?
r
1]
v
t
t

Input data set specifications

Data for the calculations consist of four parameters specified for
each rectangular cell in the model, which is assumed to be

a subset of a rectangular array of cells.

%, c% - number of rows and columns in array of cells
m%(i,j) - model cell indicator
(0 = not in model, <>0 = model cell)

v%(i,j) - an indicator variable specifying the control
area (0 = not control area, <>0 = control area)
p(ij) - the fraction of the cell that has been explored

[0 <=p(i,j) <=1]
d(i,j) - the discovered endowment in the cell
[dG.j) >=0]
f(i,j) - the cell favorability index for the cell
fc - favorability threshold

Description of output

?
'
]
r
1
1
1
]
1
1)

¢ - calibration constant

di - discovered endowment

ud - undiscovered endowment

X - size of the explored portion

fv - size of favorable portion in control area

xv - size of the explored portion of the control area
xu - size of the unexplored portion

vt - size of control area

a - area normalized error measure

e - prediction error measure for the model area

'zero the sums

di=0:ud=0:x=0:a=0: xv=0:xu=0:vt=0:vd=0:fv =0

loop through the rectangular array and accumulate sums

FORi% =1TOr%

FOR j% =1TO c%
IF m%(i%, j%) THEN
ifv% = (f(i%, j%) >= fc)
vt=vt + v%(i%, j%)
di = di + d(i%, j%)
ud =ud - ifv% * (1 - p(i%, j%))
vd = vd + v%(i%, j%) * d(i%, j%)
xv =xv + v%(i%, j%) * p(i%, j%)
x =X+ p(i%, j%)
fv=1v-ifv% * v (i%, j%) * p(i%, j%)
xu =xu + 1! - p(i%, j%)
a=a+ifv% * v%(i%, j%) * p(i%, %) * (d(1%,j%) <= 0)
a=a- (NOT (ifv%)) * v%(i%, j%) * p(i%, }%) * (d(i%, j%) > 0)
END IF
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NEXT j%
NEXT i%
'calculate the calibration constant, undiscovered resources,
'area-normalized error measure, and prediction error measure
IF fv > 0 THEN
c=vd/fy
ud =c * ud
a=cx* ABS(a)/xv
e = SQR(xu * xv) * ABS(a)
END IF

END SUB
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6. TECHNICAL REQUIREMENTS OF GIS PROCESSING
6.1. ROLE OF GIS IN EARTH AND ENVIRONMENTAL SCIENCES

It is a fact that the natural sciences are devoted to the study of phenomena which are only
partly described by exact observations and which are associated to various levels of
uncertainty. For this reason, we should not be surprised that the GIS, both as a
cartographic tool and as an instrument of decision support, is having a seemingly
destabilizing effect for institutions with a mandate of producing maps. The very
traditional foundations of thematic cartography which produces accepted compromises in
data representation on paper, are now challenged by the capability of constructing spatial
databases in which original field observations are stored and from which the interpretation
and generalization models of experts can extract several specific themes. An example of
this situation is the NATMAP initiative of the Geological Survey of Canada (Broome et
al., 1993; GSC, 1990) which includes FIELDLOG, a relational database management
system for data captured in the field (Brodaric, 1992; de Roo et al., 1993).

While the capability to store and retrieve at will many more observations (including their
relations) than what can be placed as symbols on paper at a given scale, is a definite step
towards the optimization of cartographic production, this new data representation allows
‘time-resistant’ and ‘interpretation-explicit’ data to be used for further decision-making
and modelling processes. This means that new forms of thematic representation can be
searched for, or that known types of representation can be improved upon or can be
optimized, e.g., using statistical analysis.

Apart from general-purpose geological maps, the areas of mineral potential assessment
and exploration, of geological hazard, and of environmental impact assessment are the
primary targets for extended use of GISs. Typically, in those three areas, a first step in
spatial representation is the construction of a database. A second step is the assessment of
an existing situation, and a third step is the prediction of the situation in space and in time
by means of models based on assessments in regions which are similar to the one under
study. Invariably, a research component is fundamental until new standard representations
will be solidified into acceptable cartographic products. This process is the unavoidable
consequence of introducing GIS in institutes which have a public cartographic mandate,
such as geological surveys, mines branches, departments of environment, etc. Similar
considerations can be made for the introduction of ‘processed’ remotely sensed data into
new experimental combined cartographic products where radar and other types of
geophysical imagery (filtered and corrected by the elevation) is overlaid with geological
maps. In this situation, the integration of different data layers has to be done by
specialists who use their expert knowledge to make sure that the processed and combined
‘information’ layers sufficiently express the desired phenomena, and that the processing is
explained and understood by the end user of the new thematic map products.

Because GIS technology is still fairly new and it is likely to have far reaching modifying
effects on institutions and on individuals, it may be beneficial to summarize in the next
Section some of the typical guidelines on GIS implementation.

6.2. HOW TO IMPLEMENT A GIS

The implementation of a GIS is a complex procedure that covers the analysis of needs of
a laboratory, of a project, or of an institution, the development of awareness of GIS
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capabilities, the setting up of a pilot project, the identification of software and hardware,
down to system acquisition and training of staff. In Table 6.1 the views of three authors
are listed for discussion. To some extent, the emphasis of the three sets of guidelines are
on analysis (Burrough, 1986), on management (Aronoff, 1989), and on production
(Clarke, 1991).

Burrough (1986) considered the sharpness in task definition as a fundamental aspect in the
selection of a GIS. Vector and raster data structures are seen a complementary in its
construction. Clear distinction in the skill of the personnel operating a GIS leads to the.
identification of the costs attached to the different tasks of data input/output, usage of
analytical software and management. Aronoff (1989) stressed the need and the techniques
to develop awareness of GIS technology within public and private institutions, to identify
the most likely users, to initiate a pilot project which includes training of staff, database
construction and system maintenance. Then, the critical issue of responsibility for
services, maintenance and performance become fundamental. Clarke (1991) focuses, at an
early stage, on cost-benefit analysis and a pilot study. This is followed by request for
proposals, benchmarking, and cost-effectiveness evaluation which lead to the final
implementation contract.

TABLE 6.1. THREE COMPLEMENTARY VIEWS ON SELECTION, IMPLEMENTATION
AND ACQUISITION OF A GIS

Choosing a GIS (Burrough, 1986)

Definition of needs

1. Kind of user and user requirements: a. users with exact defined task (mapping and inventory
agencies); b. part only of task defined exactly (environmental mapping agencies); and (c) no
part of task work is defined exactly (university research and teaching groups, research
institutions)

Scope of application

Technical choice - vector or raster? Complementary modes: vector mainly for archiving,
network analysis and quality drawing, and raster for simulation and modelling?

Finance available

Personnel available: low-skilled and high-skilled

Organizational aspects

Cost of GIS computer and staffing requirements for:

7.1. Data input;

7.2. Data output;

7.3. Use of data analysis software; and

7.4. Planning and management.

W

Nk

Procedures for setting up a GIS

8. Detailed inventory of existing work situation

9. Anticipation of future data handling needs

10. Kinds of hardware and software

11. Looking for suppliers of software

12. Considering hardware to support software

13. Preparing a document detailing the requirements

14. Benchmark test .

15. Choosing a system on its price and performance

16. Plans for staffing and training needs

17. Conducting a2 number of small test projects to train staff and to show managers what the
system can do ‘
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TABLE 6.1. (cont.)

Implementing a GIS (Aronoff, 1989)

Phase 1: Awareness of GIS technology and its benefits in organization
Phase 2: Developing system requirements and identification of users
Phase 3: Evaluating alternative systems (user friendliness and benchmarking)

Phase 4:  System justification and development of implementation plan (database development,
setting up of staff tasks, cost-benefit analysis)

Phase 5: System acquisition and start-up (maintenance contract, software training, database
start-up, pilot project)

Phase 6: The operational system (initial database is complete and operating procedures have
been developed, including maintenance, upgrade and services): who is responsible to
provide services and guarantee performance?

The GIS acquisition model (Clarke, 1991)

Stage 1: Analysis of requirements
1. Definition of objectives
2. User requirement analysis
3. Preliminary design
4. Cost-benefit analysis
5. Pilot study

Stage 2: Specification of requirements
6. Final design
7. Request of proposals

Stage 3: Evaluation of alternatives
8. Short listing
9. Benchmark test
10. Cost-effectiveness evaluation

Stage 4: Implementation of system
11. Implementation plan
12. Contract
13. Acceptance testing
14. Implementation

The three approaches are clearly directed towards institutional GISs. For an individual
researcher or a small research laboratory, while similar sequences of steps are likely to be
required, the entire decisional process will have to be performed by a single person. This
requires to identify the qualifications and the ideal background of the operator of the GIS
and whether such experience is easily found in an individual specialist.

6.3. STAFFING QUALIFICATIONS: WHO OPERATES THE GIS?
In assessing the staff requirements for operating a GIS, we must clarify first the type of

GIS activity (e.g., production oriented or for analysis and modelling), and the different
levels of skill required for the various processing tasks. Burrough (1986) distinguished
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‘low-skilled’ staff, those who are not supposed to know how a GIS works, but who must
provide the input that make a GIS work and make sure that acceptable results are
generated and ‘high-skilled’ staff, i.e. managers, liaison officers, technical experts and
scientists. For each type of skilled personnel, costs for the different tasks (i.e., data input,
data output, data analysis, planning and management) can be computed, which are
proportioned to the degree of responsibility and expertise implied in the tasks.

The situation in the present discussion is mainly related to scientific research leading to
advanced methods of GIS for information representation, assessment and prediction in the
earth sciences. For this reason, the main qualifications for our GIS users are as follows:

(a) Earth science background specific to the target application

This background will be fundamental in understanding geological processes and in
formulating models for GIS analysis.

(b) Experience in photointerpretation, field work and thematic mapping

The human vision system integrates images for interpretation. To understand the physical
meaning of the features interpreted in images, a relationship must be established with
what is observed in the field (ground truthing). Furthermore, what the computer will be
working on is an interpreted set of digital features either digitized from photographs or
coming from enhanced or classified images from which relevant information has been
extracted, again by photointerpretation. The latter interpretation, enables the integration
power of expert human vision to complete the results of extracting digital features which
often appear disaggregated or disrupted.

(c) Basic knowledge of statistical analysis
Many aspects of the observed phenomena have a statistical signature in a GIS database,
e.g., the frequency of a mineral or a structural association, therefore statistical analysis is

needed in GIS model building.

(d) Basic knowledge about microprocessors, their operating system and at least one
programming language (BASIC, FORTRAN, Pascal, LISP, C or C**)

This knowledge will help in overcoming the vagaries of computer interaction, in

programming interfaces and algorithms for tasks not planned in the available GIS
software.

(e) Experience in computerized data management

Much GIS processing is management, therefore this experience facilitates the construction
of analytical databases.

(f) Experience in GIS and image processing techniques
GIS and image processing are fields where datasets and data structures are frequently

transformed. For these transformations, information is extracted, interpreted, and
transmitted to modelling systems. Knowledge of the processing techniques enable to
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evaluate and to anticipate the accuracy of the transformations and the validity of the
processed digital data.

(g) Willingness to communicate with experts in different disciplines which are
relevant to specific applications or to acquire knowledge of those disciplines
within the context of the target application

(h) Managerial experience including project planning

Most of the activity and cost in the construction of a GIS project is in the creation of a
database. Project planning is essential to ensure that, eventually, the analysis will have a
chance of taking place!

Data integration requires extensive communication with experts in different disciplines.

These qualifications might not always be available in a single individual, however, they
are desirable for the successful development of a GIS integration effort. They are not the
qualifications of a ‘superman’ but they describe the background of the conventional GIS
operators who are conducting research in resource exploration, in natural hazard studies,
or in environmental impact assessment, three inseparable aspects of applied earth
sciences. A multidisciplinary team effort is required in most GIS projects. This implies
that, in general, operational knowledge should be preferred in different staff members
rather than in a single individual. Training initiatives which aim at such multidisciplinary
and cross-disciplinary backgrounds will be discussed in Section 6.6.

6.4. SOFTWARE

Evaluating and comparing software is a difficult task due to the variety of solutions to
GIS problems. According to Clarke (1991, p. 477), for GIS evaluation "there is minimal
public domain literature comparing the various systems, and their features are changing
so rapidly that any such literature is soon out of date".

Several PC-based GIS software packages were listed in Table 2.5 mainly to point out that
there are systems with different design and characteristics which may be preferable for
some applications. PCs were chosen because they represent low-cost platforms of very
wide distribution and therefore they are available anywhere, including developing
countries. Here we want to identify types of software which, if not directly related to
GISs, are of complementary use for programming, reporting and analysis. Figure 6.1
shows a network of contacts and of partial overlaps between different types of commonly
available off-the-shelf software packages and GIS/RS-IPS. From the user’s viewpoint, it
is important to understand the relationships which exist between the various pieces of
software.

Word processing programs enable text to be edited for documentation, where ASCII
characters can be transferred back and forth the GIS and graphic output can be inserted in
the text. Spreadsheet programs permit computations to be made on numerical tables that
can be transferred as ASCII files. CAD programs, in addition to cartographic production,
facilitate the composition of illustrations, annotations and can be used to generate
databases with a linked number of attribute and of graphic files. Geostatistical and other
contouring packages allow optimal interpolation processes and the transfer of interpolated
data as raster datasets. Statistical analysis packages allow the analysis and transfer of
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FIG. 6.1. The relationships between GIS-remote sensing image processing software and
complementary software for data analysis and management.

multivariate tabular data optimizing regression and classification. DBMS software
optimizes the processing and management of large attribute databases and the extraction
of smaller subsets of data to simplify GIS processing. Expert shells, expert systems and
special-purpose modelling programs, are used in conjunction with a GIS, in developing
rules for modelling or in the fine tuning of assessment and prediction models.

What differentiates all these packages is their main focus. While any software can be seen
as peripheral from the point of view of the other ones, it is important that a GIS performs
over 90% of its tasks, leaving the less frequently and more specialized tasks to other
specially optimized systems. This situation avoids overload on any one system with
applications which might be of infrequent use for many users. Most analytical tasks in
GIS processing will require interaction with those external software packages.

Interactive graphic environments such as Windows and Macintosh GUI (graphic user
interface) enable the user to communicate largely by pointing at icons on the monitor,
thus avoiding the use of the keyboard. At present, the difference between an operating
systern and a visual interactive interface has become rather subtle. For PCs, a new
development of Windows, Windows-NT, will be made available in 1993 as a full
operating system. Most programming languages are beginning to have visual versions,
under Windows environments, to facilitate even further the interactive process (e.g.,
visual BASIC). Various tools are also available for individual self training. In the field of
GIS and remote sensing, a global change electronic encyclopedia termed GEOSCOPE and
RTUTOR, a radar remote sensing training tool (RTUTOR, 1992; Canadian Space
Agency, 1992; Simard, 1992a, b) use Windows like techniques (hypermedia) to train
users through the complexities of spatial data processing and of sensor characteristics and
applications. This trend is likely to expand in the near future into special training
packages and training centres.

6.5. HARDWARE

The development of hardware for PCs, and Macintosh platforms is in a continuous state
of flux, so much so that anything that might be said at present is certainly obsolete by the
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time it reaches the reader. Apart from this eventuality, we can see a consistent trend for

PCs to remain the microprocessors with the widest distribution and accessibility. For
research work in the field of GIS and of image processing of remotely sensed data,

available and recommended hardware is listed in Table 6.2 (to hardly cover two years to

come, say 1993-1995!).

TABLE 6.2. AVAILABLE AND RECOMMENDED PC-BASED HARDWARE FOR GIS AND

IMAGE PROCESSING OF REMOTELY SENSED DATA

HARDWARE MINIMUM RECOMMENDED
-CPU 386 586
-RAM 8 Mb 32 Mb
-math coprocessor yes yes
-processing speed 33 MHz 90 MHz
-memory cache none 256K
-printer laser laser
-plotter A3 inkjet A0 inkjet
-digitizer A3 AQ
-scanner none Al

-camera none 5127 chip
-mass storage 500 Mb >1Gb
-graph. disp. cards SuperVGA SuperVGA

-backup

-CD ROM
-CD-R (recorder)

-communication (LAN)

(8 bits: 2° colours)
tape streamer
Bernoulli Box
none

none

none

(24 Bits:2** colours)
optical disk

yes
yes
yes

PCs are essentially single user systems and may not be the desirable platforms for
running large jobs or for processing large arrays of data. They have become faster
machines, however, and often their response time can be shorter than what can be

obtained on a workstation with two or more simultaneous users. The lower price for PCs
has resulted in the development of a vast amount of software for a worldwide market. For

this reason, and because workstations are more expensive and less available, numerous

software developers are still hesitating to direct their efforts towards workstations. Many
low-cost storage media for PCs now exist, such as CD-ROMs for which the price is little
more than that for a hard disk drive. CD-Rs (or CD recordable) drives are now available
for less that US $10 000. They considerably expand the capabilities of PCs and are now

up to the requirements of an image processing system which generates one or more
images in most processing steps. Local area networks or LANs, enhance even more the
power of microprocessors by enabling several CPUs to share large storage media. New
graphic cards, even if not yet standard products, are making high resolution colour
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visualization very accessible, e.g. superVGA or mega-super-VGA. Today, a critical
problem is data integration and analysis, not any more the limitations of hardware: the
complexity of formulating a real problem in a computational manner.

6.6. TRAINING NEEDS AND INITIATIVES

The need to develop applications of GISs for global environmental problems has
encouraged several initiatives of the United Nations. In 1985 the United Nations
Environment Programme (UNEP) has implemented GRID, the Global Resource
Information Database, to provide scientists and planners around the world access to an
integrated GIS database (GRID, 1991; UNEP, 1992). Countries like Kenya, Switzerland,
Norway, Thailand, Japan, Nepal, Poland, the Russian Federation, Fiji, Brazil and Canada
are supporting the GRID system either in research and development or in technology
transfer. Training in the use of GISs and remote sensing technology has been undertaken
through UNITAR, the UN Institute for Training and Research.

The International Institute for Aerospace Survey and Earth Sciences (ITC), in the
Netherlands, has specialized in graduate training in GIS, remote sensing and image
processing in areas of mineral exploration, geological hazards, landuse planning, urban
geography, cartography and environmental management. Several training packages are
being made available by ITC, such as GISSZ, a landslide hazard assessment database and
GIS training software (van Westen, 1993).

A core curriculum study for a 9-month academic training in GIS was made available in
1989 by the National Centre for Geographic Information and Analysis, NCGIA (1989), a
centre of excellence consisting of three universities in the USA (University of Main in
Orono, University of New York in Buffalo, and University of California in Santa
Barbara). Several universities in North America and Europe now have intensive training
in GIS and remote sensing. Truly interdisciplinary training, however, is still a long way
to become a reality due to the difficulties to transform a monodisciplinary culture into a
multidisciplinary one.
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7. CASE STUDIES ON DATA INTEGRATION FOR MINERAL EXPLORATION

7.1. DATA INTEGRATION AND GIS MODELLING IN THE NORTHWEST
TERRITORIES OF CANADA

E.M. Schetselaar, A.G. Fabbri
ITC, Netherlands

7.1.1. Introduction

A case study on data integration and GIS modelling was constructed from a preliminary
study by Fabbri et al. (1989) and Fabbri and Kushigbor (1989) in the Bathurst Inlet area
of the Northwest Territories of Canada. Reconnaissance fieldwork and regional
compilation, including a mineral potential assessment of the area was done by Roscoe
(1984). Detailed fieldwork (1:20 000-1:10 000) by the Geological Survey of Canada,
between 1988 and 1991, took advantage of several enhanced plots of SPOT, airborne
SAR images, and TM colour composites. Field notes for that fieldwork (Jefferson et al.,
1990) and a detailed multiple data set for part of the study area were used to develop a
realistic case study to train exploration geologists. The practical approach to such
integration was based on hands-on work using PC-based tools for:

(1) capturing field data using a relational database, FIELDLOG™

(2) manipulating cartographic symbols using a computer aided design and drafting
system, AutoCAD®; and

(3) processing and modelling information using a hybrid GIS-Image Processing system,
ILWIS®.

The approach aimed at the integration of primary field data with remotely sensed data,
and with other secondary data digitized from maps. Integration is seen as a modelling
process of decision-making which can lead to new cartographic techniques where mapping
and modelling are inseparable tasks for information and knowledge representation
(leading, for instance, to a map as a knowledge base stored on a magnetic diskette).

While the techniques of field data capture by a portable computer, and the usage of a
CAD system for cartographic production in geology are beyond the scope of this case
study, an overview of the integration and analysis part of that work is considered a useful
topic in this chapter.

A brief description of the study area and of the data set provide the framework to the
following analytical parts:

(a) processing of remotely sensed data;
(b) processing of geophysical data;

(c) performing data integration; and
(d) developing spatial analysis.

AutoCAD® - 1982-90,1992 Autodesk Inc. 2320 Marinshipway Sausalito, CA 94965.
FIELDLOG" - 1992 Geological Survey of Canada, Ottawa, Canada.

ILWIS® 1992 - ITC - International Institute of Aerospace Surveys and Earth Sciences, Netherlands.
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This case study is extracted from Schetselaar et al. (1993) who developed a workshop
tutorial out of their direct experience both in the field and in the classroom. The
following is their view of data integration (Op. cit., p. 5):

"The increasing amount of multiple geological data sets readily available to geologists,
has created a need for efficient capture, storage, management, retrieval and analysis of
geoscientific data. Today the earth scientist is faced with the difficult task of relating and
integrating vast amounts of data types of different nature, obtained from different sources
and compiled at different scales. In order to use all these data for mapping, interpretation
and modelling, the geologist should ideally be able to spatially link field observations with
ancillary spatial data such as airphotos, gridded geophysics, satellite imagery and
topographic data, and other point data, such as laboratory results from geochronology,
geochemistry and thin sections. The tremendous growth in the development of GIS
technology in the last decade has provided the geological community with a toolkit for
addressing this data integration problem. The digital data format allows one to easily and
efficiently output, update, compare, and visualize multiple data sets in a GIS. Moreover a
GIS provides a wide range of spatial analysis capabilities for selective retrieval, statistical
analysis and modelling of both spatial and non-spatial data. GIS is complementary to the
geologist’s inherent ability to think about the object of study in a spatial and integrated
manner. "

7.1.2. Description of the study area (geology, geomorphology, ecology)

Information about the geology, geomorphology, vegetation, soils and wildlife from the
study area can be found in Zoltai et al. (1980), Roscoe (1984) and Jefferson et al. (1990).

Bathurst Inlet occurs along a major fault zone that runs along the western side of the
inlet. The total displacement along this fault was about 140 km, with vertical movement
of about 1 km. This created a deep basin, now drowned by the sea. Intrusive rocks that
are resistant to erosion protected the underlying softer sedimentary rocks. This resulted in
butte and cuesta topography in which vertical scarps may be as high as 300 m. The
variety in relief near the Inlet is in sharp contrast with the surrounding area typical of the
Canadian Shield, which is characterized by low hills and broad valleys that provide the
only variation in relief.

A generalized geological map is shown in Fig. 7.1. A summary of the geology of the
entire Bathurst Inlet area followed by a description of the geology of the Pistol Lake Area
based on the report of Zoltai et al. (1980), Roscoe (1984) and a 1:10 000 geological map
produced by C.W. Jefferson of the Geological Survey of Canada from which Fig. 7.2
was generated.

Archean rocks. Archean volcanic (mainly basalts) and sedimentary rocks
(volcanoclastics, carbonaceous pyritic slate, chert, carbonates, lenses of banded iron
formation), are believed to have been deposited from 2.7 billion years ago upon
2.9-3.2 Ga old granitic and tonalitic basement rocks. Granitic rocks were intruded by
pre-, syn- and post-orogenic granitic rocks. The rocks were metamorphosed to
greenschist, lower amphibolite and upper amphibolite facies. The volcanic and
sedimentary supra-crustal rocks were tightly folded into the present near vertical attitude
through several phases of intense deformation. The depositional setting for the Archean
supra-crustal rocks is difficult to ascertain due to the poor structural and stratigraphic
control in the area. In general, however, these rocks formed as a consequence of the
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stretching and rupturing of sialic crust resulting in down dropping of a series of crustal
blocks to form fault bounded sea floor basins. These basins grew through the extrusion of
lavas on the sea floor. Turbiditic sediments were deposited over more extensive areas and
in part record the active volcanism that must have persisted in this area during
sedimentation. Dikes, sills and plugs in the area record the paths of magma that did not
reach the surface. These Archean rocks are the focus of the tutorial study.

Aphebian rocks. The metamorphic and intrusive events culminated in the development of
the Slave Structural Province (2.6 Ga ago). This Cratonic region was then uplifted and
deeply eroded. Around 2.2 Ga, it was intruded by alkaline and peralkaline bodies,
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FIG. 7.1. Generalized geological map from Bathurst Inlet.
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FIG. 7.2. Géology map of the Pistol Lake Area, Hood River Belt, compiled and digitized
Jrom 1: 10 000 geology maps GSC (Henderson et al. 1991).

probably along extensional fractures. Around 2.0 Ga ago, the Slave Province was
subjected to tensional strain resulting in rifting with related warping and development of
the northerly trending seaway. At Bathurst Inlet the Kilohigok intracratonic basin was
formed. Sediments of shallow marine, deltaic and fluvial origin were deposited in this
basin giving rise to a sequence of a great variety of sedimentary rocks (turbidites,
stromatolitic and clastic carbonates, quartzites, argillites, lithic and arkosic sandstones,
conglomerates and breccias).

Helikian rocks. Sediments of Helikian age occur in a succession of six formations and
several members. Three phases of sedimentation, separated by unconformities were
recognized each marking a major change in the depositional environment. The oldest
formation consisting of arkoses, silt stone, conglomerates and breccias were deposited in
a fluvial environment. The next sedimentary rocks consist of an alternation of carbonates,
quartzites and conglomerates. The Ekalulia formation, overlying these older sedimentary
rocks consists of lava flows of basalt. The pillowed and massive flows are overlain by the

139



Algak formation consisting of cross-bedded reddish arkose and siltstone. The youngest
Precambrian rocks are sills and dikes of Hadrynian age. The sills, up to 100 m thick,
consist of sheets of diabase intruded sub-horizontally into sedimentary beds. Dikes (up to
several hundreds meters wide and several kilometres long, dip nearly vertical and consist
mainly of diabase, but also may be diorite, gabbro and pyroxenite. These intrusive rocks
and their older equivalents have a pronounced expression on the aeromagnetic maps.

Bedrock geology of Pistol Lake Area. The Pistol Lake Area is part of the Hood river
belt mapped by Henderson et al. (1991). As can be seen from Fig. 7.1, the bedrock
geology of the Pistol Lake area mainly comprises the Archean units of the Precambrian
lithologies. Belts of meta-sedimentary rocks generally of younger age towards the East
consisting of greywackes, amphibolites, phyllites and schists, alternate with granitic
rocks, the latter subdivided into gneissic and massive granites. An unconformity along the
East side of the area separates the Archean rocks from the Aphebian rocks. These Lower
Proterozoic lithologies consist of various sedimentary rocks deposited in shallow marine,
deltaic, and fluvial settings.

The Archean rocks between Pistol Lake and Hood River are intruded by a sheet like body
of gabbro. To the South this intrusion is mainly emplaced along the unconformity
between Archean rocks and the Western river formation. They are considered to be of
Aphebian age. The youngest Precambrian rocks in the Pistol Lake area are diabase dykes.
At least three and possibly four diabase dyke swarms exist. The oldest are East-West
trending diabase dykes assigned a Late Archean age of 2692 Ma (Rb-Sr mineral and
whole rock isochrone. The Southeast-Northwest trending dykes are part of the Proterozoic
Mackenzie Dyke Swarm (with a baddeleyite U-Pb age of 1270 Ma). The youngest dyke is
the northerly trending diabase dyke which intrudes the East side of the Pistol Lake area.
In Fig. 7.2 the geological bedrock map is presented, which was originally compiled by
the GSC on 1:10 000 scale by R. Wyllie (Henderson et al., 1991).

Mineralization. Gold is found in iron formation beds within the upper sequence of a
turbidite unit (metasedimentary unit). The iron formations are mixed silicate, oxide and
sulfide facies with gold commonly found in the latter. Available information suggests that
the gold is not vein related and may be syngenetic or early epigenitic (Henderson, 1991).

Quaternary geology. The Bathurst Inlet area was glaciated during the Wisconsian stage
by ice advancing from the Southeast. Upon deglaciation the depressed land was inundated
by the sea. The following glacial and marine deposits are present in the Pistol Lake area
(see also Fig. 7.2).

Ground moraine. Till deposits of uneven thickness blanket the terrain consisting of
unsorted debris. In general the till is bouldery and stony, having a silty sand to sandy
loam texture (Zoltai et al., 1980). The chemical properties of the till are variable,
depending on the mineral composition of the source bedrock material.

Marine sediments. Marine sediments are fine grained (silts and clays) and occur on the
Northeast edge of the study area in the Hood river valley. Chemical composition is
slightly acid with a relative high nutrient levels (higher than basic and acid till deposits).
This fact and the texture of the sediments explains the lush vegetation cover on these
deposits (Zoltai et al., 1980).
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Fluvial deposits. They are confined to the Hood river valley. The material is bedded sand
and gravel. The chemical composition resembles the till of the source area.

Vegetation. Broad vegetation types were mapped by Zoltai et al. (1980) from field work
and airphoto interpretation. The following is a description of the vegetation classes which
occur in the Pistol Lake Area.

1. Rock lichen type: This vegetation type is found on bare bedrock, and on boulders.
A variety of lichen species grow on the rock substrate which influences the
composition of the community. Vascular plants occur in cracks or between stones.
Also mats of a moss species (Rhacomitrium lanuginosum) cover large patches of
bedrock.

2. Dwarf shrub-heath type: This vegetation type occurs on well to excessively drained
till uplands. It consists chiefly of ground hugging dwarf shrubs. Also mosses may
occur.

3. Low shrub-heath type: This vegetation type occurs mainly on well to imperfectly
drained slopes on till materials. It consists of low willows and birch and heath
vegetation.

4. High shrub type: This vegetation type is characterized by shrubs 30-200 cm high.
Two subtypes were recognized, one occurring on lower slopes, imperfectly to poorly
drained margins of ponds, and along creeks. The other type is common on
imperfectly drained deltaic or fluvial sands.

5. Sedge-Cottongrass Meadow: This vegetation type is characteristic of imperfectly
drained clay deposits. It is dominated by sedges but also mosses are common.

Ecological land classification. Ecological land classification, based on the Canada
Committee of Ecological Land Classification was completed by Zoltai et al. (1980) in
order to evaluate the elements of the physical environment in terms of their importance to
the biological components.

Three levels of subdivisions have been made: Ecoregions, Ecodistricts and Ecosections.
The entire area is part of the Low Arctic Ecoregion. The climate in this region is too
severe for trees, but not severe enough to prevent the development of continuous
vegetation. From the further subdivision it was derived that The Pistol Lake Area is part
of the Bear-Slave as well as of the Bathurst Hills ecodistrict. The Bear-Slave ecodistrict is
characterized by bedrock controlled relief and has the physiography of an elevated
peneplain (average altitude is 400 m but local variations are less than 30 meters). Much
bedrock exposure is present in the area but also deep till deposits occur. Large esker
systems extend in Southeast Northwest directions and many lakes are present. The
Bathurst Hills ecodistrict is characterized by a topography accentuated by steep cliffs with
flat or gently sloping summits. Spectacular waterfalls occur on all major rivers. Bedrock
outcrops are common, alternating with thick till deposits. Marine sediments can be found
in broad plains or in isolated pockets among rock ridges. Ecosections were mapped on the
basis of: (1) broad relief, (2) texture, and (3) petrography of soil materials and their
thickness. In most of the area, there are terrains with low to moderate relief bedrock
exposures and till deposits with both acidic and basic compositions are prevailing. On the
northeastern and southeastern parts of the area, however, sediment cover of fluvial and
marine origin, supporting lush vegetation growth, is predominant.
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7.1.3. The data set

A multiple data set was constructed to provide exploration geologists with the context for
interpreting and exploiting all ancillary data of potential utility in mapping. The data set is
a typical one which is often available but with requires some interdisciplinary effort to be
properly used. Most geologists are traditionally taking little advantage of such data
because of the complexity of integrating the data in a systematic manner within a GIS. In
general, Lack of training and the often overwhelming pressure of tradition leave little
room for innovative techniques to be employed. The following is a description of the
work files for the workshop tutorial after Schetselaar et al. (1993).

(a) Hard copy imagery

-~ Colour copy airphoto comprising the area directly north of the Hood river with
geological field stations and photointerpretation on overlays.

- Landsat Thematic Mapper colour composite image bands 7, 5 and 3 from colour
copy photoprint of filmwriter diapositive.

-~ Colour enhancement of part of the Pistol Lake area, fusing aeromagnetics and TM
band 4 (edge enhanced) by IHS transformation.

(b) Digital data

- Landsat TM imagery, bands: 1, 2, 3, 4, 5, 6 and 7 provided by the Canada Centre
for Remote Sensing ,CCRS, in Ottawa;

- SPOT Panchromatic band, also provided by CCRS (see Fig. 7.4, Plate 12);

- Digital elevation contours digitized from a 1:25 000 topographic map (see Fig. 7.5,
Plate 13);

- High resolution aeromagnetics flown by Silverheart Mines, in 1989 (see Fig. 7.6 (b),
Plate 13);

- Geology coverage digitized from 1:10 000 geology map (Henderson et al., 1991; see
Figs 7.2 and 7.6 (a), Plate 13);

—  Tables containing structural data obtained from the geology map mentioned above;
- Banded iron formation outcrops digitized from the geology map;
- Faults and shear zones digitized from the geology map;

- Locations of known mineral occurrences digitized from a GSC open file publication
by Roscoe (1984).

Several colour illustrations are a visual account of this data set. Figure 7.3 (Plate 11)
shows Landsat TM colour composites of the study area. Figure 7.4 (Plate 12) shows part
of a SPOT panchromatic image and a scanned aerial photograph. Figure 7.5 (Plate 13)
shows a digital elevation image and Figure 7.6 (Plate 13) shows part of the geological
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map of the Pistol Lake area and the corresponding aeromagnetic image. The data set
realistically represents a situation in which raw data have to be analyzed, enhanced,
modified, and combined, in order to extract the information to use in exploration
modelling. Contrary to what it may be expected by the uninitiated, only a small part of a
data set will eventually be usable for such modelling. Much expert knowledge and
awareness of the information content of the database are required to finally translate
observations into a computational form for GIS modelling. This data set offers the
opportunity for an introduction to geoscience data integration.

7.1.4. The exercises

These exercises have a simple introductory value for geologists. The strategy of the
tutorial is of explaining the background of the data and of the analyses while guiding in
the interaction with a computer. The tutorial exercises are an introduction to the more
advanced work to follow in Sections 7.2 and 7.3 where real life applications of an
individual researcher and of a geological survey team are described.

Processing of remotely sensed data

Important in the interpretation of remotely sensed data from humid and moderately to
densely vegetated environments, such as the tundra, is to gain understanding of the
spectral responses of the various ground cover classes (vegetation, water, bare soil,
bedrock, etc.) that mask spectral responses from pure bedrock. This is not only crucial
information, to be able to efficiently exclude ihe pixels of the scene that mask the spectral
response of the bed rock, but the patterns in these ground cover classes might also be
useful for geological interpretation. Such patterns are, at least partly, controlled by
bedrock geology. Geomorphology, landscape ecology and geobotany are the fields that
study these relationships. For this reason background information on physiography,
sediment cover (Quaternary geology) and vegetation is provided in the previous section on
the study area.

The exercises start with the generation of several displays of Landsat TM bands and of
their grey level histograms. The displays are useful to become familiar with the variety of
digital number values and consequently to relate them to the differentiation of some
geological units on account of their spectral responses. Contrast enhancement is
performed next, to exclude the pixels corresponding to water which have low values. The
visual interpretation of the bands is improved.

Colour compositing follows of sets of three bands and the different colours of the
composites are related to the physiography of the landscape. Figure 7.3 (Plate 11) shows
two colour composites for the Landsat TM image of the study area. Statistical criteria for
the selection of optimal combinations of three bands are used which relate the sums of
pairwise band correlations with the sums of standard deviations of the grey levels of each
band in the combination. In addition, a measure of spectral contrast between band pairs is
obtained by the biomass or green vegetation index. Vegetation, water, and fluvial deposits
are masked to isolate bedrock exposures. An image is obtained which contains pixels for
which the spectral responses are mainly controlled by bedrock, however, they probably
are still influenced by lichens and moss vegetation communities.

To be able to fit remotely sensed data in overlay with maps at a later stage, the Landsat
TM imagery has been geometrically corrected in respect to a topographic reference. A
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SPOT image has to be registered with the TM image. Figure 7.4 (a) (Plate 12) shows the
SPOT panchromatic image of part of the Pistol lake area.

Processing of geophysical data

Potential field surveys are carried out in order to map local variations in the earth’s main
fields (gravity and magnetic). The variations may then be interpreted as due to physical
property distributions (density and magnetism) in the rocks of the earth’s crust.
Aeromagnetic surveys are relatively inexpensive and widely available. For this reason
they are the most utilized geophysical data in mineral exploration surveys.

In recent years qualitative interpretation of aeromagnetic data has improved significantly
by the use of image processing systems by presenting the aeromagnetic data as raster
images. Each grid cell has a value assigned to it corresponding to the geophysical
variable: aeromagnetics or gravity. Compared to the interpretation of conventional
contour maps raster representations can be easily interpreted and digitally processed.

Aeromagnetic data is inhomogeneously distributed (high density along flight lines and low
density perpendicular to the flight lines). A consequence of this is that gridding
(interpolation) procedures may lead to serious degradation of the data. Sophisticated
interpolation procedures are required to compensate for the inhomogeneous measurement
distribution. By choosing different parameters, it is possible to find a compromise
between the two evils: not loosing to much information along flight lines and not creating
artificial patterns (bulls eyes) due to the inhomogeneous data distribution.

In the exercises on geophysical images, the raster representation of the high resolution
aeromagnetic data is displayed similarly to the Landsat TM bands, however, contrast
enhancement techniques can be used to highlight subtle variations in specific ranges of
values, for instance using different histogram stretches, pseudo-colour look-up tables, or
defining optimal transfer functions for colour assignment. Artificial illumination or hill
shading by filtering is performed on the high resolution aeromagnetic raster image and on
the image of topographic elevation. Contrast enhancement is then applied to the hill
shaded images.

To gain insight in the geology in a certain area we often want to analyze one data type in
conjunction with another. For example we might want to verify if a geophysical anomaly
is related to structural features observed at the surface. Figure 7.5 (Plate 13) shows part
of the geological map of the Pistol Lake area and the corresponding high resolution
aeromagnetic image. The coincidence of subtle patterns in different digital images may
lead to more confidence in the interpretation of those features. On the other hand patterns
present in only one or the other image might supplement the features that can be extracted
from the combined interpretation.

To integrate digital images of different sorts, we can not use the red, green and blue
colour representation because the numerical characteristics are not represented by uniform
colour gradations and are therefore difficult to interpret. We have to transform the
cartesian colour representation into quantifiable colour attributes that can be distinctly
perceived. Such a colour coordinate system is the IHS transform in which: I = intensity,
i.e., total brightness of a colour, H = hue, i.e., average wavelength of a colour and S =
saturation, i.e., purity of a colour.
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To integrate the aeromagnetic data with the geometrically corrected SPOT panchromatic
image the procedure may be as follows. The variations in gammas of the geophysics are
assigned to the hue, and the digital numbers of the SPOT image to the intensity, while
keeping the saturation constant. In image processing systems, such an approach involves
an IHS to RGB transformation in which 3 image bands are displayed on a total of 24 bits
displays (8 bits for RED, 8 bits for GREEN and 8 bits for BLUE). An alternative
approach is however required to do such a transformation on a 8 bit display device such
as the commonly available VGA (or superVGA) graphic card which is limited to the
display of a total of 256 colours at one time. The method consists of slicing the
geophysical image in 15 grey levels, the SPOT image into 16 grey levels, and then of
combining them.

Data integration

Having performed several enhancements on a multiple data set, it becomes useful to
compare our field observations with the patterns visible in the enhanced raster images.
Each enhanced product can contribute to a different aspect of a final geological model.
For example, geophysics could give us extra information in those areas where we have no
or sparse outcrop. Enhanced Landsat imagery and the hill shaded elevation image could
be useful to extent observed lithological contacts, faults and shear zones. In addition, the
field observations stored as point data can be displayed on the images in an integrated
fashion, while providing ground truthing to our interpretations.

The combined use of field data and remotely sensed data, if used properly, can bring
more information to the interpreter than can the two data sets on their own. The simple
techniques used here are applicable in other fields as well, were ground based
geoscientific information is important. These techniques allow the user to think about the
spatial modelling which will be discussed for the last exercises.

By using photo interpretation techniques on the different raster images, and overlaying
field observations on them, a final map of the geology can be compiled. The
georeferenced and enhanced raster images are displayed as backdrop images with an
overlay of the observed lithologic contacts and structural readings. With the cursor of the
digitizing tablet lines can be traced on the nnage eventually having a topographic map
referenced on the tablet.

This process is termed ‘on screen digitizing.” A final interpretation is made by digitizing
on the background of the available enhanced raster images to complement the geology
vector map already available. The interpretation is extended to the observed lithologic
boundaries and use is made of the structural readings for interpolation. The interpretation
is traced on the currently loaded background image or other enhanced products are loaded
as raster background images. Also a lineament interpretation is made and
bedding/cleavage relationships are used to infer mayor fold axial traces.

The geological map was initially digitized in the vector data structure. The vector
representation implies that a topology was defined which describes the spatial
relationships between coordinates, lines or segments (consisting of an array of
coordinates) and polygons (the areas enclosed by the segments). In the raster data
structure the map consists of a regular array of square grid cells in which each cell
corresponds to a unit area on the ground. The grid cell or pixel value corresponds to a
certain lithologic unit.
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In general, the advantages of using the vector data structure are that it requires much less
storage space, data can be efficiently rescaled or transformed to other cartographic
projections and the links with attribute data are retained even after having performed
several spatial transformations. However, if we want to use the geology in spatial
analysis, that is if we want to combine the geological coverage with other more readily
available georeferenced raster data, then a better structure is the raster data structure. For
example, geological modelling often is undertaken by manually overlaying gridded
geophysical, geochemical or other point data, remotely sensed data, scanned air
photographs, etc. Modelling in the GIS environment allows facilitating this interpretive
process that is often intuitive to the geologist. This has the advantage of being much more
efficient, quantitative and versatile.

This exercise can be considered an introduction to raster modelling by the use of a raster
processing techniques. The geology is rasterized from a polygon map using as a reference
the geometrically corrected Landsat image. This implies that the geology is rasterized on
the georeference of the Landsat TM image (a pixel size of 30 meters, and the coordinates
assigned to the pixels are of UTM zone 12). Pixel values are assigned according to the
alphabetic order of the lithology names: the dykes will be attributed a pixel value of 1,
granite will have the value of 2, etc. To see this relation, the raster information file is
displayed. With the geology map in raster format it is now possible to perform various
kinds of spatial analysis operations. One useful application in this study is to compare the
geological map compiled from the observed boundaries and the interpretation of the image
displays with the original geology map compiled by the Geological Survey of Canada
(Henderson et al., 1991; Jefferson et al., 1991).

To assess the correlation between the two maps, all occurring combinations of pixel
values in both raster maps need to be identified. It is necessary to evaluate to what extent
the on screen interpretation overlaps with the existing geology map. An operation termed
‘cross’ finds all occurring combinations of pixel values corresponding to lithologic units
in both raster maps. Its results are stored in a cross table which contains all unique
combinations. To perform the analysis properly, one has to make sure that both maps are
encoded consistently, i.e., both maps should have the same range of pixel values and the
pixel values should be assigned to the same units.

Spatial analysis

In the following set of exercises spatial analysis is performed to define/extract areas with
a high probability for gold mineralizations. It is done on a qualitative basis, and with a
hypothetical model, mainly because not enough information is available about styles of
mineralization in the study area and because there are not enough known occurrences of
gold in it to do statistical modelling. Examples in which statistical modelling could be
applied to quantify probabilities for mineralizations were discussed by Agterberg (1989)
and by Bonham-Carter (1990).

Let us suppose that the Vice President of Exploration of a mining company working in
this area and is trying to test a hypotheses for gold mineralization. Field information is
extremely limited, but it is known that gold mineralization in the area is often related to
banded iron formation. Firstly, the mapped units of banded iron formation and their
neighbourhoods are considered as targets for exploration. Secondly, the shear zones that
intersect the banded iron formation are treated as higher priority targets for exploration.
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The georeferenced data set on which the hypotheses are going to be tested consist of the
following:

Vector maps:
bif Digitized segments of the banded iron formation lenses
fault Digitized lineaments from previous exercises

Raster maps: (pixel size of 10 meters)

geolw Window from raster map geology covering the eastern part of the Pistol
Lake Area

bif Raster map of the banded iron formation lenses

prospect Raster map of the known gold occurrences

Table:

prospect Table containing attribute information of the known gold occurrences

Retrieval of attribute information on mineralizations

In the Pistol lake area there are a few locations with known mineral occurrences (Roscoe
1984). Attribute data of these occurrences are stored in a table. In a GIS, the capability is
provided to link attribute data with their location on a map. This linkage can be
established in many different ways. It is important that the GIS users understand and be
able to implement these linkages so that attribute information can maintain its spatial
integrity. Not knowing where mineralization occurs in real space it makes it impossible
for the explorationist to perform spatial modelling. In this example the attribute-spatial
linkage was established when the point locations of the occurrences described in the table
prospect were rasterized and the map prospect was created.

Attribute information such as grade, width of mineralized zone, etc., from those points is
retrieved. The map of known gold occurrences is displayed on the colour monitor. A
zoom window with a cursor is displayed on the colour monitor and while the cursor is
moved to the known occurrences, the attribute information is also displayed to become
familiar with the database stored in the table.

Overlaying segments on a raster background map

To check visually the spatial relationship between the known deposits and the gold
occurrences the banded iron formation lenses are displayed on top of the map of known
gold occurrences. Then, the segments of the BIF lenses are overlaid on the same map.
This leads to the identification of which of the known occurrences are most likely to be
genetically related to banded iron formation.

Buffer zones are used in a wide range of GIS applications but often they are employed to
model zones of influence from points, lines or areas. The first step in creating buffer
zones is to calculate distances from the sources. The result of this distance calculation is
that each grid cell will have a value assigned according to the distance from the source.
In this case zones of influence are needed to model the occurrence of gold mineralization.
The host rock of the gold mineralization is banded iron formation. It is assumed that this
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lithology and the its vicinity represent areas with high potential for gold mineralizations.
The width of the buffer zone will be arbitrarily set to 50 meters, i.e., a buffer zone of 50
meters around the banded iron formation lenses is generated. The result of the distance
calculation is visualized by displaying the 50 m distance map, i.e., a binary raster map
which contains only two pixel values: 1 for the areas within the buffer zone, and O for the
areas outside the buffer zone.

Area numbering and cross operation

The second criteria to define areas with a high probability for gold mineralization,
according to the hypotheses mentioned earlier, is the occurrence of shear zones/faults that
intersect the buffer zones including the banded iron formations. To encode each shear
zone/fault the automatic operation of area numbering is performed, i.e. a unique pixel
value is assigned to each lineament. Then, the result of that operation is crossed with the
buffer image of the BIF map. Finally, a map showing all the occurring combinations
between the two maps is generated and in the cross table the numbers of the faults that
intersect the BIF areas are listed. It may be of importance to identify which lineaments
intersect the banded iron formation for the greatest length.

Using 2-D tables for overlaying Faults and BIF

Once the areas with high expected probabilities for gold mineralization have been mapped
using both criteria (i.e., 50 meters proximity to BIF and occurrences of fault/shear
zones), it is convenient to combine them into one probability map and to assign
qualitative weights to all the possible combinations of pixel values between the two maps.
To do such an analysis a two dimensional table can be used. Along one axis of the table
there are the pixel values occurring in one map and along the other axis there are the
values in the other map. Probability values may be assigned to the table in various ways,
according to whether the faults intersect the banded iron formation and/or according to
the length of intersection.

Finally, the result of this analysis can be combined with the geophysics and structural
readings or any other data that might help in formalizing a geological interpretation.
Important questions to answer might be the following. Are there patterns in the
aeromagnetic data that relate to the banded iron formations? If yes, do these patterns also
correlate with the strike of the bedding measured nearby? Can we structurally account for
the offset or asymmetry in geophysical anomalies (e.g., by assuming that the total
magnetic field is nearly vertical)?. Which of the known gold occurrences fall inside the
final probability map? According to which criteria, do they fall in: (1) within the buffer
of BIF or (2) along fault zones intersecting the BIF? Can we determine relative age
relationships between dikes or faults? Are their orientations correlated to the orientations
of interpreted lineaments? Can we determine the sense of displacements (sinistral or
dextral ) along lineaments and dikes? What about vegetation cover and topographic relief
in the areas of high probability? How much area of the high probability areas is covered
by water? What is the distance of the high probability zones to the nearest lake larger
then 1 square kilometre? Can we isolate a 10 kilometre scale mapping area for future
study?

The following environmental questions can also be asked the database.

What are the possible land use issues that a summer field crew may encounter while in
the field next year? What are the potential land use conflicts in the area of interest with
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reference to points of landscape scenery, spectacular Wilbeforce Falls, fish spawning
areas, caribou migration and the muskox population? Using the maps from the Parks
Canada publication, which is also available, it is possible to overlay the natural resource
maps with the gold prospect map (all the maps have to be georeferenced). What could the
accuracy be for such an assessment considering the different map scales that have to be
used?

7.1.5. Concluding remarks

This case study is directed not only towards exploration geologists but also towards
environmental geoscientists. Much of the concepts discussed in this Section are of a very
broad relevance. In particular, the emphasis is put on practical applications that go all the
way from the fieldwork practice and the capture and storage of field data in a portable
computer, to the drafting of maps, to the processing of remotely sensed data, to the
design of predictive models and to their implementation in a GIS. The modern field work
cannot anymore be isolated from spatial data analysis tools. Eventually, when all the
preprocessing has been standardized, integration becomes synonym of predictive
modelling. The two case studies that follow, deal with special exploration problems
stemming out of complete research projects.
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7.2. REMOTE SENSING AND GIS IN MINERAL EXPLORATION IN CENTRAL
WESTERN SPAIN

M. A.Goossens
GeoConnaissance, Netherlands

7.2.1. Introduction

Ground based metal exploration is labour intensive and thus very expensive. Remote
sensing and data integration techniques seem to offer a less expensive and attractive
strategy to replace some of this effort, notably for identification of target areas in the
screening phase of a new project. To realize this promise, however, one requires
considerable knowhow in order to relate remotely sensed data to ground data, in such a
way that the extracted signal forms a reliable predictive tool. This, in the first place, is
because knowledge of the relations between geological setting, mineralizing processes,
related anomalies, and available remotely sensed data form an essential basis for fruitful
interpretation of remotely sensed data. In the second place, production of a reliable
prediction requires considerable expertise concerning the technical aspects of data
processing, and the evaluation of risks of misinterpretation and error estimation during the
digital interpretation these data.

The intention of this case history is therefore twofold: (1) to show how specific geological
and geochemical features, diagnostic for the geological setting of the mineralization, and
the genetic processes, can be recognized using combined Thematic Mapper and airborne
magnetic and radiometric data; and (2) to demonstrate how a variety of digital data
processing techniques can be used to evaluate the quality of classification, and to enhance
the reliability of the final prediction concerning the presence of mineralization.

7.2.2. Geological background

In this study we use the data for an area located in the province of Salamanca, central
western Spain, where mineralization is predominantly associated with granite intrusion.
All mineralization is found in the vicinity of the intrusive contact of Hercynian granitic
rocks, with the Precambrian to Silurian metasedimentary rocks of the Complejo Esquisto
Grauvaquico. Mineralization is mostly confined to the contact aureole. Most abundant are
small, uneconomic, vein deposits, with tungsten, lead, copper, zinc and occasionally
uranium or gold. The only deposit of potential economic significance is the Los Santos
tungsten skarn.

The Los Santos (1.5 million tonnes, 0.79% WO3) garnet-pyroxene-scheelite skarn is
formed by replacement of Cambrian limestones. The location of the skarn coincides with
the area where the contact aureole reaches its widest horizontal extent, as shown in

Fig. 7.7. The adjacent granitic intrusion, part of the Hercynian Central System Batholith,
is strongly zoned, ranging from biotite-bearing granodiorites in its core to muscovite and
cordierite-bearing monzogranites and aplites at its margin near the Los Santos deposit
(Goossens, 1992). A map with the batholith zoning is in Fig. 7.7. The main geochemical
variations within the intrusion can be explained with in situ fractional crystallization of
the batholith, with gradual segregation of intercumulus melt causing the regional zoning.

During differentiation, the melt became progressively more peraluminous, reducing and
becoming enriched in volatiles. The position of the skarn, adjacent to the most
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FIG. 7.7. A geological and mineral deposit map of the study area.

fractionated part of the intrusion, suggests that such mineralization is not only genetically
related to the magmatic fractionation process, but additionally, it is to be expected in
vicinity of the more felsic end members of a fractionation sequence. Local contamination
processes have interfered with fractionation, obscuring the diagnostic trace elements, in
particular those for Ba and Sr. Enhanced Ba and Sr levels, and depletion of Rb in the
monzogranites adjacent to the Los Santos deposit, in combination with systematic Rb and
Cs enrichment in the adjacent contact metamorphic rocks, suggest exchange of magmatic
fluid. This exchange of fluids probably played a role during the formation of the skarn
deposit.

7.2.3. Recognition of diagnostic features in TM and airborne geophysical data sets

Mineralization is often accompanied by anomalies which, although sharing some general
characteristics, are highly diverse, and typical only for individual mineral deposits, as
illustrated by the large amount of work , published on mineral deposits. Therefore it is
more efficient to search for features, diagnostic for the setting of the type of
mineralization that one is looking for, in particular in a situation like the one in the Los
Santos area, where clear surface anomalies, such as gossans, are either absent, or were
developed at such a small scale that remote detection is out of the question.

The main diagnostic feature that all mineralization in this area has in common, is the
contact metamorphic setting. Interpretation of remote sensing data is therefore specifically
directed towards the recognition of surface and subsurface expressions of contact
metamorphism.
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Spectral classification of soils overlying the contact metamorphic rocks, using

TM-band ratios

A significant correlation has been found between the degree of contact metamorphism and

related features (mineralogical composition, volatile content, Fe* */Fe,,, ratio) of the

rocks, and the chemical and mineralogical composition of the overlying soils (Goossens

and Kroonenberg in press). From the exocontact towards the granite intrusion the

proportions of kaolinite, illite and free iron (mostly present as goethite) in soils increase,
while the proportions of chlorite and smectite decrease. Laboratory reflectance spectra of
soil samples demonstrate that with the increase of the proportion of kaolinite, illite and

free iron and the decrease of chlorite, the ratios of band2/band 3, band2/band5 and
band2/band7 decrease while ratios of band3/band4, band4/band7 and band5/band?
increase. Those trends are shown in Fig. 7.8.

In the TM image, pixels that correspond with kaolinite- and goethite-rich soils are

identified by elimination of other pixels during a process of stepwise masking various
band ratio images. The argumentation for the pixel elimination is a follows:

(1) It is well known that the presence of dry and green plant material strongly affect the

spectral signal. It was, in addition, found that reflectance is also significantly

affected if more than 1.5% organic carbon is present. The first step therefore was to
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FIG. 7.8. Variation of (laboratory derived) band ratios as a function of the free iron
content (degree of weathering) in soils. Open symbols: kaolinite/chlorite > 2. Closed
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eliminate the effect of vegetation and organic material. The laboratory measurements
yielded systematically higher ratios of [(TM5/TM 7)/(TM3/TM4)] for soils with
more than 1.5% organic carbon, compared to those with less carbon. Therefore,
resetting all pixels with high values of the ratio of [(TM5/TM7)/(TM3/TM4)] to
zero, removes pixels that possibly correspond with soils rich in some sort of organic
matter.

(2) It was found that an increasing amount of kaolinite, with simultaneously decreasing
of chlorite amount in soils, was reflected in a decrease in the TM2/TM7 ratio. By
resetting pixels (remaining after the previous step) with high values for this ratio,
pixels that corresponded with chlorite-rich soils were removed from the image,
leaving us with the most kaolinite-rich locations.

(3) Higher goethite contents in soils are reflected by higher values for the ratio of
TM3/TM4. By resetting all (remaining) pixels with relatively low values for this
ratio to zero, we were left with the pixels that have spectral properties most typical
for soil material covering the contact aureole.

(4) Finally, a maximum likelihood classification was performed on original band ratio
images, using the result of the masking as training set, in order to optimize the
classification results.

Detection of diagnostic textural differences: Land use

Fieldwork has revealed that contact metamorphic rocks (hornfelses, spotted slates) were
much more sensitive to weathering than regional metamorphic rocks (chlorite schists,
garnet bearing biotite schists) of the Complejo Esquisto Grauvaquico or granites. As a
result, soils overlying contact metamorphic rocks are, in this region, generally better and
deeper developed, than those overlying other rocks. These properties are in turn reflected
in a more diverse and intense land use within the contact aureole, compared to the
remaining areas, resulting in a strong contrast in textural variability in the TM images. It
was found that a very adequate way to map this contrast in textural variability of land
use, was to pass a diversity filter over a single-band image. A diversity filter replaces the
central pixel in a kernel by the total amount of different digital numbers in the kernel.
Depending on the size of the kernel the diversity can range between 1 and 255.

Classification of radiometric and magnetic data

Systematic whole rock sampling has revealed diagnostic differences in radioelement
(potassium, thorium and uranium) content for the different granite types and sedimentary
rocks. Within the granite intrusion, radioelement content decreases with increasing degree
of fractionation of the zoned intrusion. Compared to the granitic rocks, the
metasedimentary rocks have low radioelement contents. Therefore, supervised
classification of airborne radiometric thorium, uranium, and potassium images permitted
adequate mapping of the different granite types and of the sedimentary

rocks, which in turn enabled mapping of potentially contact metamorphic rocks.

The magnetic expression of the contact metamorphic rocks is different compared to that
of the regional metamorphic sediments. Systematic whole rock analysis of metasediment
samples, collected on traverses perpendicular to the intrusive contact (see Fig. 7.7), has
demonstrated an increasing ratio of Fe**/Fe,,,, with increasing degree of contact
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metamorphism. This changing ratio reflects reduction of Fe*** due during heating and
recrystallization (Goossens, 1993), which in turn has led to a resetting of the remanent
magnetism of the sedimentary rocks. This particular feature enables detection of regional
metamorphic rocks that underwent contact metamorphic heating, using airborne magnetic
data.

7.2.4. Analysis and integration of remotely sensed data

The clear relation between geology and the signal derived from remote sensing sources,
as described above, suggests that it is rather simple to predict the position of possibly
mineralized zones using only remote sensing data. However, this is not quite so, as
illustrated by the common experience that the results of remote sensing analysis and data
integration in mineral exploration may often be disappointing. A number of important
reasons for this fact are identified:

(1) The basic relations between geology and the original data are often obscured by
complex data manipulation, which obstructs the understanding of the final output.

(2) The risk of removing potentially important information during the interpretation of
the data is considerable, and difficult to control.

(3) The decision criteria with respect to the correctness of classification and
interpretation are often arbitrary and hard to describe in a quantitative manner.

(4) Error and quality assessment is often subjective, and therefore not reproducible
under different circumstances.

No tailor-made solution can be presented for these problems, as this varies with each
particular situation, and depends on the nature of a specific data set. Nevertheless a
number of rules of thumb can be given, that enable careful and systematic processing of
the data, so that a major part of these problems can be avoided.

This topic is a very important part of the study case, as a good understanding and feeling
for the way the interpreted data should be handled, forms the backbone of a reliable
result. However, it is not possible to discuss this matter adequately within a few lines of
text. We therefore will briefly discuss this subject here, and deal with it very extensively
in the practical part, allowing to experiment with the data, in order to become familiar
with these very important concepts of data processing.

Concerning the first problem, it is important that the link between data, the interpretation
and the geology is kept as direct as possible, and soundly based on the experiences
obtained in the field. The data manipulation should be very straightforward and aimed at
the recognition of specific features that are known to be diagnostic for the setting in
which the mineralization is likely to occur. For example, the identified relation between
metamorphic grade, soil composition and spectral signature is a feature that can be used
for the detection of soils overlying contact metamorphic rocks, with a minimum of
statistical or other kind of complicated data manipulation.

The second problem is perhaps the most difficult to deal with, in particular when a large,

poorly documented area is investigated, as each step in the data processing, e.g.,
masking, filtering and classification, automatically implies loss of information. The

155



potential damage can be controlled by quantitatively describing each step, so that every
manipulation is reproducible. If, in the course of the investigation it turns out that
relevant data may have been lost, the steps can be repeated with modified parameters, and
the results can still be compared.

With respect to the third problem it is important that the nature of the neighbourhood of a
certain classified pixel is involved in the decision whether the classification is correct. For
example, in the case of mapping ‘kaolinite rich’ pixels, typical for soils overlying contact
rocks, using a TM image, one might want to use the concentration of classified

pixels in a certain area as a criterion. For instance, we can apply the rule: "if a classified
pixel is located close to many other similarly classified pixels, it is more likely to be
correctly classified than a classified pixel that is far away form similar ones." This is
illustrated in Figs 7.9 (a), (b). The binary image in Fig. 7.9 (a) shows the locations of
pixels classified as ‘kaolinite’ using the TM image. In order to decide which of these
pixels are correctly classified, and which ones are not, we passed a 5 X 5 rank order
over the binary image, using a threshold of 17. The way such a rank order filter works is
illustrated in Fig. 7.11.

The kernel, shown in Fig. 7.11 (a), covers a 5 X 5 grey-scale pixel neighbourhood, with
values between 1 and 25. When ranked from low to high, the 17th value in this range of
numbers is seventeen, and therefore the central value (16) will be replaced by 17. In the
case of a binary image however, like for the classified image shown in Fig. 7.9 (a), the
threshold determines the size of the removed clusters. Using a 5 X 5 kernel and a

Binary map of pixels
q fblack) in TM-image
~~  classified as soils
overlying contact
metamorphic rocks . a

FIG. 7.9. Binary maps of pixels classified as soils overlying metamorphic contact (a) and
(b), and contour map of pixels classified as ‘kaolinite’ (c).

156



Classified TM image after
filtering with a 5*5 rank-order filter,
using a threshold of 17

bt -

Py ey
g
£ho

Wby

40040009
B0
550

%

FIG. 7.9. (cont.)

Concentration
of "Kaolinite pixels"
in a 50 by 50 pixel
neighbourhood

157



Mahalanobis
classification of
airborne radiometric
data

’:I Unclassified

[:] Metasediments

[ Granite 1

Mahalanobis
classification of
airborne radiometric
data, followed by
median filtering using
a 127 by 127 kernel

FIG. 7.10. Rock classification on the basis of airborne uranium, thorium and potassium in
the study area. (a) using a Mahalanobis classifier, and (b) the classified image after
median filtering using a 127 X 127 kernel.

threshold of 17 (see Fig. 7.11 (b)), a central ‘binary 1’ will be replaced by a central
‘binary O’ if there are less than 8 ‘binaray 1s’. Consequently, classified pixels will be

removed if a cluster consists of less than eight binary ones.

In the case of rock classification based on radiometric data, the size of a classified surface
can be a valuable criterion. The larger the size of a homogeneously classified area, the
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FIG. 7.11. Demonstration of the effect of a 5 X 5 rank order filter, using a threshold of
17. (a) for a grey scale image; (b) for a binary image.

greater is the chance that the classification is correct. This is exemplified in Fig. 7.10. In
the classified radiometric image in Fig. 7.10 (a), it is likely that misclassification
occurred, as small parts of the sedimentary terrain are classified as granite and vice versa.
Possibly misclassified areas have been detected and corrected for by passing a 127 X 127
median filter over the image, as shown in Fig. 7.10 (b). A median filter replaces the
central value in a kernel by the median of all values in the kernel. When the size of the
filter is small, only small areas will be replaced by the value of the surrounding class.
Increasing the size of the filter has the effect that larger areas will be regarded as
misclassified. In the case of a 127 by 127 kernel, clusters smaller than 8065 pixels will be
replaced.

In order to deal with the fourth problem, weights have been assigned to the degrees of
uncertainty within an interpretation. For example, the pixels classified as ‘kaolinitic’ are
not unique for the contact aureole (see Fig. 7.9 (b)), as they also occur elsewhere.
However, their concentration is much larger inside of the contact aureole than outside. By
contouring the classified image, a map is obtained that gives the concentration of pixels
per surface unit. The range in concentrations was divided into three classes, as shown in
Fig. 7.9 (c), and weights were assigned to each of the classes. As high concentrations are
most typical for the contact aureole, the highest weights were given to these classes.
Similarly, low weights are given to lower classes, as these are more typical for the area
outside of the contact aureole. The actual weights that are assigned can be determined in
various ways (Goossens 1992, Goossens, in press).

Subsequent integration of the interpreted and weighed data into a final map that expresses
for each location the probability that mineralization will be present, is a very important
step, because the result is that pixels, that were misclassified in one data set (for whatever
reason), will not be confirmed by other data. They will therefore end with low
probabilities in the final map. On the other hand, pixels that are most reliably classified
will be highlighted, as they are confirmed by the multiple data sets.
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7.3. GOLD PREDICTION IN NORTHEAST FINLAND

V. Kuosmanen
Geological Survey of Finland

7.3.1. Introduction

This case history describes a study of integration of Landsat TM. imagery, NIR aerovideo
and aerogeophysical data for selection of gold prospecting targets in the Kuusamo area in
NE Finland, as shown in Fig. 7.12. Part of this study was published in the IGARSS 91
meeting (Kuosmanen et al. 1991).

Gold occurs in a wide variety of geological formations, from sedimentary to

volcanogenic. This requires that the prediction and exploration methods be quite diverse.
This study outlines one possible way of integrating Landsat imagery with NIR aerovideo
and with low-altitude geophysical measurements for pinpointing gold exploration targets.

In general, the methods used for Au exploration are anomaly-oriented. Geological,
geochemical, geophysical or remote sensing anomalies which may indicate favourability
for gold are mainly studied using single anomalies (Zeegers and Leduc 1991, Paterson
and Hallof 1991, Coker and Shilts 1991). In the current study, interactive digital image
processing was used for the integration of the geoscience data.

7.3.2. A review of the geology of the Kuusamo greenstone belt

The early Proterozoic Kuusamo volcano-sedimentary belt is part of a greenstone belt
association extending from the Norwegian Sea to Lake Onega in Russia (see Fig. 7.12).
Seventy percent of the belt is composed of sedimentary rocks with the remainder being
mostly mafic volcanites, all unconformably overlying the Archean basement. Layered
gabbro complexes and possible related volcanics have been dated as the oldest post-
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FIG. 7.12. Location of the Kuusamo area and greenstone belt association modified after
Pankka and Vanhanen (1989).
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Archean formation of the region, i.e. 2.44 Ga (Alapieti 1981). The western part of the
belt was disrupted by granitoid intrusion during the Svecofennian Orogeny at about 19 Ga
(Pankka and Vanhanen 1989).

An overview of the lithostratigraphy (Silvennoinen 1972, Pankka and Vanhanen 1989) of
the Kuusamo area is shown in Fig. 7.13. The lowermost stratigraphic unit, Greenstone
Formation I consists of mafic continental volcanic rocks. The Sericite Quartzite
Formation overlies these volcanics. Most of the known Au bearing occurrences are in
antiformal structures within the Sericite Quartzite. The Greenstone Formation II, a
discontinuous, subaqueous basaltic flow, interrupts the sedimentary sequence. It is
overlain by the Siltstone Formation. Concordant differentiated albite diabase sills and
dykes are numerous and were intruded into undeformed, and in part, unconsolidated,
sediments. Syenitic sills and dykes have also intruded the sedimentary units. The regional
metamorphic grade in Kuusamo varies from lower to upper greenschist and amphibolite
facies (Pankka and Vanhanen 1989).

7.3.3. Occurrence of gold

The occurrence of gold is related to the antiformal structure of the Sericite Quartzite
Formation and to its hydrothermally altered parts, which are often form stockworks.
About thirty such occurrences are known in the Kuusamo greenstone belt, of which
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FIG. 7.13. Lithostratigraphic map of the central part of the Kuusamo volcano-sedimentary
belt and the main ore deposits. Modified after Pankka and Vanhanen (1989). Juomasuo
and Konttiaho are the largest Au minerali-zations in the area. The 10 km X 10 km solid
line square indicates an area of displayed data (see Fig. 7.20). The dashed line rectangle
indicates the area of predicted targets (see Fig. 7.20).
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twenty are gold bearing. The average gold content in individual deposits varies from 0.5
to 10 ppm. The alteration zones are characterized by albite, carbonates, chlorite, quartz
and sericite, and sulphide and U minerals. The gold mineralizations appear to be
controlled by two fault systems. NE-SW trending axial rift faults control the antiform
structures in the middle part of the belt (Fig. 7.13) and NW-SE faults control the location
of mineral occurrences. The gold mineralization is epigenetic and early Proterozoic and
appears to precede the peak metamorphism (Pankka and Vanhanen, 1989).

7.3.4. Data and strategy for the current study

This study is based mainly on airborne survey geophysical data, satellite imagery, NIR
aeroimaging (Hame and Rantasuo, 1989) and field observations of gold occurrences. The
strategy for the prediction is shown in Fig. 7.14.

The sites of 26 known Au-bearing mineralizations were NIR videoimaged (Héme and
Rantasuo, 1989) from an altitude of 500-600 m. Flourishing vegetation possibly due to
the fertilizing effect of carbonates could be perceived in proximity to some gold
occurrences. These areas of flourishing vegetation were delineated and used as training
data areas for the interpretation of Landsat infrared channels 4, 5 and 7.

TRAINING DATA REMOTE SENSING AND TARGETS
GEOPHYSICAL DATA

Landsat TM data; ~ Flourishing
NIR-Aerovideo channel 4 \B) vegetation
data channel 5
channe] 7
+
M-EM data: Sulphides
Mineralization Magnetic anomaly |——(P)}——s} in
data EM-in-phase stockworks
EM-out-phase
+
Gamma data: Radioactive
U-radiation (P) minerals
K-radiation ~ from
Th-radiation stockworks
in glacial
drift cover

Integration modelling

FINAL TARGETS

FIG. 7.14. Strategy flow chart for the prediction for gold using several data sets. P refers
to processing.
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The geophysical survey was made from an aircraft at an altitude of 30-50 m. Separation
of the flight lines was 200 m and the sampling interval 12.5-50 m. Gamma-radiation U,
Th, K [ppm], magnetic anomaly [nT], and Slingram electromagnetic in-phase [ppm] and
out-of-phase [ppm] measurements were registered. Later in this text the magnetic and
electromagnetic variables are called M-EM data and the radiometric K, U and Th
variables are called gamma data.

7.3.5. Processing and integration

The Landsat TM images channels 4, 5 and 7 were geometrically corrected using bilinear
interpolation to geographical map coordinates, as shown in Fig. 7.15. The
aerogeophysical data were amplitude corrected along flight lines and linearly interpolated
into regular 50 X 50 m? grid (see Fig. 7.15). These maps were then mosaicked and
warped to form three 3-channel pixel images:

The indications of a gold bearing alteration pipe do not occupy the same geographical
location: magnetic and electromagnetic anomalies mainly follow the distribution of
sulphides in bedrock, as shown in Fig. 7.16, whereas gamma anomalies follow
radioactive material glacially drifted from the pipe and mixed with glacial till, as shown
in Fig. 7.17 (Plate 14). The vegetation anomalies are influenced by water-controlled
dilution and precipitation patterns of carbonate, as seen in Fig. 7.16.

The corrected TM data (channels 4, 5 and 7) were used as the first group of features
because of their correlation with the vegetation cover. M-EM data indicate the distribution
of sulphides in the bedrock. Therefore these (corrected) M-EM variables were selected as
the second group of features. The gamma data was used in the form of ratios U/K, U/Th
and K/Th as the third group of features. These ratios were used because surface water
effectively dampens gamma radiation but does not change the ratios. Processing for each
group was done separately as it is indicated in the strategy flow chart shown in Fig. 7.14.

The 3-dimensional Landsat TM feature space is reviewed from direction (1, 1, 1) in
Fig. 7.17 (Plate 14). The training data points in the centre of the picture represent
Landsat TM pixels pinpointed by NIR-videoimaged areas of flourishing vegetation near
the gold occurrences. Analogous sites, shown in Fig. 7.20 (Plate 16), for the vegetation
were obtained by Nearest Neighbour classification of the Landsat TM data.

The 3-D feature space of the M-EM data was rotated into a direction where maximal
separation of the training data points from all other M-EM observations could be seen, as
shown in Fig. 7.18 (Plate 14).

The nearest neighbour areas from the most significant gold occurrences are indicated by
the green spheres. The training data are indicated by coloured points, as shown in Fig.
7.18 (Plate 14). The directions of the rotated axes are as follows: MAGN = magnetic
anomaly, RE = electromagnetic in-phase anomaly, IM = electromagnetic out-of-phase
anomaly. Analogous sites (see Fig. 7.20, Plate 16) for gold occurrences after M-EM
features were obtained also by Nearest Neighbour Classification. As was mentioned
earlier, it was necessary to study ratios of gamma-variables because of the damping effect
of water on the surface on the ground. The ratios U/Th, U/K and K/Th were first
calculated and visualized. Therefore the classification of these features was made after
ray-projecting all points of U, Th and X observations onto a plane perpendicular to the
vector (1,1,1) i.e. plane U + Th + K = constant. The classification of the projected
points (U/Th/K ratios) was carried out by Box Classification on that plane (Arkimaa
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1992), as shown in Fig. 7.19 (Plate 15). The classification results of the gamma data are
shown in Fig. 7.20 (Plate 16).

A simple integration of the classification results (targets) obtained (see Fig. 7.20) was
carried out: Those areas where all analogies occur near (<500 m) to each other within
sericite quartzite, were given the highest priority for field exploration.

7.3.6. Concluding remarks

Applicability of the predicted targets to mineral exploration seems to be relevant,
especially, if the prediction models are delineated through visualizing the feature spaces

FIG. 7.15. Examples of the preprocessed remote sensing and aero-geophysical data from
the 10 X 10 km® area indicated in the lithostratigraphic map in Fig. 7.13. (a) Landsat
TM channel 4, (b) TM channel 5, (c) TM channel 7, (d) potassium, (e} uranium, (f)

thorium radiation, (g) magnetic anomalies, (h) electromagnetic in-phase anomalies, and
(i) eectromagnetic out-of-phase anomalies.
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FIG. 7.16. Various indications of a gold bearing alteration pipe stockwork. Notice that
the different indications do not occupy the same geographical location.

of the remote sensed variables. This ensures that the tailored model is concise enough to
produce a minimum number of checkable pixels. However, the results are always affected
by noise and erroneous signals.

Consequently, the resulting targets occur partly in rows and clusters. This corroborates
the former idea of fracture control of gold occurrences (Kuosmanen et al. 1991). So far
about 20 targets have been checked in the field. This resulted in finding two barren
alteration deposits and two gold bearing mineralizations.
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8. FUTURE TRENDS IN SPATIAL DATA PROCESSING

This handbook discusses various topics in the analysis of spatially distributed data giving
special emphasis to mineral exploration. This chapter discusses likely future developments
affecting geographical information systems. Table 8.1 lists the critical areas of
development in spatial data processing.

TABLE 8.1. ACTIVE RESEARCH AREAS IN SPATIAL DATA PROCESSING

L A e

o

Data acquisition, availability and transfer.
Data quality, representation and management.
Man-machine interaction, including visualization.

Data modelling, information integration, and decision support tools, including map
generalization.

Spatial statistics and inference.
Training methods and tools, technology transfer.

New applications to resources, hazards and environments.

168

The field of data acquisition will see extensive usage of geo-positioning systems or
GPSs, to assign accurate spatial characterization to critical point observations. Low-
cost scanners for document interpretation and storage are now available. New more
specialized and powerfully designed sensors will be available for resource or disaster
monitoring, while public and private archives will be providing basic cartographic
data in standard formats on CD-ROMs and CD-Rs (Byte, 1993a) and through
communication networks. Local area networks, LANs, and wide area networks,
WANS, will enable sharing of databanks and of software.

Structured approaches to data collection will be developed where observations,
measures of uncertainty, and interpretations will be clearly identified for multiple use
of the data. Portable data management systems will be able to promptly accept the
input of GPS and to provide descriptions of the positional accuracy of the inputs.
New mass storage media on low-cost storage devices will be available to handle
large hybrid databases with spatial data and non-spatial attributes, and integrated
systems (Heley, 1991).

Interactive graphic user interfaces, GUIs, and discipline adaptable processing
environments will make computers more widely used in the geosciences. Particular
progress is now being made in three dimensional colour visualization and in 3-D
GISs (Byte, 1993b; Buttenfield and Mackaness, 1991; Raper, 1989; Raper and Kelk,
1991; Pflug and Harbaugh, 1992; Turner, 1992; Sides, 1992). Visual computer
languages, adaptable to different processing algebras, are now available for spatially
distributed data (see the new Journal of Visual Languages and Computing, published
since the year 1990; Treu, 1990; Egenhofer, 1990; Glinert et al., 1990; Myers,
1990; Batini et al., 1991).



4. Object-oriented programming (where objects are entities with attributes, relations and
rules, including recursivity) and object-oriented databases, OOP and OODB, expert
systems, decision support tools and the formalization of image processing strategies
will enable to study more complex spatial relationships, e.g., in cartographic
generalization (Buttenfield and McMaster, 1991; Muller, 1991), error propagation
monitoring, image understanding, and information integration or data fusion
(Burrough, 1991; Smith et al., 1987; Usery et al., 1988a, b, and Cress and Deister,
1990; Fedra et al., 1991; Albert, 1988; Smith and Yiang, 1991; Frank and
Hegenhofer, 1992; Herring, 1992).

5. Spatial statistics and inference will lead to a better understanding of spatial processes
and to the formulation of spatial predictive models (Ripley, 1991; Cressie, 1991;
NRC, 1991).

6. Advanced training methods will be using on-screen hypermedia tools, mixing
dialogue, iconics and image displays. Specialized applied training initiatives and
institutes will facilitate worldwide technology transfer through international initiatives
in research and development (Simard 1992a,b,; Geoscope, 1992; Fedra et al., 1991).

7. More GIS case studies will become available in the fields of renewable and non-
renewable resources, natural and man-induced hazard, global and local environments
(IDRISI, 1992; Fabbri et al., 1991; Schetselaar et al., 1990; van Westen, 1993;
Schetselaar, et al, 1993).

Applications to mineral potential mapping (Singh et al., 1993), to data integration (Chung
and Fabbri, 1993) and to environmental management (Fedra et al., 1991; Guttorp, 1991a,
b) will lead to much more comprehensive approaches in the use of applied spatial
statistics and decision systems.

Future challenges, however, will still remain in the area of image understanding and in
our ability to express problems in computational form.
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PLATE 1

FIG. 3 6. IHS display of an airborne radiometric image combined with a radar image for the
Marathon area on the north shore of Lake Superior. The circular yellow feature s the Coldwell
alkaline intrusive complex. (By courtesy of D. Graham, Canada Centre for Remote Sensing.)
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PLATE 2

Willison Bay

FIG. 3.10. Geological map ‘draped’ over wire frame perspective image. This is an effective
way to visualize the relationship between two different images. (By courtesy of A. Rencz,
Geological Survey of Canada.)
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PLATE 3

FIG 4.8 Grey level morphological filtering of the image of aeromagnetic anomaly over
Bathurst Inlet, Northwest Territories, Canada. (a) Subimage of 800 pixels by 600 lines,with
resolution of 100 m per pixel (b) Erosion by a circular structuring element of diameter of
9 pixels (munumum within the kernel) (c) Opening of the image in (a) by dilatation of the image
in (b) by the same structuring element (maximum following a minimum within the kernel)

(d) The stretched image of the subtraction of the opened image in (c) from the original unage
in (a)
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PLATE 4

FIG. 4.9. Further processing of the aeromagnetic anomaly image in Fig. 4.8. (a) The top-hat
transformation of the image in Fig. 4.8 (a), computed by thresholding the opened image in Fig.
4.8 (d) for pixel values equal or greater than 2. (b) Overlay of the image of digitized dikes
(white), faults (red) and mineral occurrences (coloured squares) from a published geological
map. (c) The top-hat transformation of the image in Fig. 4.8 (a) using a vertical linear struc-
turing element of length 7 pixels. (d) Overlay of the digitized structural and occurrence data
with the image in (c) after opening it by a horizontal linear structuring element of length 9
pixels (colours are the same as in (b)).
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PLATE 5

FIG. 4.13. Additive colour composite of airborne survey gamma radiation data. (a) Original

K, U and Th. (b) Principal components of PC 1, PC 2 and PC 3 in red, green and blue, respec-
tively.
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FIG. 5.8. Geological map showing the locations of 35 gold deposits. The Goldenville and
Halifax Formations are lower Paleozoic turbidites. The gold occurs in quartz veins, often asso-
ciated with arsenopyrite and stibnite. In this area the deposits are all in the Goldenville, but
further west some occurrences are in the Halifax Formation. The sediments are folded with

PLATE 6
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FIG. 5.9. Airborne radiometric map, interpolated from flight line data. The Devonian granites
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PLATE 7

Biogeochemistry
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FIG. 5.10. Biogeochemical map showing the mapped levels of As from about 500 samples of
Balsam Fir twigs. The original point values have been interpolated on to a raster image and
are represented on a percentile scale. Arsenic is an important pathfinder element for Au in this
area, and regional biogeochemical maps have been used for Au exploration.
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FIG. 5.11. Lake sediment geochemical map. Each lake sediment sample is represented by a
catchment area. The map was produced by assigning the As value for each sample to the cor-
responding catchment basin, then classifying the data into percentile levels.
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PLATE §
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FIG. 5.12. Proximity to contact between Goldenville and Halifax Formations. Some research
has suggested that this contact is significant in the localization of gold deposits. The map was
produced by extracting the specific contact from a vector file of the geological map, followed
by successive dilation or buffering to produce a raster proximity map.
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FIG. 5.13. Proximity to the surface traces of anticlinal axes. Many of the gold deposits occur
close to fold axes. The map was made by table digitizing the axes from a published map, then
successively dilating the lines and producing a raster map of anticline proximity.
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PLATE 9

Gold Potential
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FIG. 5.14. Gold potential derived by combining six binary input maps with weights of evi-
dence. The reclassification of multi-class to 2-class maps, and the calculated weights are
shown in Table 5.5. The classification of the potential map is made on the basis of area per-
centiles, making comparison with the results from logistic regression to be discussed later

more straightforward.
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FIG. 5.15. Fuzzy membership for gold, derived by using the fuzzy gamma operator to combine

six multi-class input maps.
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PLATE 10

Gold Potential
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FIG. 5.16. Gold potential estimated by logistic regression on the same six binary maps used
for the weights of evidence prediction.
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FIG. 5.17. Comparison of the results determined by weights of evidence and logistic regres-
sion. The numbers in the legend are the logistic regression classes minus the weights of evi-
dence classes. The majority of the area is within * I class.
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PLATE 11

FIG 73 Two colour composite of the Landsat TM 1mage of the study area (a) using TM
bands 7, 4 and 3 for red, green and blue, respectively, the three bands have a relatively low
pairwise correlation (b) using TM bands 3,2 and 1, with a high pairwise cot relation

187



PLATE 12

FIG. 7 4. Ancillary images over the study area: (a) panchromatic SPOT; (b) a scanned aerial
photograph.
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PLATE 13

FIG 75 The digital elevation image obtained from a 1 25 000 topographic map

FIG 76 Part of the geological map (a), registered with the detailed aeromagnetic image
i (b)
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PLATE 14

FIG. 7.17. Landsat TM (4-5-7) feature space with the training data points in the centre.

FIG. 7.18. Feature space of M-EM data (for explanations see Section 7.3.5).
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PLATE 15

U+Th+K = C

v

FIG. 7.19. (a) Two-dimensional feature space of Th and K; (b) ray-projection of the observa-
tions onto a plane where the classification is carried out.
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PLATE 16

FIG. 7.20. Analogous sites for gold occurrences on the hill-shaded magnetic map: green =
results from classification of Landsat TM features, 1.e. vegetation analogies; blue = results
from classification of M-EM features, i.e. magnetic and conductivity analogies; red = results
from classification of gamma features, i.e. radioactivity analogies. Location of this map is
shown in Fig. 7.13. Width of the area is about 20 km.
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