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Chapter 1

INTRODUCTION

Part F of the Safeguards Technical Manual is being issued in three volumes.
Volume 1 was published in 1977 and revised slightly in 1979. Volume 1 discusses
basic probability concepts, statistical inference, models and measurement errors,
estimation of measurement variances, and calibration. These topics of general
interest in a number of application areas, are presented with examples drawn from
nuclear materials safeguards. The final two chapters in Volume 1 deal with problem
areas unique to safeguards: calculating the variance of MUF and of D respectively.

Volume 2 continues where Volume 1 left off with a presentation of topics
of specific interest to Agency safeguards. These topics include inspection
planning from a design and effectiveness evaluation viewpoint, on-facility site
inspection activities, variables data analysis as applied to inspection data,
preparation of inspection reports with respect to statistical aspects of the
inspection, and the distribution of inspection samples to more than one analytical
Taboratory.

Volumes 1 and 2 are written in a simplified mode with Tittle provided in the
way of statistical bases for the computational procedures set forth in somewhat
of a cookbook manner. The volumes indicate how to deal with specific problems
with step-by-step computational procedures, but create little understanding of the
procedures themselves, their attendant assumptions and possible Timitations in
applications. Further, the volumes are characterized by a Tack of cohesiveness
or unity of purpose, consisting of a number of rather isolated procedures with
Tittle in the way of a unified development of the statistical applications to
Agency safeguards.

Because of these shortcomings in Volumes 1 and 2, the need for preparation
of a Volume 3 was identified. Volume 3 covers generally the same material as
Volumes 1 and 2 but with much greater unity and cohesiveness. Further, the cook-
book style of the previous two volumes has been replaced by one that makes use of
equations and formulas as opposed to computational steps, and that also provides
the bases for the statistical procedures discussed. Hopefully, this will help
minimize the frequency of misapplications of the techniques.

Volume 3 stands alone in the sense that Volumes 1 and 2 need not be read
before Volume 3; many examples are common to the volumes but are worked from a dif-
ferent perspective. Having studied Volumes 1 and 2 prior to Volume 3, however,
may be helpful in reaching & quicker understanding of the Volume 3 material. Further,
a greater appreciation for the material in the first two volumes should follow from
studying Volume 3 which is intended to provide the motivation for the statistical
procedures covered in the two volumes. Volume 3, of course, also contains more
recently developed statistical techniques not present in the earlier volumes.

The 13 chapters of Volumes 1 and 2 have been rearranged and replaced by
four chapters in this Volume, identified as Chapters 2-5, Chapter 2 discusses

1-1
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measurement errors in considerable detail (the table of contents is given at the
start of each chapter). Chapter 3 is concerned with all aspects of error propaga-
tion as it relates to safeguards. Chapters 4 and 5 deal with Agency inspections,
first from the design viewpoint, and then with respect to their implementation.
The final chapter, Chapter 6, identifies and discusses current developments in

the statistical aspects of safeguards, in anticipation of the need to revise
Volume 3 periodically to keep the material contained therein current.

Volumes 1 and 2 each contain a glossary of terms. This glossary is omitted
in Volume 3 because of the rather exhaustive discussion of measurement errors in
Chapter 2. This lengthy discussion effectively replaces the glossary which must
be viewed as a limited attempt to summarize a lot of ideas about measurement errors
with a few definitions; which is difficult to do effectively. Hence, the need for
the full discussion of these ideas in Chapter 2.

Volumes 1 and 2 are somewhat deficient in the completeness of their biblio-
graphies. In Volume 3, a more complete bibliography is included. However, only
those works actually cited in Volume 3 are listed in the bibliography. This
should not detract from ones ability to perform additional background research
in a given topic, however, since the cited articles themselves often contain cross
references to other relevant work. Further, in safeguards applications, one can
locate most articles of interest in a limited number of places. These include pri-
marily the Institute of Nuclear Materials Management (INMM) Journals and Annual
Meeting Proceedings, IAEA Conference Proceedings and related Agency reports, and
Proceedings of the recently instituted meetings of the European Safeguards Research
and Development Association (ESARDA). Further, in the INMM journals, complete list-
ings are often given of available publications issued at a given facility. Thus,
it is a simple matter to locate most articles pertinent to a given topic.

1-2
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Chapter 2

MEASUREMENT ERRORS

2.1 DEFINITION OF ERRORS

Material balance accounting is an integral part of Agency safeguards.
It relies heavily on measured data, which are subject to error. The inferences
that are drawn on the basis of accounting data are, as a result, drawn in the
presence of errors, and are hence stated in the language of statistics.

This chapter, Chapter 2 of Volume 3, Part F, is concerned with measure-
ment errors, including error sources, error models, kinds of errors, effects
of errors, and estimation of errors. Later chapters deal with the effects of
errors in drawing inferences on facility performance, based both on the facility's
accounting data, and also on the inspection data.

As a starting point in the discussion, it is important to define what
is meant by the word, error.

ANSI Standard N15.5[2.1] provides the following definition:

Error of a Measurement--The magnitude and the sign of the difference
between the measured value and the true value.

This definition is an attractive one in the context of this Volume since
it speaks of a measured value as opposed to a reported or recorded value. The
important distinction is that the measured value is the value that would apply
to the measurement in question were there no mistakes in recording or reporting
the value. The basic assumption behind drawing inferences on the basis of
accounting data is that the data are free of mistakes, or defects as they will
be called in later chapters. Steps are taken to provide some degree of assur-
ance that this is, in fact, a reasonable assumption. However, whatever may be
the concern on the presence of such defects in the data, it is important to
keep in mind that the inferences to be drawn on the basis of the measured, quan-
titative data are based on the definition of an error of measurement given here.

By a simple extension of the definition, a mistake may be said to have
occurred if a reported value differs by any amount from a measured value. A
synonym for a measured value is an observed value, and these two expressions
will be used interchangeably throughout this volume.

2.2 SOURCES OF ERROR

The definition of error given in Section 2.1 is a bit simplistic in that
it implies a very simple error structure. In fact, most errors of measurement
are not simply structured, and a given error of measurement often represents the
combined net effect of many errors.

1]
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In this section, a discussion is given of the various sources of error
that might affect a given measurement. The narrative discussion of this section
is followed by a parallel mathematical model presentation in later sections.

2.2.1 Statistical Sampling Error

Consider a population of individual items, each of which has a true value
of some specified characteristic associated with it. If one of these items is
selected in some random fashion, then the true value associated with that item
will differ from some nominal or base true value (e.g., the average of all true
values over all population items) by some amount. Define a statistical sampling
error as the difference: true value for randomly selected item minus base true
value.

In many Agency safeguards applications, statistical sampling error need
not be included when making inferences. This is because: (1) the facility it-
self will measure 100% of the items involved in the material balance; and (2) the
inspection data are analyzed as by-difference data in which the operator's value
is compared with the inspector's value for each item in question, the true value
of the item in question thus not affecting this difference. That is, the statis-
tical sampling error for the difference is zero.

The following points must, however, be kept in mind. (1) Each item may
not have a unique measured value of the characteristic in question associated
with it, although it will surely have a unique true value of that characteris-
tic. The effect of this is discussed in 2.2.3.

(2) Suppose the facility does not have measured values for its items so
that there is no item by item comparison of the operator's data with that of the
inspector. In this event, it is necessary to make inferences about the operator's
material balance solely on the basis of the inspector's data for the sampled
items. Statistical sampling error must then be included, for the result found
in inspection clearly depends on which sub-group of items are selected and
measured. This could prove to be a major source of error in some situations.

(3) In the event of attributes inspection of the go, no-go type, the true
value associated with each item is conventionally either 1, corresponding to a
defect, or 0, corresponding to a non-defect. The nominal or base value for the
population in question is a fraction or proportion, equal to the true total num-
ber of defects divided by the total number of items. Thus, there is a statis-
tical sampling error committed as each item is selected. The effect of this
error on the inferences drawn about the population will disappear only if all
items in the population are included in the sample.

2.2.2 Bulk Measurement Error

Material accountancy is based on three measurement operations: (1) deter-
mination of the net weight or volume of an item (bulk measurement); (2) sampling
of the material; (3) analysis of the sampled material for element and/or isotope
concentration. In the event of NDA measurement, the bulk measurement and the
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sampling of the material are not performed (unless a density correction is applied
on the basis of the weight or unless the NDA measurement is made on a sample of
material rather than on the whole item).

It is convenient to divide the total error of a measurement into component
parts, the parts corresponding to these three basic measurement operations. The
bulk measurement error is defined as the magnitude and sign of the difference
between an item true weight (or volume) and its measured or observed weight. With
this definition, it is implied that the error is a single quantity, and as far as
its effect is concerned, it is possible to regard it as such. However, in actuality,
the bulk measurement error may be, and quite Tikely will be, the net effect of many
errors associated with the bulk measurement, some of which may tend to cancel one
another in their effect. See the further discussion in 2.2.5 and 2.4.

2.2.3 Material Sampling Error

Material sampling error is defined with respect to the characteristic be-
ing measured. This may be uranium concentration, U-235 concentration, plutonium
concentration, etc.

Material sampling error is the magnitude and sign of the difference between
the true value of the characteristic in question for the sampled material and
the corresponding true value for the totality of material represented by the
sample. It is important to keep in mind just what is this totality of material.
To illustrate, if the characteristic in question is uranium concentration, and if
the concentration is to be uniquely determined for a given container, then the
sampling error is the difference between the uranium concentration for the (pre-
sumably) small sample drawn from the container, and the average concentration in
that container. This may be called the "within-container sampling error." On the
other hand, if a sample is drawn from a given container with the concentration
to be applied to other nominally 1ike containers, then the variability in concen-
tration from one container to another is included in the sampling error, along
with the variability within containers.

In this latter context, it is noted that material sampling error is closely
related to statistical sampling error for that part of the error that occurs
because of differences in concentration from item to item. Some prefer to not
make a distinction between statistical and material sampling errors. Others find
it convenient to do so; it is largely a matter of personal preference, but it
seems convenient in the context of material accountancy to make that distinction.
This is because when concentrations are uniquely determined for different con-
tainers (or groups of containers), and the value in question is the difference
between the inspector's and the operator's measured concentrations, the statis-
tical sampling error, as defined here, has no effect. On the other hand, there
will still be a material sampling error, assuming that both parties did not
analyze the same sample of material.

2.2.4 Analytical Measurement Error

As with material sampling error, analytical error is defined with respect
to a specified characteristic. Analytical error is the magnitude and sign of the

2-3
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difference between the true value of the characteristic for the sampled material
and the corresponding measured or observed value. Note that this error is
defined with respect to the material sampled, and not to the totality of material
to be characterized by that sample. It is, of course, the combined effects of
sampling and analytical that is important.

In the event of measurement by NDA rather than by the bulk measurement-
sampling-analytical route, then the error in the NDA measurement may for conven-
jence be labeled an analytical error {(although, as pointed out in Section 2.2.2,
sampling error will also be introduced if the NDA measurement is performed on a
sample of material rather than on the entire item).

2.2.5 O0Other Errors

As was indicated in 2.2.2, a given identified error is actually the net
effect of potentially many errors. For example, in the weighing operation, the
error in weighing could be the combined effect of how the item was positioned
on the scale, the scale type, the particular scale of that type, the operator,
and the environment (temperature, humidity) to name a few obvious potential
sources of error. The extent to which specific error sources are identified
and studied individually depends on the circumstances. For example, if the
weighing error for the operation in question has Tittle impact on the quality
of the accountancy data, then there is 1ittle need to identify each source
that contributes to the error. On the other hand, if the observed weights at
the measurement point in question are judged to have larger than desirable
errors of measurement, studies might well be initiated to ascertain why. In
conducting these studies, at least some of the potential individual measurement
error sources would be identified and evaluated as to their individual effects.

Regardless of the degree to which the error structure is decomposed into
individual sources, in the accountancy applications to be discussed in this
volume, the principal breakdown of errors will be limited to bulk measurement,
material sampling, and analytical errors, always keeping in mind the more complex
underlying error structure.

2.2.6 Statistical Sampling Distributions

Fach time a measurement of some kind is made, there is a corresponding
measurement error associated with the observed or measured value. Obviously,
one does not know the value of the error; if it were known, then the observed
value could be "corrected" for the known error, leaving the true value.

Although one may not know the particular error involved in a given
measurement, one must know something about the possible magnitude of the error
so that some statement can be made about the true value in question. The infor-
mation about the error is conveyed through its known (or estimated) probability
distribution. Specifically, one might have knowledge that an error, say e, is
distributed according to the normal distribution with zero mean and variance
o2.

As has been indicated before, a given measured value is affected by many
errors of measurement. By appropriately propagating errors (this topic to be
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covered in Chapter 3), and by applying results from mathematical statistics
theory, one can describe in some defined way the effect of the combined errors
on the measured value. Carrying this one step further, one can find similar
results for specified functions of a number of measured values. The specified
functions of interest in safeguards applications are, for example, MUF, total
inventory, operator minus inspector value, etc.

Given any measured value or any specified function of measured values
(called a statistic) a goal in statistical inference is to make probability
statements about some parameter on the basis of the observed or measured data.
To do this, one must know the probability density function of the statistic in
question. The probability density function enables one to compute a probability
of occurrence for each possible set of outcomes of the statistic. The function
in question can be derived from statistical theory given a set of input assump-
tions. The resulting function is often referred to as a sampling distribution.
(In statistical theory, there is a distinction between a density function and
a distribution function, the latter being the integral of the former. More
correctly, the statistical function in question should be called a sampling
density function.)

The foregoing discussion is pertinent to the discussion on errors because
a sampling distribution provides for probability statements about the size of
the error that might have been committed in a given application. For example,
an important statistic in safeguards applications is the material unaccounted
for (MUF). Each time a MUF is calculated, an error is made because the calculated
MUF will differ from the true MUF by some amount due to all the errors of mea-
surement that were unavoidably committed when calculating the MUF. Thus, given
the sampling distribution of the MUF statistic, one can make inferences about
the true MUF on the basis of the calculated MUF, for even though the size and
sign of the error is not known, one does have knowledge of how it behaves in
a probabilistic sense. Precisely how this knowledge is derived is the subject
of the next chapter.

2.3 ERROR MODELS

In the foregoing discussion, it is indicated that there are many potential
sources of error that might affect an observed result. In Section 2.4 to follow,
it will be shown that these errors do not all behave in the same way. Although
one is interested ultimately in the net effect of all errors of different kinds
as they jointly affect a result, it is often helpful, and sometimes essential,
to write down an appropriate mathematical model to identify the errors and how
they relate to one another. There are several reasons for doing this:

(1) Writing the model aids in propagating the errors, i.e., in finding
the net effect of the errors acting jointly.

(2) 1t identifies which are the important sources of error so that cor-
rective steps can be taken if necessary and possible.

(3) It helps to insure that potentially important errors are not over-
Tooked.
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(4) 1t leads one to question the assumptions inherent in the model, and
thus Teads to more realistic models.

On this latter point, it should be understood that a model is a mathematical
description of reality. When faced with the choice, one of course prefers simple
models, even if they may depart a bit from reality. The model builder has an
important task: to write the model that provides an adequate description of reality;
and, at the same time to derive a model that is not too difficult to use. Proper
attention must be devoted to model-building because the model may impact heavily
on the results of the analysis. This very important point is sometimes overlooked.

In the next two sections, two kinds of models are considered: the additive
model and non-additive model.

2.3.1 Additive Model

The additive model is the simplest model with which to work, and is also
one which often provides a close approximation to reality. It is the basis for
many common statistical technigues, such as the analysis of variance, and is
widely employed in practice.

A very simple additive model is
X = u+ e (eq. 2.3.1)

where, for example,

X = observed gross weight of can of UO2 powder, in grams

u = true gross weight of can

£ the error

The additive nature of the model is clear. The error, e, selected in
some as yet unspecified way, is simply added to the true weight to give the
observed weight. Of course, one only has knowledge of x, and not u or e. On
the basis of the observed X and some knowledge about the probability distribution
for e, one can make inferences about the size of u (i.e., assign a value to u
along with some probability statement.) In another context, one might know u (e.g.,
assigned value of a standard) and observe x, and use this information to make
inferences about e.

This simple additive model can be extended to include additional terms.
For example, suppose that a difference between scales exists. Then, letting

Gi = aerror for scale i

the previous model might be written

X; =utoste (eq. 2.3.2)

As this model is written, if 6. were, say, 3 grams, then the model would
indicate that items weighed on this séale would consistently read high by 3 grams,
not counting the additional error, e, associated with any given reading.
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The additive model is considered further in Section 2.4.

2.3.2 Other Models

Although the additive model provides an adequate description of reality in
many instances, this is not always the case. As a very simple example, even though
individual errors may be described by additive models, it does not follow that a
statistic of interest will have an additive model. To illustrate, keeping in mind
(eq. 2.3.1,)(but Tetting the weights be net weights rather than gross weights), let

y=a+n (eq. 2.3.3)
where y = observed ratio of uranium to UO2

o = true ratio

n = the error

Suppose now that one is interested in the observed net weight of uranium,
and not U0,. The model for this is found by multiplying each side of (eg. 2.3.1)
by each sife of (eq. 2.3.3)
XY = po + un + ae + en (eg. 2.3.4)
which is no lTonger a simple additive model.

As an extension of this, suppose that the model for the uranium to UQ, ratio
is not additive as in (eq. 2.3.3), but is rather of the multiplicative form:

y = on (eq. 2.3.5)
as would be the case if the error, n, were expressed as a multiplier, e.g., n =
1.01 would represent a 1% relative error. Then, the model for the net weight of
uranium is, from (eq. 2.3.1) and (eq. 2.3.5),

Xy = pon + eon (eq. 2.3.6)
which is another non-additive model that might apply.

To summarize, although additive models are often adequate, it does not
follow that they apply in all situations. One must be aware of the model before
errors can be appropriately propagated and inferences drawn.

As a final comment, non-additive models may at times be appropriately

transformed to result in additive models. For example, upon using logarithms,
(eq. 2.3.5) may be written

Lny = fna + Lnn (eq. 2.3.7)
which is now additive in the Togarithms.

When errors are propagated in Chapter 3, the model will be kept in mind, if
not explicitly written in each instance.
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2.4 KINDS OF ERRORS

It has already been noted that there are potentially many sources of error
that might affect a given measured value. It is also important to note that not
all error sources will behave the same way in their effects. This fact is especially
important in safeguards applications, as will be noted time and time again in future
chapters.

There are three broad categories or kinds of errors that will be identified.
These are random errors, systematic errors or biases, and errors that fall in
neither category, which are usually called short-term systematic errors in safe-
guards applications. The different kinds of errors are perhaps best understood
in the context of an example. The example will be developed further in each of
the next three sections until the three basic kinds of errors will have been dis-
cussed, along with variations on them.

2.4.1 Random Errors

The example to be developed is as follows. Six sintered U0, pellets of
nominally the same composition are to be analyzed for percent uranfum. Let

Xi = measured percent uranium for pellet i
p = nominal (or true) percent uranium
oy = deviation from the nominal value for pellet i

ej = deviation due to analytical for measurement j

For simplicity in exposition, an additive model is assumed. (The dis-
tinction to be made among the kinds of errors is independent of this assumption.)
The model representing the six measured values may be written:

X, =q + +

SRt Tl

X
2

If

+ +
wtop, te,

(eq. 2.4.1)

1

X + o+
6 M T Py T Eg

Consider pj. Since this differs for each of the six observations in the
data set, pi is called a random error. Further, with reference to the discussion
in Section2.2.1, pj is a statistical sampling random error. If pij is regarded as
a random variable with zero mean and with variance o, then o3 is called the statis-
tical sampling random error variance. Note the important distinction between oj
and og; pi is an error while o3 is an error variance.

Consider ej. Since this also differs for each of the observations in the
data set, ¢j is also a random error. More specifically, with reference to Section
2.2.4, €j is an analytical random error and, analagous with og, the quantity og
is called the analytical random error variance.
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It is noted from (eq. 2.4.1) that since o and ¢ have the same subscripts
for all six observations, it is not possible to distinguish between the sampling
and analytical errors. One might wish to combine them in the model, replacing
(p, + 81) by m , etc. The quantity m might then be called the measurement
random érror, and of the measurement random error variance.

With respect to this last point, it is recognized by modelers that there
are many potential sources of error that affect a given result, some identified
and others not. It is common practice to group effects in a model especially when
the effects cannot be distinguished, as in this model. If, say, duplicate analyses
were performed on each pellet, then p; and €5 would not be combined; their effects
are then distinguishable.

The characteristic feature of a random error in a model is that its sub-
script changes for each observation in the data set. The safeguards significance
of random errors is that their effect on measurement uncertainty can be reduced
in a relative sense by making additional measurements. A random error is said
to propagate to zero in a relative sense with an increasing number of measurements.
For this reason, random errors are controllable and, given sufficient resources,
can be made to have 1ittle importance in many safeguards applications.

2.4.2 Systematic Errors; Biases

The model (eq. 2.4.1) is extended. Let

A = deviation from the nominal due to the analytical method, for
all measurements in the data set

Then write
X =p+A+p +¢
1 1 1
X =u+A+p +¢
2 2 2
X =ut+tA+p +¢
3 3 3
(eq. 2.4.2)
X =u+A+p +¢
" 4 i
X =u+A+p + ¢
5 5 5
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Note that A differs from pj and ej in that there is no subscript (or,
equivalently, the subscript may be the same for all members of the data set).
The quantity A is called a systematic error or a bias, terms which are often
used interchangeably. Some users make a distinction between these two terms
in the situation where the quantity A is estimated in some way. The distinction
made is that if observations in the data set are corrected on the basis of the
estimate of A, then A is called a bias. However, since one cannot know A pre-
cisely, but can only estimate it, it is clear that the observations cannot be
completely corrected for the bias A. There is a residual bias, consisting of
the difference between A and its estimate, and this residual bias is then called
a systematic error. This distinction between bias and systematic error is not
made by all modelers. The important idea to keep in mind is that whatever the
A gquantity is called, the assumptions concerning A must be stated or implied so
that errors can be properlypropagated corresponding to the assumed model.

In modeling, the distinction between the systematic error and the random
error is that the subscript on the systematic error is the same for all members
of the data set (or, equivalently, there is no subscript). If A is a random
variable with zero mean and variance o%, then o% is called a systematic error
variance. As a random variable, A is selected at random from some population
just as was the random error, pj or ej, the distinction being that, once selected,
A is the same for all members of the data set.

In many safeguards applications, the effect of the systematic error is of
dominant importance when compared with that of the random error. This is because,
unlike the random error, the effect or impact of the systematic error cannot be
reduced by taking additional measurements. The systematic error, as will be seen
in later chapters, limits the effectiveness of safeguards from the material account-
ing point of view, unless steps can be taken to reduce its effect in some way.
Merely making more measurements will not help.

2.4.3 Short-term Systematic Errors

The model (eq. 2.4.2) is further extended. Suppose that the six peliets
are not all distributed to the same laboratory for analysis. Let

zk = deviation from the nominal due to the analysis being performed
in laboratory k

Also suppose that within laboratory k, conditions change from one time-frame
(day, shift, week, etc.) to the next so that

tm(k) = deviation from the nominal due to the analysis being performed in
time frame m within laboratory k

Note that in the case of ty(k), the subscript is written to indicate that
the "time" effect is peculiar to a given laboratory. That is, time frame 1 in
laboratory 1 does not correspond to time frame 1 in laboratory 2, say.

With 2y and tp(k) defined, suppose that the model now becomes
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X =uy+Aa+48 +t +p + ¢
1(1)

1 1 1 1
x = ut+tA+2 + ¢t +p Tt e
2 1 1(1) 2 2
=u+AaAt+yg +t +p + ¢
%3 1 (1) 3 3
(eq. 2.4.3)
X=u+A+,Q, + t +p + &
4 2 1(2) N "
X =u+a+yg +t +p + ¢
5 2 2(2) 5 5
X =pu+A+2 +t +p +¢
6 2 3(2) 6 6

The model indicates that three of the pellets were sent to one laboratory
where all three analyses were performed in the same time frame, and three were
sent to a second laboratory where one analysis was performed in each of three time
frames. Both laboratories used the same analytical technique and the random error
variances due to analytical are assumed to be identical (indicated by use of £
for all six measurements).

The quantities 2k and tm(k differ from both the random error (pj and ej)
and the systematic error (A) in t%at for each error, the subscript is the same

for some members of the data set, but not for all. Thus, &g and tp(k) are neither
random nor systematic errors, but are some kind of intermediate type error.

In this particular application, % may be called a laboratory error or effect,
and tmgk% may be called a time effect, or a laboratory condition effect. In more
general terminology, this kind of error that is intermediate to a random and a
systematic error has been rather commonly referred to as a short-term systematic
error in safeguards applications. In making a distinction between this and the
systematic error, the latter is sometimes called a Tong-term systematic error.

It should be noted here that the distinction that is made between random
errors, systematic errors, and short-term systematic errors is with respect to the
particular set of data under discussion. For example, if the data set under consi-
deration were to consist of only the first three observations rather than all six,
then 2y and tm(k) would both be (long-term) systematic errors rather than short-term
;ystematic errors, for then the subscript would be the same for all members of the

ata set.

Before leaving this section on short-term systematic errors, an important
side-issue comment is made with respect to the error ty(k). This point is made
because of its importance both with respect to the interpretation of data from
interlaboratory experiments (see Section 2.6.5), and also as it affects the analy-
sis of inspection data.

For Taboratory 1, since all measurements are performed in the same time frame,
one cannot distinguish between the time effect and the laboratory effect. This is
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an important point because one professed aim of interlaboratory experiments is to
remove the effects of differences between laboratories by correcting all results

to some base value, that is, by obtaining estimates of the 2k's and correcting for
the laboratory effects. However, this approach does not recognize the importance
of the time effect, ty(k) which is usually confounded with or indistinguishable
from the laboratory efftect g . Thus, when one attempts to remove laboratory

biases in this way, the resu%ts are only applicable to the given time frame that
existed at the time of the interlaboratory experiment. The between-time variance,
o%, may well be a dominant effect when compared with o%, in which case it would be
misleading to conclude that one can correct for differences between laboratories.
Rather, in most instances, one would use interlaboratory data to obtain the com-
bined estimate, of + of, which becomes a systematic error variance, long term,

when applied only to a given laboratory, and short term otherwise. In this instance,
one usually calls this simply a between Taboratory variance, it being understood
that the time effect is implicitly included in that variance componant. Note

that for laboratory 2, the measurements are made at three different times, but this
may not be the usual mode in inter-laboratory experiments.

2.5 EFFECTS OF ERRORS

Much of this Volume deals with the effects of errors on quantities of safe-
guards importance in a very detailed way. The discussion in this section antici-
pates the more detailed presentations to follow in later chapters, and is intended
to provide an overview of the role played by errors of measurement. First, the
effect of errors on facility MUF is discussed, and then the effect on operator
and inspector comparisons is considered.

2.5.1 Effect on Facility MUF

A given facility reports a MUF at the end of each material balance period,
i.e., upon completion of a physical inventory. The MUF is affected by errors of
measurement. It is also affected by unmeasured inventories, unmeasured 10sS streams,
and mistakes in the recording, transmittal, and reporting of data. It would
also be affected, of course, by any thefts or diversions. As a first step in the
evaluation of the facility MUF, only the effect of measurement errors is taken
into account. That is, one wants to make probability statements about the true
MUF on the basis of the observed MUF and its calculated standard deviation due to
errors of measurement. The true MUF, which includes the effects of all factors
other than the errors of measurement, may then be further evaluated, but this
further evaluation may be largely non-statistical in nature.

Associated with each MUF is an actual standard deviation describing its
uncertainty. There is also a calculated or reported standard deviation. It is
highly unlikely that these agree exactly, although the extent to which they dis-
agree may be difficult to characterize. The disagreement comes about because of
one or more of a number of reasons:

(1) The actual input measurement error variances will not be the same as
their estimated values used in the error propagation.
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(2) There are approximations used in the error propagation.

(3) The errors may be improperly propagated, even though the approximate
nature of the propagation may not Tead to a serious discrepancy. Im-
proper propagation could occur because of a large number of reasons.
Some common ones being:

(a) Treating constant element or isotope factors as having no
associated error

(b) Failing to account for items that are identically a part of
two cancelling components of the MUF calculation (e.g., in
receipts and ending inventories)

(c) Making arithmetic mistakes

While keeping in mind that the calculated standard deviation of MUF is not
the actual standard deviation (a quantity that will not be known), nevertheless
the calculated standard deviation is used in making judgements about the signi-
ficance of the MUF. The inspector need not proceed on blind faith and accept
the facility's calculated MUF. Experience with similar plants provides guide-
lines as to what is a reasonable value for the standard deviation. Any large
differences between calculated and guideline values can be investigated as to
cause, and the calculated value appropriately corrected if found to be in error.

Assuming that the calculated standard deviation of MUF is a reasonably
correct value, a diagnostic Took at the calculations will reveal what are the
major sources of error. An identification can then be made of possible steps that
might be taken to reduce its size. On the other hand, study may also reveal that
excessive measurement effort is being made in some instances; measurement effort
may well be better directed elsewhere. In short, it is worthwhile to go beyond
the simple calculation of the standard deviation of MUF, and use the calculations
to redirect measurement effort as judged desirable.

This diagnostic Took may well reveal that the standard deviation of MUF
is lTimited in size by systematic errors. Unfortunately, it is not a simple
matter to obtain estimates of systematic error variances in all cases, nor is it
possible to reduce their effects without extensive effort, if at all. (It is
faulty reasoning to suppose that extensive system recalibrations will eliminate
systematic errors, although it is a step in the right direction.) One conclusion
that might follow is that too much effort in the facility measurement control
program is being directed at obtaining current estimates of random error variances
whose effects on the standard deviation of MUF may be negligible in a relative
sense. This information, if put to use, may be quite important to a facility bur-
dened by measurements made solely for safeguards purposes. The facility and the
inspectorate can jointly benefit by careful study of the calculations affecting
the standard deviation of MUF.

2.5.2 Effect on Inspector-Operator Comparisons

One principal aim of an Agency inspection is to make a quantitative verifi-
cation of the facility MUF. This verification makes use of the D statistic, treated
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in detail in the next chapter, but which for present purposes is defined as simply
the estimate of the difference between the facility MUF and the inspector's esti-
mate of this quantity. It is based on paired comparisons between the operator's
and inspector's measured values on an item-by-item basis.

As with MUF, the quantity D is affected by errors of measurement. Unlike
MUF, which is affected on]y by facility measurements, the uncertainty in D is also
affected by uncertainties in inspector measurements. Also, whereas the standard
deviation of MUF is often limjited in size by systematic errors, this may not
necessarily be the case with D because much fewer measurements are made by the
inspector than by the facility. Further, only those facility measurements that
are involved in the inspector comparisons affect the standard deviation of D, so
that the contribution to the random error variance of D due to the facility mea-
sgrements will be relatively much larger than their contribution to the variance
of MUF.

As will be seen in Chapter 4, the random error variances will determine how
many measurements the inspector will make and how he will allocate these among
the various flow and inventory items. Thus, for purposes of inspection, it is
necessary to have good estimates of the inspector's and the facility's random
error variances.

It may be true in some applications that systematic error variances for
the operator and/or the inspector are of such a size that the 1nspection sample
sizes are 1imited in the sense that further measurements beyond a minimum number
will have negligible effect on the variance of B. In this limiting case, if the
systematic error variances for the facility and for the inspector are roughly
equivalent in size, then the variance of D is twice the variance of MUF.

Another statistic of importance in Agency inspections is the so-called
(MUF-D) statistic, which is interpreted as the facility MUF adjusted for biases
on the basis of the inspection data. An attractive property of (MUF- D) is that
it is unaffected by the operator's systematic errors. In a sense, it is the
facility MUF with the operator's systematic errors replaced by the inspector's.
The advantage is obvious: the inspector should be better able to evaluate and
control his systematic errors than he can the operator's. This (MUF-D) statistic
will also be studied in detail in later chapters.

2.6 ERROR ESTIMATION

1t should be apparent from the preceding sections that it is important to
have valid information about measurement error variances. This information can
come from a potentially large number of sources. In the balance of this chapter,
methods will be given for obtaining estimates of the various measurement parameters.
The techniques given are not intended to include all possible means of estimating
measurement error variances, but do include those most often applied.

There are five main sub-topics: Measurements of Standards, Calibration of

Measurement Systems, Measurements of Non-standard Materials, Error Estimation in
the Presence of Rounding Errors, and Interlaboratory Test Data.
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2.6.1 Measurements of Standards

A physical standard is an item having an assigned value associated with
it for the characteristic in question. The value may be known without error, or
it may have an error associated with it. In Section 2.6.1.1, the case of a single
standard is considered. In 2.6.1.2, several physical standards are involved. In
2.6.1.3, measurements are made on a standard distributed over time.

2.6.1.1 Single Standard

A given standard is measured n times under a given set of conditions. The
data are to be used to estimate the measurement bias and make a decision whether
or not to apply a bias correction to measurement data generated by the measure-
ment system under the same set of conditions. Whether or not the bias correction
is to be applied, the systematic error variance for the measured result is to be
estimated. In the case of an uncorrected result, the mean square error is used
to describe the systematic error variance. The mean square error is the expected
value of the square of the difference between the measured and true values. An
estimate of the random error variance for the measured result will also be given,
but this estimate may be unrealistic in some instances. Better estimates of ran-
dom error variances come from measurements on production items (see Section 2.6.3).

Method 2.1
Notation
u, = assigned value of standard
o = standard deviation of assigned value

>
H

average of the n measurements on the standard
s? = sample variance of these n measurements

measured value for production item j

«
.
[}

Results

The estimated bias is

g = (x"“o) (eq. 2.6.1)

The bias corrected result is

Yj = y5 -6 (eq. 2.6.2)
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If the bias correction is applied, the estimate of the systematic error
variance for the bias corrected result is

05 + s2/n (eq. 2.6.3)
If the bias correction is not applied, the estimate is

82 = (x - uo)2 (eq. 2.6.4)

which does not involve o%, the variance of the assigned standard value. (It is
noted that neither estimate is of very high quality in a statistical sense in this
problem situation since they are one-degree-of-freedom estimates).

Based on statistical considerations, one would tend to apply a bias cor-
rection if the expression (2.6.3) is smaller than (2.6.4). If applied, the cor-
rection should be made at the time the measurement is made and not after the fact
because of the administrative problems occurring when correcting past data.

Whether the bias correction is applied or not, the estimated random error
variance for the reported result is simply sZ2.

Basis
The principle of maximum 1ikelihood is applied [2.2]. For a full discussion

of this principle as applied to this particular problem situation, see [2.3].
Reference [2.4] is also pertinent.

Examples

EXAMPLE 2.1 (a)

A plutonium standard has an assigned value of 22.12% Pu. Its uncertainty is
described by the standard deviation, o, = 0.04% Pu. Twelve analyses are made on
the standard. Analyze the data to see if a bias correction should be made, and find
the systematic and random error variances for the reported result (bias corrected
or not). The data are listed.

xi = % Pu Xi =% Pu Xj = % Pu
22.12 22.16 22.06
22.06 22.09 22.08
22.16 22.13 22.05
22.07 22.08 22.06

The pertinent values are
no= 22.12 X = 22.0933
0.04 s2 = 0.001552

Q
n

2-16



- 19 -

By (eq. 2.6.1), the estimated bias is
§ = -0.0267

If the bias correction is applied, the systematic error variance of a
reported result is

(0.04)2 + (0.001552)/12 = 0.001729
If the bias correction is not applied, then the systematic error variance is
(-0.0267)2 = 0.000713

Since this is smaller than 0.001729, the appropriate action would be to
not apply the bias correction. This is because the standard value is so poorly
known; there is not conclusive evidence that the measurement system is biased.

Whether or not the bias correction is applied, the random error variance is
0.001552.

EXAMPLE 2.1 (b)

A standard weight is weighed at periodic intervals on a scale used to weigh
fuel columns as they are loaded into rods. The scale reads net weights directly
to the nearest 0.5 gram. On n = 42 weighings of the standard, the following fre-
quency of the observed minus standard weights was found. The standard weight is
to be known without error.

(xj - wo) grams Frequency

= —00 0

.0
.5
.0 14
.5
.0
.5

The pertinent values are
(X - u) = -0.226 o, = 0 s2 = 0.2220

1f the bias correction is applied, the systematic error variance is
0.2220/42 = 0.00529. If it is not applied, it is (-0.226)2 = 0.05108, almost
ten times as large. Based solely on statistical considerations, it would seem
appropriate in this case to apply the bias correction.

In this particular application, however, it is difficult to justify correct-
ing past data for the bias which, although statistically significant, is quite small.
The problem in making the correction to past data is an administrative one, 1likely
affecting also fuel rods already shipped. A more appropriate action in this in-
stance would be to try and adjust the scale to eliminate or reduce the bias or,
failing that, possibly to bias correct future data as they are generated.
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2.6.1.2 Several Standards

There are two general types of situations in which more than one standard
may be measured. In the first type of application, a given scale is to be used
to measure gross and tare weights to determine the net weight for an item. The
bias in the scale is to be evaluated at both the gross and tare weight ranges in
order to estimate the bias for a reported net weight. In the second situation,
more than one physical standard is measured but it is assumed that any bias is
constant over the range covered by the standards. The standards may have dif-
ferent associated uncertainties, and they may be measured different numbers of
times. The problem is to estimate the overall bias and to find the random and
systematic error variances of the reported result on a production item, whether
or not it is corrected for bias.

In what follows, Method 2.2 applies to the first situation and Method 2.3
to the second.

Method 2.2
Notation
Hg = assigned value of gross weight standard
ug = assigned value of tare weight standard

og = standard deviation of assigned gross weight standard value
op = standard deviation of assigned tare weight standard value
ig = average of ng measurements on gross weight standard
it = average of ne measurements on tare weight standard
SS = sample variance of the ng measurements
s% = sample variance of the ny measurements
yj = measured net weight for jtem j
Results

The estimated bias in the net weight is

B = (xg - ug) - (xt - ut) {eq. 2.6.5)

The bias- corrected result is
s =y, - B . 2.6.6
Y =¥y - 8 (eq )

If the bias correction is applied, the estimate of the systematic error
variance for the bias corrected result is
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2 2 2 2
oq top ¥ sg/ng + St/nt (eq. 2.6.7)

If the bias correction is not applied, the estimate is simply 62, from
(eq. 2.6.5).

Based on statistical considerations, one would tend to apply a bias cor-
rection if the expression (2.6.7) is smaller than 82. If applied, the correction
should be made at the time the measurement is made, and not after the fact.

Whether the bias correction is applied or not, the random error varjance
for the reported result is

sé + s% (eq. 2.6.8)

Basis

The basis is the same as for Method 2.1 with a simple extension to include
both the gross and tare weight standards.

Examples

EXAMPLE 2.2 (a)

A case history dealing with the estimation of scale accuracy and precision
is given 1in reference [2.5]. Suppose that standards S and P in that reference and
weighed in combination correspond to a typical gross weight while standard B is
the tare weight standard. From the reference, the following information is derived.

u. = 8878.09

g = 1591.7 g g = =0.97 g

Mt g °t

Assume that weighings of these standards yield the following data:

ng = 30 ng = 20
xg = 8881.3 g Xy = 1589.9 ¢
sg =6.2¢9 S¢ = 4.9 ¢

The estimated bias in the net weight is
6 =3.3+1.8=5.1g

If the bias correction is applied, the systematic error variance of the bias
corrected result is

2(0.97)2 + (6.2)2/30 + (4.9)2/20 = 4.36 g2
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If the bias correction is not applied, this variance is

(5.1)2 = 26.01 g2

In this example, since 4.36 <26.01, one would apply the bias correction on
the basis of statistical considerations alone, assuming that scale adjustments
could not reduce the bias to a more acceptable Tower value.

Method 2.3

Notation
m
"k
Mk
%k
ik
Sk

Results

= number of standards

= number of measurements on standard k

= assigned value for standard k

= standard deviation of assigned value, standard k
= average of the measurements on standard k

= sample variance of these measurements

The estimated bias is the weighted average

@ >

where

%

m
=Z Wk (ik-uk)/z wk

m
k=1

1

(Oﬁ + Sz/nk)_

and where s2 is the estimated random error variance,

g2

n being the total

m

(nk - 1) sﬁ/(n—m)

=
1)
—

number of observations,
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If the bias correction is applied, the estimate of the systematic error
variance for the bias corrected result is

m -1

<Z wk) (eq. 2.6.13)

k=1

If the bias correction is not applied, the estimate is simply 62, from
(eg. 2.6.9).

As with Methods 2.1 and 2.2, one would tend to correct for bias if expres-
sion (2.6.13) is smaller than 62.

Basis
The estimate of the bias is a weighted estimate where the weights are the
inverses of the variances of the estimated biases for each condition. This is a

standard weighting procedure and leads to the result that the variance of the
weighted average is the reciprocal of the summed weights [2.6].

Examples

EXAMPLE 2.3 (a)

Three standards are used in controlling the measurement quality of a mass
spectrometer. The standard values in percent U-235 are 2.013, 3.009, and 4.949
respectively. The observations on these standards are as follows:

Standard 1 Standard 2 Standard 3
2.013 3.009 4.953
2.018 3.013 4.957
2.015 3.010 4.949
2.015 3.017 4.946
2.013 3.009
2.010 3.008

3.013
3.010
3.011
3.006

Assume that errors are constant on a relative basis. From Section 2.3.2,
then, it is appropriate to transform the data to natural logarithms. The standard
values in this transformed scale become:

M = fn 2.013 = 0.69963 ; W= 1.10161 M, = 1.59919

The errors in the standards are each 0.05% relative at one standard deviation.

o =0 =0 = 0.0005
1 2 3
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For the transformed data, the averages and variances are:

x1 = (0.70012 iz = 1.10214 X = 1.59964
3
s2 = 1.7798 x 107° s2 = 1.0567 x 107° s2 =0.9330 x 10°°
3
Further parameter values are:
m= 3 n =6 n =10 n =4 n =20

1 2 3

The first step is to calculate s? from (eq. 2.6.11)
BS) (1.7798) + (9) (1.0567) + (3) (0.9300)} X 10-i/&7

1

SZ

1.2470 x 107°

The weights are, from (egq. 2.6.10),

n

W

) [(0.0005)2 + 1.2470 X lO—i/é}-l = 2.1842 x 106

=
1]

2.6688 x 10° w3 = 1.7802 x 10%

3
> w, = 6.6332 x 10°
k=1

The estimated bias is, from (eq. 2.6.9),

1

8 [(2.1842) (0.00049) + . . . + (1.7802) (0.00045)]/%.6332

0.00043954

If the bias correction is applied, the estimate of the systematic error vari-
ance for the bias corrected result is, by (2.6.13)

(6.6332 x 105)-1 = 0.1508 x 107%

The standard deviation is 0.00039 or 0.039% relative.

If the bias correction is not applied, then the estimated error variance is
(0.0004954)2 = 0.2454 X 1076

Since this is larger than 0.1508 x 10°¢, one would make the bias correction
based on statistical considerations.
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2.6.1.3 Measurements at Different Times

Thus far in the discussion, it has been assumed that the standard or stan-
dards being measured by the measurement system has been measured under a fixed
set of conditions. The estimate of the bias or systematic error derived from the
data apply to items measured under that same set of conditions.

In many measurement systems, the bias will not remain stable as the condi-
tions change. Commonly, it is not possible to identify the reasons for shifting
biases that may be observed in different time frames. In some cases, reasons for
shifting biases may be apparent, e.g., changes in measuring instruments, operators,
or environmental conditions. Whatever the explanations, in describing the total
error of measurement, the effects of an overall average bias and of the degree
to which 1t may shift from one set of conditions to another must be taken into
account. In addition, the assigned value of the standard may have an associated
uncertainty, and this effect must be included.

Method 2.4 to follow, then, deals with the problem in which a standard with
assigned value po is measured nj times under condition i. The data are to be
used to estimate an average bias, possibly apply a bias correction to future
measurements on production items, and obtain estimates of the random and systematic
measurement errors, whether or not the bias correction is applied.

Method 2.4
Notation
= assigned value for standard
Xij = observed value for j-th measurement under condition i
n; = number of measurements made under condition i
n = total number of measurements
m = number of conditions
o, = standard deviation of assigned value
02 = random error varijance
o2 = variance among condition means (short term systematic
®  error variance
ykj = measured value for production item j measured under
condition k
Results

Calculate the following quantities:

i

m
LFIED DR TR R ) DR P

j=1 i=1
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m
- T2 = 2
So = T%/n S1 EE: T.7/n;
i=1
m n; m
S2 = Z X132 p =62 - Z n%)/n(m—l)
i=1 j=1 i=1
My = (Sl - SO)/(m—l) M, = (S2 - Sl)/(n-m)
Then, the estimated bias is
8§ = (T/n - uo) (eq. 2.6.14)
The bias corrected result is
ykj = ykj -6 (eq. 2.6.15)
The estimates of og and cé are
52=M (eq. 2.6.16)
€ W
~2 = -
oq (MB Mw)/P {eq. 2.6.17)

If the bias correction is applied, the estimate of the systematic error
variance for the bias corrected result, ij, is

m
2 4 "2 2/n2 4 42
o + og ZE: ni/n + oE/n (eq. 2.6.18)
i=1

If the bias correction is not applied, this estimate is simply 62, from
(eq. 2.6.14)
Basis
The statistical technique that forms the basis for this method is the one

way analysis of variance. The parameter estimates are derived from the analysis
of variance table.
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One Way ANOVA Table

Source of Variation Degrees of Freedom Mean Square Expected Mean Square

Between conditions m-1 MB og + P cg
Within conditions n-m Mw cé

The analysis of variance is covered in many standard texts. See, for
example, [2.7].

Examples

EXAMPLE 2.4 (a)

Mass spectrometer measurements are made at four time periods on a known
standard of nominal 3.046% U-235. The standard deviation associated with this
value is 0.0006% U-235. The data are as follows:

Time 1 Time 2 Time 3 Time 4
3.095 3.044 3.019 3.090
3.086 3.078 3.045 3.073
3.058 3.046 3.022 3.053
3.073 3.060 3.081
3.023
3.072

In this example, it is not necessary to transform the data to logarithms
because only the one standard is used. One could, of course, perform the trans-
formation, in which case the estimates of the standard deviations would be on a
relative basis rather than an absolute basis.

The various quantities are calculated.

T =12.312 T2 = 18.323 T3

9.086 T =12.297
1 N

T = 52.018

S0 = 159.168960 Sl = 159.174242
52 = 159.178232 P = 4,157
MB = 0.001761 Mw = 0.000307
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Then, by (eq. 2.6.14),
6 = 0.0139
By (eq. 2.6.16) and (eq. 2.6.17),

82
€

0.000307 (random error)

2
8

il

o 0.000350 (short term systematic error)

If the bias correction is applied, the systematic error variance for the
bias corrected result is, by (eq. 2.6.18),
(0.0006)2 + (0.000350) (77)/289 + (0.000307)/17 = 0.000112
If the bias correction is not applied, this variance becomes
(0.0139)2 = 0.000193

Since 0.000193 exceeds 0.000112, one would tend to correct for bias in
this instance.

EXAMPLE 2.4 (b)

In the example just concluded, suppose that the time grouping were ignored.
The data would then be analyzed by Method 2.1. The bias estimate, 8 is still
0.0139. However, the estimate of the systematic error variance would be different.
For these data:

1

s2 = 0.0005795

n=17
Thus, from (eq. 2.6.3), if the bias correcticn is applied, the estimate
of the systematic error variance is

(0.0006)2 + (0.0005795)/17 = 0.00003445, compared with 0.000112
when the time grouping is taken into account as it should be. If the bias correction
were not applied, the estimate of the systematic error variance would be the same
as in the preceding example.

This example illustrates the importance of correctly specifying the model
for the statistical analysis. The existence of the short-term systematic error
in this set of data must be accounted for in the analysis.
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2.6.2 Calibration of Measurement Systems

The problem of calibration is closely related to that of measuring standards
(Section 2.6.1) in that physical standards are also used in the calibration problem.
In calibration, the measured response (Y) is related to the standard value (X) in
some functional way, depicted by Y = f(X). The quantities Y and X may not be in
the same units, e.g., X may be in grams U-235 and Y may be in count rates for an
NDA counter. The calibration problem involves estimating the parameters for the
function f(X) so that the relationship may be used to relate an observed response
for a production item, observed on the Y scale, to an estimated value on the X
scale for that item. Various statements about error variances are also made on
the basis of the calibration data.

Various calibration problems are treated. First the case in which the

functional relationship is 1linear and the variance of the measured response is
constant over the range of calibration is covered.

2.6.2.1 Linear Calibration; Constant Variance

The measured response, Y, is related to the assigned value, X, by a Tinear
relationship. At any fixed value of X, Y is normally distributed with mean value
given by the linear relationship and with unknown but constant variance. The
calibration data consist of n pairs of observations.

The calibration process leads to obtaining estimates of the parameters
(slope, intercept, variance). The estimated calibration equation is then used
for measuring production items, and random and systematic error variances are
derived for the production item characteristic value corresponding to this response.
Two cases are considered. In Method 2.5, it is assumed that the intercept
parameter is known. When this known value is zero, a special case, then the cali-

bration curve passes through the origin. Method 2.6 covers the case when the
value for the intercept parameter is not known.

Method 2.5
Notation
(Vs Xi) = i-th data point; 1 =1, 2, ..., n

intercept parameter (known)

o =
g = slope parameter (unknown)

y; = o + B X5 o calibration equation

g2 = variance of y; at given X5
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Results

Calculate the following quantities:

n n Zn:
S = X, S = X:Y s S = X2
1 %gi ! 2z 3 4=1 !
n n
S = . S = 2
4 ;éi % 5 ;gi d
The parameter estimates are
8 = (S -aS )/S (eq. 2.6.19)
2 13
(n-1) 62 = (S - 2aS + na?) - (S - oS )2/S (eq. 2.6.20)
5 In 2 1 3

For a production item, the measured response is yg. The corresponding
characteristic value for the item is Xxg, estimated by

~

X ={y -a)/8 (eq. 2.6.21)
0 0

_ The quantity B, once calculated, behaves as a constant. Thus, the uncertainty
in B affects Xo as a systematic error. Denoting the systematic error variance of
Xo by Vg(Xg), it is given by

(v, - )2 V(B)/B"

vs(io)

it

§O2v(é)/é2 (eq. 2.6.22)
where V(8) is the variance of 8, given by
V(B) = ¢2/S (eq. 2.6.23)

V(X ) = 52/82 (eq. 2.6.24)
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Consider k measured responses: y,is Ygos 2---3.Ygk and the corresponding
values calculated by (eq. 2.6.21) and denoted Ey X01s X025 «-+-5 Xgk- Letting Xpt
be the sum of these Xo0Jj values, consider the random and systematic error variances

of xgt. These are

" = L ~2/R2
Vr(xot) k o2/8 (eq. 2.6.25)
X = % 2 V(r)/g2
and Vs(xot) Xot V(B)/8B (eq. 2.6.26)
Equivalently, if io denotes the average value, i.e., got divided by k,
then
< = Lk2¢2 V(R)/R2
Volxye) = k2xZ V(g)/8 (eq. 2.6.27)
Equation 2.6.22 may be considered a special case of (eq. 2.6.27) with k=1.
Basis

The estimate given by (eq. 2.6.19) and (eq. 2.6.20) are maximum Tikelihood
estimates [2.2]. Equivalently, B is derived from the principle of least squares,
i.e., it is the value of g that minimizes the sum of squares:

n
Q= ;Zi (y; = o - BX;)2 (eq. 2.6.28)
'I:

The expressions for the variances of the quantities of interest are based
on error propagation methods to be discussed in Chapter 3.

Examples

EXAMPLE 2.5 (a)

A SAM NDA instrument is calibrated for use in measuring non-fissile pluton-
jum., Calibration data relating net count data in CPMx10~3 to grams of non-fissile
piutonium are as follows:

Xj =g Pu Y3 = net count rate (CPMx10-3)
104.29 141.022

208.58 286.928

312.87 420.571

406.73 545.497

417.16 557.069
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Assuming a zero intercept Tinear model with constant variance, estimate the
calibration curve. Four coupons are then counted, the counts per minute being
549,172, 319,614, 277,328; and 401,616 respectively. Estimate the total amount
of plutonium in these four coupons, and find the associated random and systematic
error variances.

The quantities S;-S5 are calculated.

S; = 1449.63 S, = 660395.5742 Sy = 491721.4159

S, = 1951.087 Ss = 886987.6955

By (eg. 2.6.19) and (eq. 2.6.20), with o = 0
1.3430

B

82

14.5057

For the four coupons counted, from (eq. 2.6.21)

237.985 Xg3 = 206.499

408.914 Xg2

X01

"

299.044 Xot = 1152.442 g Py

Xoy

From (eq. 2.6.25), (eq. 2.6.23), and (eq. 2.6.26),

vr(iot = (4)(14.5057)/(1.3430)2 = 32.170 g2 Pu
V (8) = 14.5057/491721.4159 = 29.50 x 10°°
vs(iot) = (1152.442)2(29.50) x 107%/(1.3430)2 = 21.722 g2 Pu

EXAMPLE 2.5 (b)

In Example 2.5 (a), assume that the intercept is known to be o = 10. Then,

g = 1.3135
g2 = 11.6980 (a better fit to the data)
. i ,
Vr(xot) 27.121 g% Pu
V(B) = 23.79 x 1076
. i ,
V (X ) = 18.314 g2 Pu
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Method 2.6
Notation

Same as for Method 2.5 except that the calibration curve is rewritten to be

i

Yy =v+8 (Xi - x), where

X

average of the n X; values
Results

Calculate the quantities S;-Ss as in Method 2.5. The parameter estimates

are:
¥ = Sy/n (eq. 2.6.28a)
é = 62“3154/”)/(53-512/n) (eq. 2.6.29)
(n-2) 02 = Ss'qu/n - (Sz-SISH/H)Z/(S3-SIZ/n) (eq. 2.6.30)

For a measured response yg, the corresponding value of xq 1is estimated by

Xo = [(yo - ¥)/B] + X (eq. 2.6.30a)

The variances of ¥ and § are given below. They have zero covariance.
V(Y) = 62/n (eq. 2.6.31)
V(B) = 62/(S3-51%/n) (eq. 2.6.32)

For k measured responses, with Xg denoting the average value calculated from
the calibration curve, the random and systematic error variances of the total, Xot?
are

A

Vr(xot)

It

k o2/82 (eq. 2.6.33)
V (ko) = K2[V() + (R,-S1/n)2V(B)]/2 (eq. 2.6.34)

Basis

The basis is the same as for Method 2.5.

Examples

EXAMPLE 2.6 (a)

Example 2.5 (a) is reworked assuming that the intercept value is not known.
From (eq. 2.6.28a)- (eq. 2.6.34),
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A

v = 390.22 , B =1.3260 , g2 = 11.2712
V(y) = 2.2542 , V(B) = 157.78 x 106
" = 2 v - 2
V.(X,4) = 25.641 g%Pu V (X)) = 1.282 g2Pu

Note that for this particular set of ioj values, the systematic error of
the total, Xgt, is much smaller for the unknown intercept than for the known inter-
cept case. This is because (xgy-Si1/n) is very nearly zero, and is not a general
result.

EXAMPLE 2.6 (b)

For the data of Example 2.2 (a), estimate the scale calibration curve assum-
ing that the relationship is linear with unknown intercept. An observed weight on
the scale is then 6616.4 grams. What is the weight corrected for bias? What are
the random and systematic error variances for this corrected weight?

In the notation of Method 2.6, x; = 8878.0 for the first 30 observations
and xj = 1591.7 for the last 20 observations. The quantities S;-Ss are calculated.

w
—
H

= (30)(8878.0)+(20)(1591.7) = 298,174
(8878.0) (8881.3)(30) + (1591.7)(1589.9)(20) = 2,416,058,319
Sy = (30)(8878.0)2 + (20)(1591.7)2 = 2,415,236,698
(
(

Sy = (30)(8881.3) + (20)(1589.9) = 298,237
Se = (29)(6.2)2 + (30)(8881.3)2 + (19)(4.9)2 + (20)(1589.9)2
= 2,416,881,902
From (eq. 2.6.28a)-(eq. 2.6.32),

¢ = 5964.74

8 = 1.00070

52 = 32.7271

V(Y) = 0.65454 V() = 5.1370 x 1078

At Yo = 6616.4 g, the bias corrected weight is
Qo = (6616.4 - 5964.74)/1.00070 + 5963.48

= 6614.68 g
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From (eq. 2.6.33) and (eq. 2.6.34), with k = 1, the random and systematic
errors for the bias corrected result are

V(X))
Vg ()

Note: It was assumed for illustrative purposes in this rework of Example
2.2 (a) that the standards were known without error. This assumption is not valid,
as was pointed out in Example 2.2 (a).

32.7271/(1.00070)? = 32.6813 g2
0.6754 g2

2.6.2.2 Linear Calibration; Non-Constant Variance

The calibration problem is jdentical to that discussed in Section 2.6.2.1
except that the variance in the response variable is not constant over the cali-
bration range. This variance, denoted by o% at the value Xxj, is a known guantity.

As was the case in Section 2.6.2.1, two situations are covered. In
Method 2.7, the intercept parameter is assumed to be known, while this parameter
has an unknown value in Method 2.8.

Method 2.7
Notation

The notation is identical to that in Method 2.5 except that o2 is replaced
by 0%, a known quantity.

Results

Calculate the following quantities.

Wy = 1/0% for each observation
n n n
S, = by WiXs S, = 2 WiX.Y s S; = ;gi WoXs2
n n
Sy = 2 WY, Ss = ), Wiy,?
i=1 i=1
The estimate of 8 is
B= (S, - aS;)/S; (eq. 2.6.35)
Its varjance is
V(B) = 1/S4 (eq. 2.6.36)
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For xg = (¥o - @)/B8, Yo being a measured response for a production item, the
random and systematic error variances are

S
It

(%g) = oB/82 (eq. 2.6.37)

and V (x.) = Q%V(é)/éz (eq. 2.6.38)
where og is the known variance of Yy

R For k measured responses, with iot being the total for the §013 QOZ’ e
Xgk values,

5 k
= 2 /g2
Vo (%oe) ;gi 02./8 (eq. 2.6.39)
X ) = % 2y(g)/a2
Volxge) = xgp V(B)/B (eq. 2.6.40)

Basis

The basis is the same as that for Method 2.5 except that a weighted least
squares estimate of B is found (2.8). The quantity minimized is

n
Q = ;Zi (y; - o -8 Xi)/0§
'1:

Examples

EXAMPLE 2.7 {(a)

In calibrating a uranium solid waste barrel NDA system based on gamma count-
ing, the model Y = gX is assumed, where Y is the net counts per 100 seconds and X is
the grams U-235 in standard barrels. Given the following data for which the variance
o% is also known, estimate the calibration curve. Three production barrels are then
counted, the count rates per 100 seconds being 20,192; 13,919; and 42,267 respectively.
Estimate the total amount of U-235 in these barrels and find the random and systematic
error variances for this estimate.

2

X3 VA 03 Wi
1 2853 1.65x10° 6.06x1076
4 11611 2.34x10° 4.27x10-6
7 18072 3.03x10° 3.30x10°6
10 27554 4.43x10° 2.26x10-6
15 38649 6.91x10° 1.45x10-6
20 53464 12.50x10° 0.80x10-%
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The quantities S-S5 are calculated

S1 = 0.00010659 S, = 2.951828 Sz = 0.00110833

7871.2519

S, = 0.28759004 Se

For a = 0, 8 is calculated from (eq. 2.6.35)
B = 2663
Its variance is
V() = 902.26

For the three production barrels,

~

Xot (20192 + 13919 + 42267)/2663

28.68 g U-235
By interpolation in the data table, (logarithmically on 0?)
op3 = 3.30 x 105 5y = 2.66 x 10° 503 = 7.99 x 105

k 2
> ogi = 13.95 x 10°
i=1

By (eq. 2.6.39) and (eq. 2.6.40),

vr(Qot) = 13.95 x 105/(2663)2 = 0.1967
V(X ,) = 0.1047
Method 2.8
Notation

Same as for Method 2.7 except that the calibration curve is rewritten to be

Yi=v te8 (xi - x), where

X

weighted average of the n X values

Results

Calculate wi and the quantities S;-Ss as in Method 2.7. Also calculate
Sgs the sum of the wij's. The parameter estimates are:
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= $./S¢ (eq. 2.6.41)
(Sy - $154/S¢)/ (S5 - S1/S6) (eq. 2.6.42)

The variances are:

=< >

w?>
1)

V(v) = 1/Sq (eq. 2.6.43)
= 1/(S5 - $5/5;) (eq. 2.6.44)

=

—

ko vi]

~—
|

For a measured response y,, the corresponding value of x; 1is estimated by

xo = [{yg - v)/8] + X (eq. 2 6.44a)

For k measured responses (k = 1 is a special case), with iot being the total
amount and Xo being Xgt/k,

. k .
Vr(xot) = ;é% 00§/82 (eq. 2.6.45)
V(%) = K2[VG) + (x - ®)2V(B)]/B2 (eq. 2.6.46)
where -
X = S,/S¢ (eq. 2.6.47)

Basis
The basis is the same as for Method 2.7.

Examples

EXAMPLE 2.8 (a)

Rework Example 2.7 (a) given that the intercept is not zero, but is to be
estimated.

The quantities S;-Sswere calculated in Example 2.7 (a) along with the wj.
Also,

k
Sg = D, W, = 18.14 x 107°
i=1

The parameter estimates are

7 = 15854 8 = 2618
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The variances are
V() = 55127 V(B) = 2074.64

For the total, iot

~

= 5 2 =
Vr(th) 13.95 x 10°/(2618) 0.2035

A~

Xot = (76378 - 47562)/2618 + (3)(5.8760)
= 28.63 g U-235
Vs(xot) = 0.1090

2.6.2.3 Single Point Calibration

A problem commonly encountered in inspection may be called a single point
calibration problem and is described as follows, in terms of a specific type of
example. Suppose that the percent U-235 of items is to be measured by NDA, and
further suppose that the expected range of percent U-235 values is quite narrow.
Assuming that no physical calibration standards are available, common practice
is to make NDA measurements on a small number of randomly selected items. These
items are then sampled with the samples measured by destructive analysis (e.g.,
mass spectrometer). The calculated average result for these samples becomes the
assigned standard value.

Mathematically, this problem reduces to a T1inear calibration with a zero
intercept with the added feature that the uncertainty in the assigned standard
value is taken into account. In the event the percent U-235 (or whatever other
quantity is being measured) varies over a range such that a single point calibra-
tion is not desirable, then the Method 2.5 may be applied. For Method 2.5, it
is assumed that the assigned standard values are known without error, which is
not strictly valid. However, for the application under discussion the uncertainty
in the assigned standard value based on the destructive analysis is quite small
relative to that of the NDA measurement and can safely be ignored. (If there
is concern on this point, one may use statistical methods that take into account
errors in both variables.)

Method 2.9 treats the single point calibration problem.

Method 2.9
Notation
y; = i-th NDA measurement on the standard
n = number of NDA measurements on the standard
y = average of the n measurements
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s2 = variance of the n measurements

My = value assigned the standard, based on destructive analyses
2 .

gg = variance of My

Results
The calibration equation is written
Y = gX
The parameter, B, is estimated by
B =Y/, (eq. 2.6.48)

At a given observed value, Yoo for a production item, the corresponding
Xg value is

X = yo/é (eq. 2.6.49)

The random and systematic error variances of x5 are, respectively,

V (x_) = s2/p2 (eq. 2.6.50)

-7
<
—

I

(Yoz/éz)(OE/ui + s2/ny2) (eq. 2.6.51)

Basis
The basis for estimating the parameter 8 is the same as for Method 2.5. The

formulas for Ve(xg) and Vs(xg) are based on methods for propagating errors to be
covered in Chapter 3.

Examples

EXAMPLE 2.9 (a)

NDA measurements of percent U-235 are to be made on Zr/U billets. No physi-
cal standards are available. A randomly selected billet is measured 10 times by
NDA and then sectioned to provide samples for destructive analyses. Some 14 deter-
minations are made of percent U-235 on these samples, and 21 determinations of
percent uranium. The response of interest is the percent U-235 in the billet.

The average of the 14 percent U-235 measurements is 92.878% with a standard
deviation on this average of 0.0091% absolute. For the 21 determinations of percent
uranium, the average is 1.6882% and the associated absolute standard deviation is
0.0010%. Thus,

ny T (0.92878) (1.6882) = 1.5680%
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The variance, o%, is calculated by propagation of error techniques to be
discussed in Chapter 3.

2 = (0.92878)2(.0010)2 + (1.6882)2(0.000091)%2

0

c

88.62 x 1078

The ten measurements by NDA are, in counts per unit time,

9149 9243 9219
9212 9245 9203
8923 9186
9203 9208
These give:
n = 10 y = 9179.1 s2 = 8846.54

Suppose a production billet is then counted to give 9031 counts. The per-
cent U-235 for that billet is then estimated by:

9179.1/1.5680 = 5854

w>
I

> >
|

o = 9031/5854 = 1.5427%

<

—~
>

~—
il

8846.54/(5854)2 = (0.0002581
(9031/5854)2(68.62 x 1078/(1.5680)2+ 8846.54/(10)(9179l)a

0.00002585

<
—
x
S
]

i

2.6.2.4 SAM-2 Calibration for Percent U-235

Another problem somewhat unique to inspection activities involves the cali-
bration of the NDA SAM-2 instrument for the measurement of percent U-235. The
problem differs from calibration problems discussed previously because there are
two measured responses, one corresponding to a background correction. The fact
that the background correction is now not a simple subtraction as was true for
other NDA applications already treated makes the problem more complicated, involv-
ing the estimation of another parameter. Method 2.10 indicates how this problem
may be treated.

Method 2.10
Notation
X; = percent U-235 for standard, i-th measurement
Yi5 = net count rate, source plus background, for i-th measurement
yzi = net background count rate for i-th measurement
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i

n = number of standard measurements

Y,-81Y, = B,X (calibration curve)

Results

Calculate the following quantities. A1l summations run from 1 to n.
S1= Lxy ¥y S2% L% Yyq S3.% 2. Y14 Yo
2
DIRLY Ss = 2¥5 So = 2

The parameters g, and B, are estimated by:

i
1]
1]

Sy

B1 = (S053-81S,)/S (eq. 2.6.52)
Bz = (5155-5,53)/S (eq. 2.6.53)
where S = 5055—53 (eq. 2.6.54)

The variances of él and of éz and the covariance between them are given by

V(1) = Sgo12/S + (S(Sy-5%)S¢05/52 (eq. 2.6.55)
V(By) = S5012/S + (S5 + 5554-2515253)05/52 (eq. 2.6.56)
CV(B1,B2) = SpV(B1)/Sg (eq. 2.6.56a)

In these equation, o12 and 0,2 are the varijances of ¥;i and y,i respectively
and are estimated from replicated data as the sample variances (see example 2.10 a).

. For a production item with measured responses yjg and y,o, the percent U-235
is xg- Its random and systematic error variances are respectively

= 2 2 3 /8 Y2 42
Vlxg) = 0, 2/8,% + (B /8 )% of (eq. 2.6.56b)
~ _ 2 ~ A2 ~ ~ ~ ~ AZ
Vo (xg) = (yzo V(B + xy V(g ) + 2 xoyzocv(sl,e?))/s2 (eq. 2.6.56c)

where 0,2 and 0,2 are again replaced by their estimates.

Basis

The parameters B8; and B, are estimated by assigning them values that minimize
% 2
Q = ?:':1 (‘yl'l - Blyzi - Bzxi)
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Taking the partial derivatives of Q with respect to g; and B,, and equating
to 0, one obtains

53-8155'8252= 0
S1-8152-8250= 0

from which the estimating equation (eq. 2.6.52) - (eq. 2.6.54) easily follow.
To derive the expressions for V(g1), V(,), CV(B1,82)5 Vr(xo)> and Vs(xo),

one must apply Method 3.12 to follow. The details of the derivation are not
included here. They are due to Neuilly (2.29).

Examples

EXAMPLE 2.10 (a)

Calibration data for a SAM-2 instrument are tabled. An inspected item
produces the count rates: y,, = 90,000 and y,,= 49,200. Estimate the percent
U-235 for that item and find the random and systematic error variances of the
estimate.

X = % U-235 ¥, (CPM) ¥, (CPM)
2.55 97950 49049
2.55 98008 49868
2.55 98130 49475
2.55 98218 49979
0.72 62268 46671
0.72 62569 46874
0.72 62345 47189
0.72 62802 47208

The quantities Sy-Ss are calculated

So = 28.0836 S, = 31,201,379,410
S, = 1,180,368.78 S, = 54,099,216,790
S, = 641,164.29 Ss = 18,669,048,990

Then, by (eq. 2.6.54),
S = 1.1320246 x 101!
so the estimates are

B, = 1.0551 = 17942.7

w
N
!
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Therefore, xo = 90,000/17942.7 - [(1.0551)/(17942.7)]49,200

2.123 % U-235

Next, 0,2 and 0,2 are estimated by

4 8
1 - -
~2 = - 2 - 2 =
C1 6 o1 (‘yl'l ‘yl) + s (.y11 y2) 363221
0,2 = 122,790

Assuming that o2 = 0,2, the estimate is the average of 36,221 and 122,790, or
79,506. This value is used in place of ¢;2 and o, in (eq. 2.6.55) and (eq. 2.6.56).
The results are:

"

V(By) = 4.168 x 1075  V(B,) = 27732

CV(B,,8,) = -0.9516
The random error variance of §0 is, from (eq. 2.6.56b),
v (io) = 79,506 (3.10616 + 3.45789) x 107°

r
5.29 x 107% ;VV,(x,) = 0.0228

1

The systematic error variance is found from (eq. 2.6.56c)

fl

(3.1339 + 3.8824 - 6.1748) x 107*
0.845 x 107%;VV_(x_.) = 0.0092

SN

The overall standard deviation of io is 0.0246% U-235. Since §0 =
2.123% U-235, this corresponds to a relative error standard deviation of 1.16%.

Vs(xo)

2.6.2.5 Several Calibration Data Sets; Linear Model

Measurement systems are recalibrated on a routine schedule because of diffi-
culties in maintaining a stable measurement system. This is especially true for
NDA measurement systems.

Assume that the calibration curve to be applied is the one based on the most
recent set of data. Further assume that the calibration may shift from one time
frame to another, the degree of shift being that described by prior calibrations.
Then, the current set of calibration curve parameters may be regarded as being ran-
domly selected from a population of parameters, just as prior sets of estimated
parameters were also selected.

The Tinear model with unknown intercept and constant variance is assumed.
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Method 2.11
Notation

Same as for Method 2.5. It is convenient to use this notation rather than
the Method 2.6 notation because each data set may not have the same value for X.

Results

For the most recent set of data, estimate the parameters of the calibra-
tion curve by following Method 2.6. Recalculate & from the equation

& =v-B8X (eq. 2.6.57)

List the corresponding paired &, 8 values from the previous calibrations.
Let the total number of calibrations, including the most recent one, be m. Given
the sets (aj, B4) for i=1, 2, ..., m, compute the sample variances among the aj
values, and the gj values, and the sample covariance between the &j and B85 values.
Denote these quantities by

2 2
s? s Sa 4 i
a B 5.8 respectively

For k measured responses (k = 1 is a special case), with got being the
total amount and Xy being Xot/k, and with Yo being similarly defined, the random
and systematic error variances are respectively

V(X,) = k62/B2 (eq. 2.6.58)
2 2
" - S ~ S» ZSA ~
V(X ) = k2x 2 o, By %8 (eq. 2.6.59)

(Yo-3)2 B2 B(yo-3)

In (eq. 2.6.58), 62 is calculated from (eq. 2.6.30) using the most recent
data set.

Basis

The conservative assumption is made that the most recent calibration curve
holds steady throughout the time frame in question. With this assumption, and
assuming that the true calibration curve Ties within the envelope defined by other
curves for the same measurement system, the error variance describing this curve
to curve variation becomes a systematic error variance. Under a less conservative
assumption, one could use an average calibration curve in some sense, using the
argument that the true calibration curve is fixed rather than variable, and the
purpose of recalibrating is to obtain a better and better estimate of this average
calibration. The true state of nature probably falls between these two extremes,
but the conservative position is advocated.

As a final note, although Method 2.11 is based on the constant variance case,
it may also be applied with little concern to the non-constant variance case. This
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is because the curve to curve variability is probably of dominant importance, and
the random error for a given curve is of lTittle consequence. In (eq. 2.6.58), simply
replace ko2 as calculated from {eq. 2.6.30) by

k
o2: , using (eq. 2.6.39)
=1

Examples

EXAMPLE 2.11 (a)

Suppose the data of Example 2.7 (a) represent the most recent set of calibra-
tion data. Further suppose that prior calibrations resulted in the following para-
meter estimates:

~

o) B
355 2414
730 2564
2831 2484

From Examp]e'2.8 (a), which uses the data of Example 2.7 (a), the parameter
estimates are

8 = 2618

v = 15854

% = 1.0659 x 10-%/18.14 x 107® = 5.876

a = 15854 - (2618)(5.876) = 471 , from (eq. 2.6.57)

2 2
The quantities sg, $B, and sg,p are calculated, using all four calibration
curve parameter estimates.

s% = 1,361,295 57 = 8024 s~,2 = -20,423

a’f

™ N

For the three production barrels of Examples 2.7 (a) and 2.8 (a), the reported
amount of U-235 was 28.63g, as calculated in the latter example.

From (eq. 2.6.58), with ko2 replaced by
k

c 2 =13.95 x 10°> ,
= 01

i=1

V(X

" ot) = 0.2035, as in Example 2.8 (a). From (eq. 3.6.59),
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) 1,361,295 8024 40846
(28.63) + -
(25459 - 471)2 (2618)% (2618) (24988)

2.2349 g2 U-235

Note that this is much larger than as previously calculated because the
curve to curve variation is now taken into account.

2.6.2.6 Linear Calibration; Cumulative Model

The so-called linear calibration with cumulative model is encountered in the
calibration of process vessels. The vessel in question must be a straight wall tank
with a minimum amount of internal piping in order for the Tinear model to apply.

For more complex situations, a statistical expert should be consulted.

In the calibration process, the response y is the Tiquid level measured by
some technique. Observations of the Tiquid level are made at values of the measured
volume, x. The variable x denotes the sum of measured increments, xj. The cali-

bration equation is of the form
y=oao"+ 87X
In general terms, the error structure may be written symbolically as

y=a" + g7z(x + ex) + e, (eq. 2.6.60)
where e, represents the error in the measured increment x and ey is the error in
determining the liquid Tevel y. The statistical procedure to uSe depends upon the
relative sizes of ey and ey.

If there is 1ittle error in determining the weights or volumes of the liquid
increments relative to the error in determining the liquid level, then the statis-
tical procedure is that covered in 2.6.2.1. If the reverse is true, then the
cumulative model applies. This terminology is properly descriptive because the
error in a given x is the cumulative sum of errors in the increments of volume
comprising x.

For the cumulative model, it is permissible to write the relationship in
the form

X = ot By (eq. 2.6.61)

and obtain estimates of o and g8 directly. Recall that in 2.6.2.1, it was first
necessary to estimate the parameters of the equation in which y was expressed as
a function of x and then use the equation in its inverse form.

For the cumulative model discussed in Method 2.12, it will be noted that only
the initial and final points are used in estimating the calibration parameters. The
intermediate points are used to verify that the relationship is in fact linear and
to provide an estimate of the variance of a measured increment.
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Method 2.12
Notation
(xl,yl) = initial point
(x,>y,) = final point

measured response {after calibration)

<
1t

>
[t}

estimated 1iquid level corresponding to Yo
o,B are defined by (eq. 2.6.61)

Results

The estimates of B and o are

(xy=x )/ {yp=y ) (eq. 2.6.62)

i

B

fl

& xl—é y1 (eq. 2.6.63)

To calculate the variance of 8 and of a, and the systematic error variance
of x_, first compute

0
n

S = %é% (x5-x5_1)2/(¥5-¥5_1) (eq. 2.6.64)

Then, ( ( )2

. Ypo¥1)S = (xp=x;)3
V() = —B 2 L (eq. 2.6.65)

(n-1) (y,-¥,)?

V(a) = y,y,V(8) (eq. 2.6.66)
Vo(xg) = (¥, v 4y 2-2yy IV(B) (eq. 2.6.67)

The random error variance of X, is zero since y, is assumed to be measured
without error in the cumulative model.

In tank calibration applications, one is often interested in transfer amounts
as determined by noting the difference between two measured responses, (YOZ'yo1)-
The transfer amount, B(yo,-Yg1) has a systematic error variance given by

)2 V(B) (eq. 2.6.68)
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For the total of m transfers,

m m A
Vg [;g% (Xppi - x011)] =[}§% (Ygoi - yOIT)}ZV(s) (eq. 2.6.69)

Basis

As is seen from (eq. 2.6.60), with e, assumed to be zero for the cumulative
model, the random errors for any two observations are not independent. Thus, it
is inappropriate to use the methodology of 2.6.2.1 or 2.6.2.2 which require inde-
pendence of observations.

As Mandel points out [2.10], one can remove this dependence by working
with successive differences, or incremental additions of liquid in this applica-
tion. The resulting estimates given in Method 2.12 are then weighted least squares
estimates. Equivalently, one can use the original data and apply Aitkin's method
of generalized least squares to obtain the estimates [2.11], as was demonstrated
by Jaech [2.12].

Examples

EXAMPLE 2.12 (a)

Tank calibration data are given as follows:

y (in) x_(1b) Yy X y X

33.48 5025.25 64.48 11036.05 95.37 17042.26
41.20 6525.75 72.20 12537.42 99.28 17795.36
48.95 8027.40 79.93 14038.39  104.47 18797.41
56.72 9534.40 87.62 15540.81 109.64 19798.46

Assuming that the cumulative model applies, Method 2.12 is applied. From
(eq. 2.6.62) and (eq. 2.6.63),

B = 14773.21/76.16 = 193.976

Q>
li

5025.25 - (193.976)(33.48) = -1469.07
From (eq. 2.6.64),
S = (1500.50)2/7.72 + (1501.65)2/7.75 + .... + (1001.05)2/5.17
= 2,865,680.853

The variances of the calibration parameter estimates are given by (eq. 2.6.65)
and (eq. 2.6.66).
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R (76.16)(2,865,680.853) - (14773.21)2
V(s) = = 0.0395
(11)(76.16)2

-
—
Q>
—t
]

(33.48)(109.64)(0.0395) = 144.99

Suppose that an observed manometer reading is 98.74 inches. The estimated
weight of the liquid in the tank is

Xg = -1469.07 + (193.976)(98.74) = 17684.12 1bs.
From {(eq. 2.6.67), its variance is

Vv (xo)

I}

[(33.48)(109.64) + (98.74)2 - 2(98.74)(33.48)} (0.0395)
268.94 1bs?

Suppose that 5 transfers are made as follows:
Manometer Reading

Transfer Before After Difference
1 101.62 34.91 66.71
2 104.29 36.18 68.11
3 97.01 33.99 63.02
4 88.15 35.07 53.08
5 100.72 37.66 63.06
Total 313.98

The estimated total weight of the transferred liquid is
(313.98)(193.976) = 60904.58 1bs.
Its variance is given by (eq. 2.6.69)

Vs (transferred amount) = (313.98)2(0.0395) = 3894.06 1bs?

2.6.2.7 Several Calibration Data Sets; Cumulative Model

The discussion of 2.6.2.5 is applicable to this section also, the difference
being that now the underlying model for any given calibration curve is the cumula-
tive model rather than the independent model.

Method 2.13
Notation
Same as for Method 2.12.

Results

For the most recent set of data, estimate the parameters of the calibration
curve by following Method 2.12. From the previous calibrations and including the
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most recent one, 1ist the o and g values. Let the total number of calibrations
be m. Given the sets (aj,Bi) for i =1, 2, ..., m, compute the sample variances
among the a; and the B; values, and the sample covariance between them. Denote
these quantities respectively by

o B &’E

Then, at an observed y,, the variance of the corresponding xo (which is a
systematic error variance, the random error variance being zero) is

Vs(xo) =S2ty, s‘3 +2y, sa,B (eq. 2.6.70)

For a transfer volume,

2
VS(on‘X01) = (Y02'¥01)25é (eq. 2.6.71)

For the total of m transfers,
4 i 2 .2
Vs[z; (xozi - Xo1i)] = {z; (yozi - yOIiﬂ S (eq. 2.6.72)
i=1 i=1 8
Basis
The basis discussion for Method 2.11 is also applicable here.

Examples

EXAMPLE 2.13 (a)

Suppose that the data of Example 2.12 (a) represent the most recent set of
calibration data. Further suppose that there were two prior calibrations with the
following parameter estimates:

_a _ B
- 1408. 77 192. 792
-1505.74 194.250
Then,
s? = 2397.33
o
2
s = 0.60045
S~ ~ = =37.1376
(158
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Suppose that y, = 98.74. The corresponding xo value is 17684.12 1bs., from
Example 2.12 (a). Its systematic error variance is given by (eq. 2.6.70)

Vs(xo)

I

2397.33 + (98.74)2(0.60045) + (197.48)(-37.1376)
917.54 1bs?

2.6.2.8 Nonlinear Calibration

Thus far in the discussion of calibration equations, it has been assumed
that the calibration curve is linear. In some applications, this assumption may
not be valid. In NDA applications, for example, depending on the range of the
calibration, the curve may depart from linearity.

Assume that, at worst, a nonlinear calibration curve may be represented
by a quadratic model. The adequacy of this assumption has been demonstrated
in a number of NDA applications. Further assume a constant variance, zero inter-
cept model. For applications that do not satisfy these assumptions, qualified
statistical advice should be sought. (An examination of the residuals is helpful
in checking on the validity of the assumptions.)

Method 2.14
Notation
(yi,xi) = j-th data point; i=1, 2, ..., n
o, B = parameters of the model
Yi T ox; + Bx?
g2 = variance of y; at given x,
Results

Calculate the following quantities (all summations run from 1 to n)

S = 1x? S = 1x3 S = Ix%
1 1 2 1 3 1

S = IX.Y. S = zx?y. S =5§ -§?
I 1y1 5 1y1 6 13 2

Then, the parameter estimates are:

= (S55,-5,55)/Se (eq. 2.6.73)

Q>

= (51S5-5554)/S¢ (eq. 2.6.74)

o>
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(n-2)62 = > (y. - ox,-px2)° (eq. 2.6.75)
o 5%

For a production item, the measured response is y,. The corresponding x value
is the solution of the equation
Bx2 + ax, - yo = 0

The solution is

X, = -a (1- \/1+4sy0/&2)/2é (eq. 2.6.76)

The estimated variances of the estimated parameters, and the estimated
covariance between them are:

V(B) = S162%/S¢ (eq. 2.6.77)
V(a) = S362/Sg (eq. 2.6.78)
Cv(a,B) = -S5,02/Sg (eq. 2.6.79)

The systematic error variance of xg is denoted by Vs(xo) and is given by
v (x)) = x2 [v(&) + X2 V(R) + ZXOCV(&,E)}/RZ (eq. 2.6.80)

where
R =a+ 28 (eq. 2.6.81)
The random error variance of Xq is

Vr(xo) = G2/R? (eq. 2.6.82)

Consider k measured responses: Y612 Yoo +e--2 Yok and the corresponding

x values: Xg1s Xg2, -..» Xgk. Letting xqot be the sum of these xg;i values, consider
the random and systematic error variances of xgt. To calculate tﬂese quantities,
first compute

k k
Sy = > X ./R, Sg = 2. X .2/R, Sg = . l/R.?
& Toit iz of T o
with Rj defined in (eq. 2.6.81) for X4i. Then,
VS(XOt) = §2 V(a) + S3 V(B) + 257S4CV(a,B) (eq. 2.6.83)
Vr(xot) = S402 (eq. 2.6.84)

Basis
The parameter estimates are least squares estimates, i.e., are found by
minimizing
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n
Q = 2: (yi - axi - BXiZ)Z
i=1

The quantity o2 is estimated by replacing a« and 8 in this expression by their

estimates and dividing Q by (n-2), the degrees of freedom.

The expressions for the variances of the quantities of interest are based

on error propagation methods to be discussed in Chapter 3.

Examples

EXAMPLE 2.14 (a)

An NDA 1instrument is calibrated for use in measuring the amount of U-235 in
containers of solid waste. Calibration data are as follows:

xi = g U-235

g
1.13
4,52
8

yi = net count rate/100 sec.

The quantities are calculated.

S, = 2759.8254

Sy, = 6,270,327.66 Ss

Sy

By (eq. 2.6.73) and (eq. 2.6.74),

a = 2602

For x. = 1.13, 4.52, ..
lated. Thesé are used in computing 52 from (eq. 2.6.75)

Pi = 2602 xi - 12.624x52

X

1.13
4.52
8.03
11.03
16.03
21.61
27.33
32.88

B

2629
11455
19512
27365
38701
50136
62111
71647

72,124.22288
162,032,220.2

-12.624

S3

Se

.., 32,88, the quantities Py = axj

2924
11503
20080
27164
38466
50334
61683
71906

62 = E(yi—Pi)z/G = 132,841

2-52

¥i-Pi

-295
-48
-568
201
235
-198
428
-259

2,030,156.602
400,974,230.0

+ Bx;2 are calcu-
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The quantities V(B), V(a), and CV(a,B) are calculated from (eq. 2.6.77),
(eq. 2.6.78), and (eq. 2.6.79).

V(g) = 0.91432
V(a) = 672.58
CV(a,B) = -23.89%4

A production item is now counted, the net count rate being 32,145 counts/
100 sec. From (eq. 2.6.76), the corresponding amount of U-235 for that item is

= -2602 (1-V 1-0.23975)/(-25.248)
13.20 grams

bl
|

Its random and systematic error variances are calculated. First, from
(eq. 2.6.81),

R = 2269
Then, from {(eq. 2.6.80) and (eq. 2.6.82),

Vs(xo) = (13.20)2 (672.58 + 159.31 - 630.80)/(2269)2
= 0.00681
Vr(xo) = 132,841/(2269)2 = 0.02580

Three additional production items are now counted, the estimated amounts of
U-235 being 4.11, 7.69, and 19.83 g respectively. The total U-235 for the four
items is Xot = 44.83 g. To find the systematic and random error variances for Xg,
apply (eq. 2.6.83) and (eq. 2.6.84). First compute S;, Sg, and Sg.

: o 2 1/p 2
l. X; Ri Xi/Ri Xs /Ri /Ri

1 13.20 2269 0.00582 0.07679 1.9424 x 10-7
2 4,11 2498 0.00165 0.00676 1.6026 x 10-7
3 7.69 2408 0.00319 0.02456 1.7246 x 10-7
4 19.83 2101 0.00944 0.18716 2.2654 x 10-7

S, = 0.02010  Sg = 0.28852  Sg = 7.5350 x 10-7

0.27173 + 0.07611 ~ 0.27713 = 0.07071

Vs(xot)
v

n

r(xot) 0.10010
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2.6.2.9 Nonlinear Calibration; Several Calibration Data Sets

The decision of 2.6.2.5 is applicable to this section also, the difference
being that now the underlying model for any given calibration curve is the quadra-
tic model with zero intercept, discussed in 2.6.2.8.

Method 2.15
Notation
Same as for Method 2.14.
Results
For the most recent set of data, estimate the parameters of the calibration

curve by following Method 2.14. From the previous calibrations, and including the

most recent one, list the & and 8 values. Compute the sample variances of thezm
a's and B's, and the sample covariance between them, calling the results s3, sé,
and sg, g respectively. Then, at an observed yq5, the systematic error variance of

the corresponding xg is given by (eq. 2.6.80) with:
V(a) replaced by si

2

V(R) replaced by Sa

CV(&,8) replaced by S48

_ The random error variance of xg is given by (eq. 2.6.82), using the value
for o2 from the most recent calibration.

For k measured responses, Xpt has systematic error variance given by
(eq. 2.6.83), making the same replacements for V(a), V(B8), and CV{a,R) as just
indicated. For the random error variance of xpt, use (eq. 2.6.84) with the value
of 2 based on the most recent calibration.
Basis
The basis discussion for Method 2.11 is also applicable here.

Exampies

EXAMPLE 2.15 (a)
Suppose that the data of Example 2.14 (a) represent the most recent set of

calibration data. Further suppose that there were four prior calibrations with
the following parameter estimates:
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& B
2944 -22.761
2656 -12.648
3214 -34.792
2573 ~11.219

Then, based on the 5 sets of values:

sa = 7 894
sg = 101.224
s§,3 = -2755.20

From Example 2.14 (a), at y, = 32,145 counts/100 sec., Xo = 13.20 g and
R = 2269. Thus, using the data from all five calibrations,

Vs(xo)

1i

(13.20)2(75894 + 17637 - 72737)/(2269)%

0.70375 g2

Again using the data of Example 2.14 (a), for the four production items,
Xot = 44.83 g, and

Vs(xot) = 30.6619 + 8.4263 - 31.9562 = 7.1320 g2

2.6.3 Measurements of Non-Standard Materials

Thus far, estimation of measurement error parameters has been based on data
resulting from the measurement of physical standards. Techniques have been given
for estimating error variances based on such data, and for giving guidance with
respect to the need for bias correcting the data.

Although, as was repeatedly shown, analyses of standards data provide esti-
mates of random error variances as well as systematic, the emphasis with such data
is on the systematic errors. Random error variances often tend to be underestimated
for physical standards for a number of reasons; it is difficult to include in the
preparation of standards all the factors that might affect measurement repeatability.
Usually, it is better to base estimation of random error variances on data that re-
sult from repeat measurements of production items. Techniques for doing this are
covered in this section, with each technique discussed keyed to a given situation.

It is also noted that if one is willing to make certain assumptions about
data structure, then systematic error variances may also be estimated from measure-
ments made on production items. Instances in which this may be done, and techni-
ques for doing so, are indicated as the various situations are covered.

The first topic in this section deals with the analysis of variance as
applied to replicate measurement data.
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2.6.3.1 Replicate Measurements; Analysis of Variance

Replicate or repeat measurements are made on the same or similar production
jtems. The scatter in the repeat measurements is used to estimate the random
error variance using a statistical technique known as the one way analysis of
variance.

It is important to keep in mind just which measurement error parameter is
being estimated in a given case. Depending on how the measurements are performed,
for example, the random error variance being estimated may be the sum of sampling
and analytical error variances, say, or it may be just the analytical error variance.
This will be pointed out in the examples.

In Method 2.16, the one way analysis of variance as applied to this problem
situation is discussed.

Method 2.16
Notation
xij = observed value for j-th measurement on production item i
n; = number of measurements made on production item i
n = total number of measurements (sum of n; values)
m = number of production items measured
02 = random error variance
Results

Following Method 2.4, o2 i§ estimated by (eq. 2.6.16). That is, ¢2 is the
same calculated quantity as was of in Method 2.4.

Basis

The basis is the same as for Method 2.4.

Examples

EXAMPLE 2.16 (a)
Five cans of UOﬁ powder are weighed at random and at routine intervals on a
a

given scale. Assume that the actual contents do not change in weight, and estimate
o2 from the following data (weights in kg).
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Can 1 Can 2 Can 3 Can 4 Can 5

22.038 22.616 21.418 19.811 24 .095
22.041 22.615 21.425 19.825 24.120
22.033 22.617 21.414 19.808 24.096

22.048 22.608 19.802 24.105
22.603 19.795 24.105
22.610 19.799 24.118
24.113
Here, ny = 4 no, =6 ng = 3 n, = 6 ng =7 n=26 m
T, = 88.160 T, = 135.669 Ty = 64.257
T, = 118.840 T = 168.752
S, = (88.160)%/4 + ... + (168.752)2/7
= 12809.04773
S, = (22.038)2 + (22.041)2 + ... + (24.113)?
= 12809.04923
Then,
62 = (12809.04923 - 12809.04773)/(26-5)

1

0.00007143 kg2

71.43 g2

2.6.3.2 Duplicate Measurements; Paired Differences

If the replicate measurements of 2.6.3.1 are, for all items, duplicate
measurements (i.e., two measurements per item), then the analysis of the data is
simplified. Of course, the one way analysis of variance technique of Method 2.16
may also be applied to duplicate data to give identical results, but there is no
need to perform this more difficult analysis.

Method 2.17

Notation
Xis Yi = the two measurement results for item i
k = number of items measured in duplicate
di = the difference, XY
02 = the random error variance for the measurement method in

question
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Results

_ There are two estimators of o2 that may be used. Denote these by 62 and
o2 respectively.

K
g% = d12/2k (eq. 2.6.85)
i=1
k df - ¢ £ d;)2/
d? - (LI, d:)2/k
G2= 3 L 1=l 1 (eq. 2.6.86)
=1 2(k-1)

The estimator o2 is preferred if there is assurance that the xi and yi values
are not relatively biased. The estimator &2 is preferred if there is some reason
to believe that such a bias might exist, e.g., if all of the initial measurements
were made in one time frame and all of the repeat measurements in another.

Basis
The bases for the two estimators are very simple. The expected values of

o2 and o2 are both o if xj and yj have the same expected value for all i. If they
have different expected values, then the expected value of o2 is o2.

Examples

EXAMPLE 2.17 (a)

Sampled UO, sintered pellets were split into two parts with one sample analyzed
for percent uranium by the gravimetric method and the other retained for later analy-
sis by the same method. Over a given time period, 42 samples were thus analyzed.

The difference data (dj values) are tabled. Values are in percent uranium.

-.003 .003 .002 .028 .000
-.021 .021 .006 .008 .000
-.018 .045 .011 .009 -.013
.034 .040 .015 -.005 -.002
.025 -.007 .031 .005 -.004
-.001 .003 .020 .008 -.015
.014 -.002 .009 .002
-.005 .018 -.013 -.001
.011 -.012 .019 .004

For these data,

Y2 42
2 di = 0.269 2. d.2 = 0.011339
i=1 i=1
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Thus, by (eq. 2.6.85) and (eq. 2.6.86), the two estimates are:
62 = 0.0001350 62 = 0.0001173

The fact that o2 is somewhat less than o2 is an indication that there may
be a relative bias between the two sets of measurements.

EXAMPLE 2.17 (b)

Containers of grinder sludge are resampled after having been in storage for
varying lengths of time. The results in percents uranium for 15 containers are as
follows.

X Y 9 X Y 4
77.72  80.03  -2.31 77.30  78.12  -0.82
77.64  79.24  -1.60 80.00  78.76 1.24
77.88  77.68 0.20 73.95  73.92 0.03
74.98  76.82  -1.84 75.69  72.87 2.82
76.67  70.41 6.26 75.82  77.81  -1.99
76.54  78.60  -2.06 81.48  77.23 4.25
70.43  68.01 2.42 74.35  78.67  -4.32
78.41  75.95 2.46

For these data,

15 15
Y d; = 4.74 > d3 = 117.5092
i=1 i=1

By (eq. 2.6.85) and (eq. 2.6.86), the two estimates are:
g2 = 3.9170 o2 = 4,1433

In this example, o? measures the combined effects of sampling and analytical
errors. One could obtain separate estimates of these two errors by making repli-
cate analyses of at least some of the samples. In this particular instance,
however, sampling error is clearly dominant and so o2 may be interpreted as being
the sampling error variance. In the previous example, the reverse was true, i.e.,
the sampling error may be assumed to be negligible so that o2 measured the analy-
tical error.

2.6.3.3 Grubbs' Analysis; Two Measurement Methods

In the paired data analysis method just treated, the assumption is made that
both measurements are made by the same measurement method or, if the methods are
different, their random error variances are the same. In many safeguards appli-
cations, this assumption is not valid. Paired data occur naturally, for example,
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in shipper-receiver comparisons and for inspection data in which operator and in-
spector measurements are compared on a paired basis. In both instances, there may
be Tittle basis for assuming that the measurement error parameter values are the
same for both parties; their measurement methods may in fact be quite different.

By appropriately treating the data, it is possible to obtain estimates of
each of the two random error variances. The caution is made, however, that the
resulting estimates may be of disappointing quality. In order for the estimates
derived from this approach to be useful, it is necessary that the measurement errors
be large relative to the scatter among the items being measured. There are other
requirements imposed on the data set, as discussed by Jaech [2.13].

A number of statistical methods are given below. Method 2.18 gives the
Grubbs' estimators and provides alternate estimators when one of the estimates is
negative. In Method 2.19, an indication is given of what estimates to use when
the random error of measurement is known for one of the two parties. This occurs
in inspection situations, for example, when the inspector's error variance may be
known based on a large body of past experience. Method 2.20 indicates how and under
what conditions one can estimate systematic error variances from paired data.
Method 2.18

Notation

Xx. = measured value for item i, one measurement method
y. = measured value for item i, second method
n = number of pairs of values

s2 = sample variance for the X; values

s§ = sample variance for the y. values
Sy sample covariance for the (Xi’yi) values
012 = random error variance, method 1
¢ 2 = random error variance, method 2
2
Results

The parameter estimates are

812 = si - Sy (eq. 2.6.87)
822 = s;’—, - Syy (eq. 2.6.88)
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In the event 812 is negative, set the estimate equal to zero. The parameter
0,2 is then estimated by

2 2 .
s2 + s‘y 2sxy (eq. 2.6.89)

Equation (eq. 2.6.89) also provides the estimate of 0,2 should 052 of
(eq. 2.6.88) be negative.

If syy 1s negative, replace it by zero in estimating 012 and 0,2,
Basis

The method of estimation is due to Grubbs [2.14]. When one of the estimates
is negative, the constrained maximum likelihood estimates apply [2.15].

Examples

EXAMPLE 2.18 (a)

Samples are taken from containers of grinder sludge and split. One sub-
sample is analyzed by a titration method and the second by a spectrophotometric
method. The analytical results are displayed below, in percent uranium,

Container Titration(xij) Spectrophotometric (yi)
1 75.44 73.96
2 77 .46 75.98
3 72.22 74.15
4 75.85 75.98
5 74.28 77.44
6 76.82 77.61
7 74.24 70.30
8 77.87 80.27
9 75.32 78.75

10 76.17 73.70
11 73.21 77.93
12 75.65 74.70
13 76.93 73.38
14 72.36 73.67
15 79.15 76.01
16 75.90 77.01
17 77.03 76.71
18 75.90 73.71

The sample variances and covariance are
2 = 2 - =
Sk 3.433035 Sy 5.751694 Sxy 1.317212
By (eq. 2.6.87) and (eq. 2.6.88)
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52 = 2.115823 (titration)
8% = 4.434482 (spectrophotometric)

Suppose that one of the two random error variances (say o%) may be assumed

known. One might decide to use this information in estimating of. This may not
be a good decision. Method 2.19 provides a way to determine which estimate of 0,2
to use when o,2 is known.

Method 2.19

Notation

Same as for Method 2.18. Also,
2
9 = variance of characteristic from one item to the next, excluding
effect of measurement errors

)

2 is estimated
(cs]J e ted by Sxy

R = 0,2/0,2

Results

If knowledge about the value of ¢,2 is ignored, then 012 is estimated by

(eq. 2.6.87).

If the value of 0,2 is taken into account, then ¢, is estimated by

5,2 = Si + 5§ - sty - 0,2 (eq. 2.6.90)

The expression in (eq. 2.6.90) is identically the same as provided by find-

ing each paired difference, calculating the variance of the differences, and sub-
tracting o,2.

The choice of which of the two estimators is preferred depends on two quanti-

ties; A and T, where

A

(3R + 2)/(R + 1) (eq. 2.6.91)
T = 0,%/0,2 (eq. 2.6.92)

The following rule applies:
(1) If T<2, use g2
(2) If T>3, use 0,2

(3) If 25T<3, use g;? if A<T; otherwise, use ¢;2
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Basis

The criterion for selecting one estimator over the other is the sampling
variance of each estimator. The estimator with the smaller variance is regarded
as the better one. For details, see [2.16].

Examples

EXAMPLE 2.19 (a)

In Example 2.18 (a), suppose that 0,2 = 4.00 is a known quantity. The quan-
tity oﬁ is not known, but is replaced by its estimate, sxy = 1.317. Then, by
(eq. 2.6.92),

T=1.317/4.00 = 0.33

Since this is less than 2, use the estimator 5,2, i.e., ignore the know-
ledge about the value of ¢,2.

Normally, one obtains information about systematic errors by measuring stan-
dards, and not production items. However, by making certain assumptions, it is
possible to obtain estimates of systematic error variances from paired data also.
In a sense, such estimates may be more realistic than those based on standards
data.

Two key assumptions are made:

(1) Both measurement methods are indeed applied to the same items, i.e.,
the item being measured in no way changes in true value after the
first measurement is made.

(2) The systematic error or bias associated with each of the two mea-
surement methods is a random variable with zero mean and variance
that is called the systematic error variance for that method.

With these assumptions kept in mind, Method 2.20 is now considered.
Method 2.20
Notation

Same as for Method 2.18. Also

>
&
{]

average of the X5 and Y; measurements respectively

systematic error variance for method I

Q
n

o2, = systematic error variance for method 2
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Results

. . 2 2 .
The sum of the two systematic error variances, og;and ogy, s estimated by

22 4 oa
0'51 g

o7 = (X =92 - (sf+ 8T -2, )/ (eq. 2.6.93)

Y

One cannot assign separate values to the two parameters unless: (1) one
value is known; or (2) the two values are the same (or one is a known function of
the other).

In passing, it is noted that the expression (S§ +s2 . ZSxy) is the same as
the variance of the di = (Xxi - y4) values. This latter value is, of course, easier
to compute.

Basis

Under the stated assumptions, the expected value of (X - ¥)2 is

ot ot (e o)
so that (8%, + 62,) is found by equating the observed value (x-y)? to its expected
value and réplacing (o,2 + o3) by its estimate.

If the bias for either method shifts over some time frame, and if data are
collected over several time frames, then a more complex statistical analysis is per-
formed. For an illustrative example, see [2.17].

Examples

EXAMPLE 2.20 (a)

When nitrate solution is being loaded into a recovery plant for further puri-
fication, samples are drawn from each container and analyzed for percent plutonium
using two different analytical techniques. Sample data from 20 containers are
given below.

Sample Xj Y; d; Sample X; Y5 d;
1 13.11 13.00 0.11 11 13.26 13.01 0.25
2 15.14 14.90 0.24 12 11.00 11.06 -0.06
3 13.22 13.01 0.21 13 12.74 12.75 -0.01
4 13.67 13.65 0.02 14 13.69 13.69 0.00
5 10.48 10.61 -0.13 15 10.43 10.40 0.03
6 15.37 15.11 0.26 16 11.38 11.30 0.08
7 12.37 12.40 -0.03 17 12.26 12.27 -0.01
8 12.50 12.63 -0.13 18 12.89 12.70 0.19
g 11.46 11.71 -0.25 19 13.33 13.30 0.03

10 14.28 14.21 0.07 20 11.88 11.90 -0.02
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In applying (eq. 2.6.93), replace (x -_y)? by its equivalent, d2, and
replace (s% + s§ - 2sxy) by its equivalent, sg. The values are
d = 0.0425 d2 = 0.001806 s = 0.018883
Then,

~2 +82
951 S2

0.001806 - 0.018883/20

0.000862

Suppose og, were known to be 0.02% Pu. Then,

g i = 0.000862 - (.02)2 = 0.000462
s
¢ = 0.021% Pu

s1

If there were no prior knowledge about either parameters, then it might be
reasonable to make them equal so that each Os% would be estimated by 0.000862/2 =
0.000431.

2.6.3.4 Grubbs' Analysis; More Than Two Measurement Methods With Constant
Relative Bias

In the discussion of Section 2.6.3.3, it was pointed out that the estimates
of the two measurement error random variances were not useful unless the measure-
ment errors were large relative to the item to item variation. When more than two
measurement methods are involved, this difficulty disappears; the quality of the
estimates is then not a function of the relative sizes of the random errors of
measurement.

Method 2.21 gives the technique for estimating random error variances for
each of N measurement methods with N 2 3. Each item is measured no more than once
by each of the N methods. It is assumed that any relative biases among measure-
ment methods are constant over all items measured. This assumption is relaxed in
2.6.3.5.

Method 2.21
Notation
Xip = measured value for item k, method i
N = number of measurement methods
n = number of items measured
dijk = Xy - %jk for all pairs i, J
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<
Il

i sample variance among the n di'k values for each i,j. There
J are N(N-1)/2 vij values

Q
]

random error variance, method i
Results

For each method i, calculate

>
Si 7 Vij (eq. 2.6.94)
Also sum all the Vij values and call this sum V. Then, c% is estimated
from
8% = Si/(N-Z) - V/(N-1)(N-2) (eq. 2.6.95)
Basis

The method of estimation is given in [2.14] and in [2.18]. The latter
reference contains an example for N = 6 measurement methods.

Examples

EXAMPLE 2.21 (a)

Turnings from a zirconium-uranium billet are distributed among three labora-
tories as indicated below for analysis of percent uranium. The results are
tabulated.

\

Xik (% U)
Turn
Number
(k) Lab 1 Lab 2 Lab 3

1 77 81 78
2 85 - 90
3 80 -- 84
4 85 81 --
5 90 79 88
6 -- 82 90
7 - 75 88
8 92 34 89
9 81 84 -
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The dijk values are calculated

d d

K 412k %13k 923k
1 -4 -1 3
2 - -5 -
3 -- -4 --
4 4 -- -
5 11 2 -9
6 - - -8
7 - -- -13
8 8 3 -5
9 -3 -- -
The variances, Vij’ are
Vio = 43.70 Vig = 12.50 Vog = 35.80

Then, V =43.70 + 12.50 + 35.80 = 92.00

Sy = 43.70 + 12.50 = 56.20
S, = 43.70 + 35.80 = 79.50
Sy = 12.50 + 35.80 = 48.30

By (eq. 2.6.95),

612 = 56.20 - 92.00/2 = 10.20 3 G, = 3.19% U
62 = 33.50 3 &, = 5.79% U
62 =2.30 ;6,=1.52% U

If one can make the same assumptions as were made prior to Method 2.20,
then estimates of systematic error variances may also be derived from data of
this type. The technique for obtaining these estimates is given by Method 2.22.

Method 2.22
Notation

Same as Method 2.21. Also,

x; = average of the Xik values
n
= Y Xj /N , where
k=1
n = number of measurements for each method
Ogi = systematic error variance for method i
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Results
First, perform the calculations of Method 2.21 to obtain estimates of the

random error variances, 8%. Then, the sum of the systematic error variances, o¢%,
is estimated by

52/n . 2.6.96
X1 i=1 ci/ (eq )

e O
I
=
172}
1o
1
=

where s%i is the sample variance among the N %; values.

One cannot obtain separate estimates of the systematic error variances with-
out additional information. For example, one might be willing to assume that all
systematic error variances are the same, or are related to one another in some known
way.

Basis
The result in (eq. 2.6.96) is based on the fact that the expected value of
NS)-(.I is
N N
2, of; * 2 of/n
i=1 i=1
so that
N 2
Eéi °si

2
is found by equating the expected value of Nsyj to its observed value and replacing
0% by its estimate for all 1.

Examples

EXAMPLE 2.22 (a)

One cannot perform this analysis on the data of Example 2.21 (a) because it
is necessary that all measurement methods measure all items in order to obtain esti-
mates of the systematic error variance. This assumption was not necessary when using
Grubbs' method to estimate random error variances.

EXAMPLE 2.22 (b)

Percent plutonium analyses on sintered pellet samples are reported for 13
samples by four laboratories. Analyze the following data to find estimates of the
random error variances. Assume that all four laboratories have the same systematic
error variance and obtain its estimate.
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Sample Lab 1 Lab 2 Lab 3 Lab 4
1 4.62 4.57 4.64 4.56
2 4.61 4.67 4.61 4.55
3 4.72 4.71 4.80 4.79
4 4.66 4,67 4.65 4.66
5 4.68 4.61 4,72 4,52
6 4.67 4.67 4.77 4.64
7 4.69 4.67 4.71 4.67
8 4.68 4.67 4,75 4,65
9 4.72 4.69 4.71 4,69

10 4.70 4.70 4.73 4.66
11 4.59 4.60 4.66 4.58
12 4.59 4.55 4.63 4.59
13 4.61 4.63 4.66 4,64

Method 2.21 is followed. The columns of differences, djji, are found.

d

12k 13 14k 23k 24k 34k
.05 -.02 .06 -.07 01 08
-.06 .00 .06 .06 12 06
.01 -.08 -.07 -.09 -.08 01
-.01 .01 .00 .02 .01 -.01
.07 -.04 .16 -.11 .09 20
.00 -.10 .03 -.10 .03 13
.02 -.02 .02 -.04 .00 04
.01 -.07 .03 -.08 .02 10
.03 01 .03 -.02 .00 02
.00 -.03 .04 -.03 .04 .07
-.01 -.07 .01 -.06 .02 .08
.04 -.04 .00 -.08 -.04 .04
-.02 -.05 -.03 -.03 -.01 .02
The variances, vij are:
vi2 = 0.001117 voz = 0.002397
viz = 0.001214 Vo, = 0.002559
viy = 0.002876 vay = 0.003177

Then
vV =0.00117 + ... + 0.003177 = 0.013340
S; = 0.001117 + 0.001214 + 0.002876 = 0.005207

S, = 0.006073
Sy = 0.006788
S, = 0.008612
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From {eq. 2.6.95),

>
N
I

0.005207/2 - 0.013340/6 = 0.000380
53 = 0.000813

Q
RS
]

6% = 0.001171

52 = 0.002083

Method 2.22 is now followed. The means of the four columns of data are

found
X, = 4.6569 Xo = 4.6469 X3 = 4.6954 X, = 4.6308
The sample variance among these four mean values is
s2. = 0.000754
X
From (eq. 2.6.96),
I
351 =4 &g = (4)(0.000754) - (0.004447)/13
i=1
from which

82 = 0.000668

2.6.3.5 More Than Two Measurement Methods With Non-Constant Relative Bias

The problem under discussion is the same as that in 2.6.3.4 except for an
important distinction. In the methodology of 2.6.3.4, it was assumed that any rela-
tive biases among measurement methods are constant over all the items measured. In
Method 2.23 to follow, this assumption is no longer made.

Method 2.23

Notation
X512 N, and n as in Method 2.21
s% = sample variance among the X3k values, method i
Sij = sample covariance among the Xik and Xjk values, methods 1 and j
My = true (but unknown) value for item k
oi = variance among the uy values
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aj», Bi = parameters describing the relative bias among measurement
methods, defined by the model

E(xi ) = a5 * Bs uy (eq. 2.6.97)

random error variance, method i

Q
i}

Arbitrarily, set g; = 1. This does not affect the estimate of the o
parameters.

—

Results
For i = 2, 3, ..., N, calculate
. INI / 1/ (N-2)
: = S../s.. . 2.6.
RPN fea- £:6:58
Calculate
[N 2/ (N-1) (N-2)
= S .S .J/S.. . 0.
62 1;; r 1J/ i (eq. 2.6.99)
j<i,#1

The parameters are estimated by

3? = s2 - é? 33 , where 8; =1 (eq. 2.6.100)
;

Basis

Two methods of estimation have been suggested for this model [2.19],
[2.20]. The latter reference forms the basis for the estimation Method 2.23.
See also [2.21] and [2.22].

Examples

EXAMPLES 2.23 (a)

In Table III of [2.17], data are given corresponding to 5 NDA measurements
of plutonium-bearing solid wastes. After transforming the data to natural log-
arithms, Method 2.21, based on the constant relative bias model, was applied,
giving the following 5 estimates as reported in [2.17].

62 = 0.07162 o2 = 0.00413
62 = 0.00100 2 = 0.04076
62 = 0.00805

3
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The data are re-analyzed after removing the assumption that relative biases
are constant. The transformed data are given below as natural logarithms of grams
of plutonium.

Measurement Method (See [2.17])

Container 1 2 3 4 5
1 3.906 3.906 3.661 2.944 2.923
2 1.740 1.792 1.649 1.030 1.131
3 1.131 1.482 0.956 0.693 0.693
4 2.128 2.128 2.015 1.308 1.386
5 3.144 2.760 2.542 1.946 1.705

The appropriate variances and covariances are calculated.

s? = 1.235259 s, = 1.043854 S,y = 0.852077
S% = (0.920771 S13 = 1.112266 S,5 = 0.802107
s3 = 1.032645 Sy = 0.972217 Sy, = 0.893879
s2 = 0.789404 s1s = 0.897719 S35 = 0.847349
s2 = 0.711128 S,3 = 0.963278 Sys = 0.741087
From (eq. 2.6.98),

n 1/3

Bz = (523524525/513514515) = 0.878584

N 1/3

By = (523534535/512514515) = 0.928645

. 1/3

By = (524534345/512513315) / = 0.815103

A 1/3

Bs = (S25535545/512513511) = 0.764160

From (eq. 2.6.99),
1
(513512 S14S12  S14S13 S15532 5155313 515314) /6

S23 Soy S3y Sos S35 Sus

32
u

1.188312

The parameter estimates are then given by (eq. 2.6.100).

612 = 1.235259 - (1) (1.188312) = 0.04695

5,2 = 0.920771 - (0.878584)2 (1.188312) = 0.00350
G352 = 0.00787

a2 = ~0.00010 (=0)

552 = 0.01722

2-72



- 75 -

In comparing these estimates with those based on the constant relative bias
model, it is noted that the results are quite different. The model assumption is
obviously quite important. With so few data points, it is difficult to determine
with any confidence which model is the more appropriate one in this instance. In
[2.20], expressions are given for the sampling variance of Bi which will permit
testing whether or not the slopes differ significantly from unity, i.e., whether or
not the constant relative bias model applies.

2.6.3.6 Combining Parameter Estimates from Different Experiments

Estimates of measurement error parameters will often come from a number of
data sources or experiments. In application, one requires a single estimate of each
parameter, one that is the "best" estimate in some sense. The problem of how to
obtain such an estimate is covered by Method 2.24.

Method 2.24
Notation
There are n observed varijances, where
v. = j-th observed variance

J
The expected value of vj is of the form

k
& 13
where 65 = i-th measurement error parameter, i =1, 2, ..., k
5 ° known constant

For example, 6; may be the random error variance due to sampling and 6, may
be the random error variance due to analytical for a given analytical method. If
12 containers are sampled with the samples all analyzed in duplicate, and if the
observed variance among the 12 results is, say, 100 units2, then, assuming that the
containers have the same nominal value for the characteristic of interest (e.g.
percent uranium), one estimating equation would be

6, + 0.5 6, = 100

Assume that the vj have different sampling variances, and hence, should be
weighted differently. Further assume (for the moment) that each weight is known:

wj = weight associated with vj
Results
A k by k matrix, A, is formed. This is a symmetric matrix whose element in
row i and column h is

2-73



- 76 -
n
dip ~ & W54 35%h; (eq. 2.6.101)

Ak by 1 column matrix, V, is formed. In row h, the element is

n
Vh = ;ga chhjvj (eq. 2.6.102)

Invert A to give A"1 and perform the matrix multiplication
A-ly

The element in row h of A-1V is the estimate of the parameter 8-

Basis

The weighted Teast squares estimation method is used [2.23]. If an un-
weighted analysis is performed (i.e., if all the vj values have about the same
sampling.uncertainty), let wj = 1 for all i.

The method assumes that the w: values are known. In practice, w; will be
a function of the ¢'s which are, of 8ourse, not known, and hence, ws wolld not be
known either. An iterative estimation procedure is available in this instance
[2.24]. Method 2.24 is in essence one step in this iterative procedure, for the
procedure calculates weights at each stage of the estimation process based on the
estimates of the parameters from the prior stage.

Examples

EXAMPLE 2.24 (a)

Several data sources provide estimates of sampling error,(6;), of analytical
error by titration, (6,), and of analytical error by spectrophotometry, (63), in the
measurement of percent uranium in U0, dirty powder scrap. The following equations
are derived

6, = 2.89
6, = 6.28
03 = 4.98

91 + 62 = 8.13
61 + 0.593 = 6.70

In the notation of this method, the cjj and vj values are tabulated
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J Clj Czj C3J VJ

1 1 0 0 2.89
2 0 1 0 6.28
3 0 0 1 4.98
4 1 1 0 8.13
5 1 0 0.5 6.70

Assume that the vj are based on the following numbers of replicate measure-
ments:

m = 29 My = 10 My = 43 my = 18 Mg = 7

It is well known that when sampling from a normal distribution (as will be
assumed here), the sampling variance of an estimated variance is twice the square
of the true variance divided by the degrees of freedom, mj -1 [2.25]. Also, since
the weights are the reciprocals of the sampling variances, they are

W, = 28/2912 Wy = 9/2622 Wy = 42/2832

Wy = 17/2(61+62)2 Ws 6/2(91+0.533)2

These are functions of the unknown parameter values. An iterative procedure
is needed, using an arbitrary starting point. A reasonable starting point could be
the estimates based on the first three equations:

6; = 2.89 6, = 6.28 65 = 4.98
The weights for the first iteration are then,

0.847

wy = 1.676 wp, = 0.114 W3
0.104

Wy = 0.101 Wsg
Then, from (eq. 2.6.101),
a;; = 1.676 + 0.101 + 0.104 = 1.881

a,, = 0.114 + 0.101 = 0.215

azz = 0.847 + 0.25 (0.104) = 0.873
a;, = 0.101

a;3 = 0.5 (0.104) = 0.052

dog = 0

The A matrix is
(1.881 0.101 o.osz)

0.101 0.215 0
0.052 0 0.873
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By (eq. 2.6.102),

vV, = (1.676) (2.89) + (.101)(8.13) + (.104)(6.70) = 6.362
V, = (.114)(6.28) + (.101)(8.13) = 1.537
Vg = (.847)(4.98) + (.5)(.104)(6.70) = 4.566

The V matrix is

7
il

6.362
1.537
4.566

The inverse matrix, A-l, is found. Procedures for finding the inverse of
a matrix are found in many texts. Most computer program packages contain matrix
inversion routines. Certain pocket calculators with program cards or tabs also
permit rapid inversion of matrices of order 4 by 4 or smaller. The inverse of A is
found to be

0.5463 -0.2566 -0.0325
A"l ={-0.2566 4.7717 0.0153
-0.0325 0.0153 1.1474

The estimates are the elements of A~1 V.

6, = (.5463)(6.362) - (.2566)(1.537) - (.0325)(4.566) = 2.933
6, = 5.771
65 = 5.056

Note how these estimates compare with the inputs for this iteration. They
could then be used to determine the weights for the next iteration, and the process
could continue until convergence.

2.6.4 Error Estimation in the Presence of Rounding Errors

In some safeguards applications, most notably, with weighing data, the effect
of rounding errors on the total error of measurement cannot be ignored. If a scale
rounds to the nearest 10 grams, say, and if replicate measurements are made on the
same item, it is quite likely that all recorded weights would agree exactly. If
one were then to follow the procedures in 2.6.3.1 to estimate the random error var-
iance due to weighing, the estimate would be zero, for any variability in the weigh-
ing process would be obscured by the rounding error. Clearly, it would be mislead-
ing to assert that there is zero random error. By similar reasoning, if one weighed
known standards when rounding error is relatively large, the conclusion in follow-
ing the procedures of 2.6.1 would be that the systematic error variance is also
zero, for all recorded measurements would be in perfect agreement with the assigned
standard value. Such a conclusion is also invalid.
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By statistical theory based on the uniform or rectangular distribution,
for a measurement process in which data are rounded to the nearest u units, the
systematic error standard deviation can be no smaller than u/viz units. The same
is true of the random error standard deviation for a single weighing [2.26].

If rounding error is not the sole error, but is nevertheless too large to
be ignored, e.g., if the measurement data fall into 2 or 3 groups, then an itera-
tive method of obtaining the estimates of the parameters has been developed. The
methodology is beyond the scope of this Volume, but the model and estimation pro-
cedure are referenced [2.27]. The computer program based on this estimation method
is in the Agency library. It is recommended that the method be used whenever mea-
surement data are grouped in 2 or 3 cells because of rounding.

2.6.5 Interlaboratory Test Data

In many Agency safeguards applications, more than one analytical laboratory
is involved in some way. Most notably, this occurs whenever interlaboratory sam-
ple exchange or "round robin" programs are instigated in order to obtain information
on measurement error parameters. Another instance in which such data are generated
is whenever inspection samples are sent to more than one laboratory for analysis.

In the sections to follow, the analyses of interlaboratory data are consi-
dered. In 2.6.5.1, samples of a single standard reference material are sent to
a number of laboratories in a round robin exercise. In 2.6.5.2, non-standard
materials are distributed to a number of laboratories for analysis. Section 2.6.5.3
considers the same problem, but it is now assumed that random errors of measure-
ment may be laboratory dependent. The distribution of inspection samples to a
number of laboratories with different specified patterns of distribution is dis-
cussed in 2.6.5.4.

2.6.5.1 Single Standard Reference Material

The purpose of an exercise in which samples of single standard reference
material are sent to participating laboratories is to identify factors that contri-
bute to the uncertainty of a measured value, and assess their importance. To ac-
complish this, it is necessary that detailed instructions be sent the laboratories
relative to how the samples should be measured. That is, one might be interested
in obtaining estimates of differences due to replicate measurements of aliquots,
differences among aliquots, etc. To obtain such estimates, it is necessary that
the analyses be performed according to some plan.

The statistical analysis of the data resulting from such an exercise is
called a nested or hierarchal analysis of variance with the plan or experimental
design called a general unbalanced nested design. To permit a simpler presentation
of the analysis, it will be assumed in Method 2.25 that there are 4 identified
variance components to be estimated, and the example will specify the 4 components
in question. It should be readily apparent from the analysis of Method 2.25 how
the procedures should be altered to account for fewer or more than 4 components.
Further, the 4 variance components identified in the example can, of course, be
replaced by other components.
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Method 2.25
Notation
u = true value of item being measured
Ai = deviation from u for level i of factor A; i =1, 2, ..., a
B.,., = deviation from p for level j of factor B within level i of factor
3(1) R :
Ay 3 =1, 2, ..., bj
Ck(i i) = deviation from u for level k of factor C within level j of
»J factor B within level i of factor A; (k =1, 2, ..., Cij)
Dz(i k) = deviation from u for level 2 of factor D within level k of
»J s factor C within level j of factor B within level i of factor A;
(/Q'=1, 23 e s o3 d-ijk)
The extension to additional components is obvious,
Yijkz = given observed value related to Ay, Bj(i)’ etc. by the model
figke T F A By iy TPk (eq. 2.6.103)
A; is selected at random from a population with zero mean and variance cﬁ
Bj(i) s selected at random from a population with zero mean and variance oé
oé and 06 are similarly defined
Results

2 2 2 2
The prob]eg is to obtain estimates of op, og, og, and op. Note the implicit

assumption that og, say, is the same for all levels of factor A, i.e., there arg not
a _values of og(j) to estimate, but only the one. Similar statements apply to of and

2
OD.

The statistical analysis proceeds as follows. The parameters will be esti-

mated by solving the following four equations, starting from the last and working

upward.

culate

=
1
Qy

=
I
Qs

+ Q¢ + P16Z + Ry0%
2
B

+ Q0% + Poo
A (eq. 2.6.104)
+ Q3Ué

= =
] 1]
Q, Q,
o O Oy O

The procedures for obtaining the M's, Q's, P's, and R; are given below. Cal-
the following quantities:
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The M's

G, .
1

ijk

%; 45k ny =
a-1
2: bi - a
.i
Z Z C.i~" Z b-
. . j —~ P
i 3 i
> 2
n - i j cij
2. _
. Yijke ij
2T T =
J
T2/n Sl =
2
2L Ty
i
XY X2
i k & 13k2
$1-Sg Sp =
55-5, Sp =
Sa/Fp Mg =
Se/Fe My =

(Yng - 1/n)/F,
(l/nij - l/ni)/FB

= $5-§;

= 34-33

SB/FB

SD/FD
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The Q's are:

Q = ZZ: EE:
Q = :Z:
Q3 = 2;:

The P's are:

Pr=2 2 ni5

>

R

:é: 43k Gi3 (eq. 2.6.106)
2.

K

v (eq. 2.6.107)
P2=Z Zn.z. G..
T 51T
Finally,
Ry = D n2 G, (eq. 2.6.108)
1

In solving (eq. 2.6.104), Mp cannot be_a negative quantity, but it may be that
one or more of the estimates of oj op_ and of may be negative. In this event, equate
each such estimate to zero and obtdin pooled €stimates of the other parameters by
appropriately combining the equations.

Basis

The distinctive feature of a nested experimental design is noted. Consider
factor Bj(j), for example. The j-th level of this factor only has meaning with
respect %o he i-th level of factor A. For example, if A and B represent labora-
tory and instrument effects respectively, then instrument 1 for laboratory 1 is
not the same as instrument 1 for laboratory 2, say. If one were speaking of in-
strument types (or analytical methods), then the model would not be nested. It
would then be called a crossed-classification and a different statistical analysis
would be required.

Many textbooks treat the nested or heirarchal design, but most restrict
their treatment to the case where there are equal numbers of observations at each
level. For a good treatment of the general unbalanced case treated here, which
is the case most 1ikely to be encountered in practice due to "missing” observations
even if the plan itself is balanced, see [2.28].

Examples

EXAMPLE 2.25 (a)

Samples of the NBS standard reference material 949/d were distributed to
a number of Taboratories for analysis of plutonium concentration. For those
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laboratories that used a potentiomitry method, the data are tabled. Tabular entries
are in percent recovery minus 100. The identified factors are:

A : laboratories
B : times within laboratories
C : aliquots within times within laboratories

D : determinations within aliquots within times within laboratories

Lab 1 2 2 3 3 4
Time 1 1 2 1 2 1
Aliquot 1 1 1 1 1 1
03 09 .45 -.10 -.08 .02
.10 .21 .23 -.05 -.11 -.10
-.10 .08 -.01 -.12 -.07 -.04
-.08 -.01 -.13
-.07 -.09
Lab 4 4 4 5 5 6
Time 1 2 2 1 1 1
Aliquot 2 1 2 1 2 1
.00 -.08 -.09 .06 .26 .06
-.03 -.10 -.07 .53 .25 .30
-.04 .01 .01 J11 .29 .57
.24 .63
.42 .35
53 .08
Lab 6 6 7 7 7
Time 1 2 1 1 2
Aliquot 2 1 1 2 1
.23 .26 .09 .02 -.042
.07 .14 -.06 .04 .013
.48 41 -.10 .018
.044
-.017
The various quantities are calculated
ny; <= 4 Nyo = 6 ny = 4 n =63
n21 = 3 n51 = 12 n2 =6
Ny, = 3 Ngy = 6 n; = 10
N3y =5 Nga = 3 n, = 12
N3z = 5 N7p =5 ns = 12
Nyp = 6 Byp =5 Ng = 9
n7 = 10
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Ti11
T211
To21
T311
T321
Ty1a

The M's are

Then,

17 - 12 =

-.05
.39
.67

.39
.67
.35

0.561189
2.180340

1.594746
0.007722

from (eq.

0.265791
0.001544

-84 -

5

Ty12
Tyo1
Tu2o
Ts11
Ts12
Te1n

-
[}

-n
I

12 -7 =5

63 - 17 = 46

= -.07
= -.17

I
—

.89
.86
= .93

1t
—

= -.32
= 3.75

= 3.75
= 2.52

= 2.155935
= 3.009182

= 0.016683
= (0.828842

= (0.003337
= 0.018018
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Te12
Te21
T711
T712
T721

i}

.78
.81
-.07
.06
.016

1.71
.81

-.01
.016

.006

5.946

2.172618



G, = .039021 Gy, = 0 Gy, = .016667
Gy = .025132 Gop = .033333 Ggy = 0
Gy = .014021 Gop = .033333 Ggy = .011111
Gy = .011243 Ggy = .02 Ggo = .044444
Gs = .011243 Ggp = .02 Gyp = .02
Gg = .015873 Gyy = .016667 Gyp = .02
Gy = .014021
G111 =0 Gyio = .033333 Ggyo = .033333
o1 = 0 Gypy = .033333 Ggpy = O
Gopy = O Guop = .033333 G711 = 026667
Gs1y = 0 Gsy, = .016667 Gy1o = .06
Gspy = 0 Gsio = .016667 Gypy = O
Gyyp = .033333 Ggy; = .033333

The Q's are; from (eq. 2.6.106),

Q; = 3.9534 Q, = 3.5600 Q; = 3.4800
From (eq. 2.6.107),
P, = 5.6216 P, = 4.6000

From (eq. 2.6.108),
R, = 8.8570

The estimating equations (eq. 2.6.104) are

0.265791 = 66 + 3.953466 + 5.62166§ + 8.85706ﬁ
0.003337 = 86 + 3.56006% + 4.60006§

0.001544 = 66 + 3.48006%

0.018018 = 65

Since Mg<Mp, the estimate of 0% is zero. The revised estimate of 06 is found
by taking a weighted average using the last two equations. The weights are F¢ and
Fp respectively. (These are called degrees of freedem.)
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(5)(0.001544) = 562

D
(46)(0.018018) = 4656
0.836548 = 5166 —_— 36 = 0.016403

From the second equation, it is also evident that the estimate of oé is zero.
Again weighting,

(5)(0.003337) = 566
0.836548 = 5185
0.853233 = 5666 — 86 = 0.015236

From the first equation, then,

A

= 42 22
0.265791 op * 8.85700A

so that

8& = (0.265791 - 0.015236)/8.8570 = 0.028289

Thus, the estimates are:

67 = 0.028289 ; 62 =32 =0 3 Gg = 0.015236

The differences among laboratories is the dominant effect. This component,
ops 1s @ systematic error variance, while op is a random error variance.

2.6.5.2 Several Samples; Non-Standard Materials

The discussion in the previous section is now extended to accommodate the
following changes:

(1) The samples distributed for analysis are not reference standards, but
are samples of production materials.

(2) The samples are identified, i.e., sample 1 sent to laboratory 1, say,
is sampled from the same population as sample 1 sent to laboratory 2.

The second change in assumptions requires a different method of statistical
analysis. If the samples were not so identified, the model would still be a nested
model and the Method 2.25 could be applied. The fact that the samples are identified
results in a model that is partly crossed and partly nested.

To handle this case, follow Method 2.26.
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Method 2.26

Notation

Same as for Method 2.25 except that the S's, F's, Q's, etc. have an additional
subscript, h, to indicate the sample number. Thus, Spap is the same as Sp in
Method 2.25, except that it applies to sample h.

Results

Perform the analysis of Method 2.25 for each sample. Replace the key equa-
tions, (eq. 2.6.104), by the following equivalent equations for sample h.

= ~2 ~2 ~2 ~2
Spa = Fa (85 * Q188 + 2,85 * Ryi63)

= a2 2 52
Spg = Fre (65 * @88 + Pp,op)
, , (eq. 2.6.109)
She = Fnc (85 * Q.88
!
- A2
Shp = Fho 95

Sum thege oyer Ehe h sagp]es to obtain the four equations which provide the
estimates of of, of, of, and ofj. (Note: Method 2.26 also assumes that there are
the 4 variance compdnents for simplicity in discussion; there may be more or fewer.)

Next, letting yh be the average of all the observations for sample h, com-
pute the variance among these sample means, calling the variance s§. This is
equated to its expected value, given using (eq. 2.6.110), and solved for 0%, the
variance due to sampling of the material in question. In (eq. 2.6.110), V, is the
variance of the sample mean for sample h, and the sums indicated are for that sample.
v, = o§+(0£ % n%+02 S nZ.462 X d%jk+°5nh)/nﬁ (eq. 2.6.110)

" 545 10Tk

where ny is the total number of observations for sample h. Then 02 is estimated
from

~2 2 H 2

62 = sy - hél (Vh—os)/H (eq. 2.6.111)

where oﬁ, oé, oé, and 06 are replaced by their estimates.

Basis

For this partly crossed and partly nested model, because of the unbalanced
nature it is most straightforward to perform the analysis of Method 2.25 separately
for each sample and then appropriately combine results to give the overall estimates
of oﬁ, cé, suggested by (eq. 2.6.109).
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To estimate o%, the error variance due to sampling of the material in
question, the variance among the sample means is calculated, equated to its
expected value, and the equation solved for od.

Examples

EXAMPLE 2.26 (a)

Two distinct and identified samples of Pu oxide are distributed to a number
of laboratories for analysis of percent plutonium by a given analytical method.
The data, in percent Pu minus 86 are tabled. Note, by comparison with the
Example 2.25 (a), that there is now no "time" effect. As a result, there are
only three levels in the nested model.

Sample 1
Lab 1 1 1 2 2 2
Aliquot 1 2 3 1 2 3
.188 .348 . 388 .157 1.007 .837
.178 .298 .338 .847 .837 .657
.158 .368 .398
.198 .298 .388
Lab 3 3 4 4 4 5
Aliquot 1 2 1 2 3 1
.651 .581 .451 .545 .586 . 888
611 .641 .530 .608 .702 .720
.591 .581 .625 .685 .730 .814
Lab 5 5 6 6 6 7
Aliquot 2 3 1 2 3 1
377 .661 .885 -.063 .645 .5156
.383 .651 .645 .625 .615 .635
. 388 .394 .366 1.094 475 .555
Lab 7 7 8 8 8
Aliquot 2 3 1 2 3
.645 .825 677 .698 .346
.645 .715 .492 .532 456
.615 .725 .640 .580 466
.636 526 .617
.645 .608 .656

2-86



- 89 -

Sample 2
Lab 1 1 1 2 2 2
Aliquot 1 2 3 1 2 3
.318 .048 .128 .580 .730 .680
.138 .228 .398 .660 .890 .110
.388 .098 .198 .610 .890
.158 .218 .168
Lab 3 3 3 4 4 5
Aliquot 1 2 3 1 2 1
.587 .507 .587 .690 .662 .570
.567 457 .587 .683 .546 .542
.547 467 .487 .793 .596 .828
Lab 5 5 6 6 6 7
Aliquot 2 3 1 2 3 1
.867 .503 .380 .400 440 .478
.390 .242 .170 .610 .380 .698
.782 .622 .510 .370 .450 .328
Lab 7 7
Aliquot 2 3
.418 .158
.548 .318
.488 .458

Since the analysis for each of the two samples is so similar to that demon-
strated in Example 2.25 (a), the only difference being that now there are three
levels rather than four, the calculations are not all indicated. Rather,

(eq. 2.6.109) is shown for each of the two samples, and for their sum.

Sample 1:
1.127201 = 7 (8%+3.2171196§+9.2570678ﬁ)
0.659001 = 15 (8%+3.2666858§)
1.325515 = 52 6%

Sample 2:
1.506556 = 6 (8%+3.098098&§+8.8063848ﬁ)
0.308824 = 13 (85+3.0961908§)
0.950346 = 42 66
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Summed over both samples:

2.633757 = 1362 + 41.1084216% + 117.63777352

C B A
0.967825 = 286% + 89.2507456§
2.275861 = 946%

Solving these:

85 = 0.024211 (Replicates)
Sé = (0.003248 (Aliquots)
Gﬁ = 0.018578 (Laboratories)

Proceeding to find the estimate of oﬁ, the two sample means are

y1 = 0.5603 ¥» = 0.4733
from which s§ = 0.003785

From (eq. 2.6.110),

Vi oé + (0.003000

Vo oé + 0.003301

Thus, from (eq. 2.6.111),

2
9]
S

0.003785 - 0.006301/2

0.000635 (Sampling)

—————

2.6.5.3 Laboratory-Dependent Random Error

For the case 1in which several samples of a given material are distributed to
a number of laboratories, it may be appropriate to apply a Grubbs' analysis as des-
cribed in 2.6.3.4, or the analysis described in 2.6.3.5 if the assumptions under-
lying the Grubbs' analysis are not valid. The main advantage of the Grubbs' analysis
is that it provides estimates of the random error variance for each laboratory. It
is not required that all have the same random error variances, an assumption impli-
cit in Methods 2.25 and 2.26. Further, the estimate of the error may be more realis-
tic than one based on observing the scatter among reported results.
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2.6.5.4 Distribution of Inspection Samples to Several Laboratories

A problem of special interest to Agency safeguards is that concerned with
the distribution of inspection samples to more than one laboratory. The effect of
this action on statistical inference is discussed in the next chapter. In this
section, the problem of analyzing the inspection data to make inferences about
errors of measurement is considered.

There are, of course, any number of ways in which samples may be distri-
buted. Three representative distribution plans are treated here. For variations
on these plans, competent statistical advice should be sought.

For each plan, n items of a given material are selected for analysis, and
there are L laboratories to perform the analysis. There are two reported results
per sampled item so that the total number of observations is 2n for each plan. The
plans under consideration are:

Plan 1: n/L samples are sent to each of the L Taboratories. Each laboratory
performs duplicate analyses on each sampled item.

Plan 2: The n samples are each split into two parts or subsamples. There are
only L=2 laboratories, each of which makes single analyses on each of
the n paired subsamples.

Plan 3: Same as Plan 2 except that there are L(L-1)/2 pairs of laboratories,
each pair of which are sent 2n/L(L-1) pairs of subsamples. Each labora-
tory makes a single analysis on each subsample.

Plan 1 will be covered by Method 2.27, Plan 2 by Method 2.28, and Plan 3
by Method 2.29. First, however, the mathematical model underlying all three plans
is presented. The model is written to include components that may not be estimable
with each plan, except perhaps in combination. The assumed modei is:

Xi5k = “+9+51+”j+“1jk (eq. 2.6.112)
where
Xijk = measured result for lab i, sample j, analytical determination k
p = true average result for population being sampled
6 = overall deviation, or bias, common to all labs
By = deviation due to lab i
ny = deviation due to sample j

wijk = deviation for determination k, lab i, sample j
Some important points are noted from this model.

(1) It is not possible to obtain separate information about p and & from
the inspection samples alone; only the net effect of both parameters can be studied.
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(For example, the labs in total could all be biased high by, say, 0.1%, but this
could not be detected unless known standards were used.)

(2) Bj, called the lab effect, should be thought of as the sum of two
effects. One is the deviation for lab i averaged over all time frames, and the
other is the deviation due to the particular time frame existing for the data in
question. It is assumed that all inspection samples in question are analyzed in the
same time frame. Thus, B is really the algebraic sum of the lab effect and the
time-within—1ag effect. It is assumed that gi is a random variable with zero mean
and variance og.

. . . . 2 . .
(3} n5 is a random variable with zero mean and variance Op - This describes
the variance %etween sample values, or the item to item variance.

(4) wijk is a random variable with zero mean and variance oi, called the
analytical error.

(5) As a variation on the model that is not generally identified, it is
recognized_that a correlation can exist between replicate analytical results. The
guantity oy, is intended to represent the net effect of all factors normally operat-
ing within a laboratory in a given time frame. If, for a set of observations, some
conditions that are normally permitted to vary are held constant, then the result-
ing estimate of 05 will be biased low. To accommodate this possibility in the model,
write the covarijance between two results within lab i as

p.02 (eq. 2.6.113)

Eloggiongze) = 050

This representation is not wholly realistic or satisfactory, but it will
serve to keep in mind at Teast in a semi-quantitative way what quantities are esti-
mable with the different sample distribution plans.

Method 2.27

Under Plan 1, n/L samples are sent to each of the L Tlaboratories with dupli-
cate analyses performed on each sampled item.

Notation
The notation is given by (eq. 2.6.112) and following.
Results
The data are analyzed by a nested analysis of variance, but the analysis
is simpler than by Method 2.25 because of the balance in the design. The estimating

equations are

My = 2nG4/L + 262 + G2 (L+Zo,)/L

w
:
M, = 26§ + 65 (L+ X pi)/L (eq. 2.6.114)
i
My = 62 (L - 3 p.)/L

w . 1
1
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The M's are calculated from the data as follows. Calculate

Q5 = E Xiik Ty = %3 Q5
T= ST,
'i 1
So = T2/2n S, = L T2/2n
i
S, = X 3Q.%/2 S3= 3 X X x.%
i 3 01 A KL

The M's of (eq. 2.6.114)are calculated from
(S1-Sp)/(L-1)

(S2-S1)/(n-L)

My = (S3-S2)/n

1]

My

1]

Mo

From the first two equations of (eq. 2.6.114), it is evident that oé is
estimated by

8% = (M;-My)L/2n (eq. 2.6.115)

From the equations for M, and M3, it is also evident that oi and s2can only
be estimated if n

Ep.i = 0
;
i
is positive, M3 will tend to overestimate oi, while 0% will tend to be underesti-

mated. However, no matter what the size of

30
i T

2

the sun of o2 and o2 is estimated by (My+M3)/2.

On the otherzhand, if the sampling error, o%, were known to be negligibly
small relative to oy, then

(M2+M3)/2 (eq. 2.6.116)

1t

52
w

il

and Ses = L(Ma-M3)/ (MaHM3) (eq. 2.6.117)

i
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If pj is to be estimated separately for each laboratory, then the data may
be analyzed separately for each laboratory, as the example will illustrate.

The (eqg. 2.6.114) are very instructive in pointing out just what combina-
tions of parameters are being estimated by each statistic.

Basis
Given the model of (eq. 2.6.112) and the expressions for M;, M,, and Ms,

the estimating equations (eq. 2.6.114) are found by equating the expected values
of My, My, and M3 to their respective observed values.

Examples

EXAMPLE 2.27 (a)

In an inspection, 24 sintered U0, pellets are sampled. Eight pellets are
sent to each of labs 1, 2, and 3, and each lab performs duplicate analyses. The
data, in percent U minus 80, are given below.

lLab 1 Lab 2 Lab 3
Pellet %U-80 Peliet %U~80 Pellet %U-80
1 8.056, 7.992 9 7.939, 8.107 17 8.144, 8.122
2 8.088, 7.999 10 7.883, 7.970 18 8.240, 8.279
3 8.044, 8.026 11 8.005, 7.923 19 8.132, 8.054
4 8.015, 8.117 12 8.064, 8.119 20 8.233, 8.266
5 7.897, 7.825 13 8.001, 7.922 21 8.079, 8.127
6 8.039, 8.099 14 7.977, 7.982 22 8.102, 8.130
7 7.950, 7.881 15 7.881, 7.921 23 7.977, 7.837
8 8.113, 8.068 16 7.946, 8.023 24 8.105, 8.048

The design parameter values are
n=24 L=3

The calculated quantities are:

Q,, = 16.048 Qog = 16.046 Q3517 = 16.266
Q;» = 16.087 Qp,19 = 15.853 Q3,18 = 16.519
Q:3 = 16.070 Q2,31 = 15.928 Q3519 = 16.186
Quy = 16.132 Qs,1, = 16.183 Q3520 = 16.499
Q5 = 15.722 Qs,13 = 15.923 Q3,21 = 16.206
Qs = 16.138 Q2,14 = 15.959 Q3.0 = 16.232
Q,7 = 15.831 Q2,15 = 15.802 Q3,23 = 15.814
Q5 = 16.181 Qus1c = 15.969 Qs4py = 16.153
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T = 128.209 T, = 127.663 Ty = 129.875
T = 385.747

Sg = 3100.015583 S; = 3100.181554

S, = 3100.491001 S5 = 3100.557383

The M's are calculated from these S values, and the estimating equations
become:

0.082986 = 1602 + 202 + o (1+0)
0.014736 = 202 + o2 (1+p)
0.002766 = oi (1-p)

where 0 = (py*toate3)/3

From the first two equations,

a; = (.082986 - .014736)/16 = 0.004266

If one can assume that p = 0, then

0.002766

Q>

3N £EN

(.014736 - .002766)/2 = 0.005985

Q>

Regardless of the value of p, the sum of the two variance components is

8£+8ﬁ = (.014736 + .002766)/2 = 0.008751

The sampling error for percent U in uranium pellets should be very small.
If . =0, then from the last two of the estimating equations,

n
.014736 = ci(1+5)
.002766 = 05(1-5)
which gives p = 0.684 (large positive correlation)
62 = 0.008751
w
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The correlation coefficient is not Tikely to be the same for all three labora-
tories. The parameters p;, py, and p3 can be estimated separately for each lab by
setting L=1 in Method 2.27 and using only the last two of the estimating equations
(eq. 2.6.114). The summary results are, again assuming ¢%=0:

Lab 1 .013171 = 02(1+p;) 62 = 0.007783
.002395 = 02(1-0;) 5, = 0.692

Lab 2 .006856 = 02(1+py) 62 = 0.005282
.003708 = 02(1-p;) 6, = 0.298

Lab 3 52 = 0.013188 ; 3 = 0.834

Method 2.28

Under Plan 2, the n samples are each split into two subsamples. L=2, and
each 1ot makes a single analysis on each of the n subsamples.

Notation
The notation is given by (eq. 2.6.112) and following.
Results

The data are analyzed by the method of Grubbs (see 2.6.3.3). In order to
apply this, it is necessary that the sampling error variance, o4, be small relative
to the analytical error variance, o3. However, for large o2, the estimate of o2 is
meaningful if, in fact, o3 is the same for both laboratories. The correlation
coefficient, pj, does not enter into the analysis since replicate measurements are
not made.

Compute V; and V,, the sample variances among the n values for labs 1 and 2
respectively. Also compute V,;,, the sample covariance for the n pairs of values.
Then, the estimating equations are:

8% = Vi, (eq. 2.6.118)
G2 = V-V,
wl (eq. 2.6.119)
652 = VZ’VIZ

(Eq. 2.6.119) provides separate estimates of 05 for each lab. If both labs

have the same value of o2, then this is estimated by

G2 = (W +Vp-2Vy,)/2 (eq. 2.6.120)
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The variance between labs, c%, is estimated by

52 = [(Ty-T2)2/n -(82, + 82 )1/2n (eq. 2.6.121)

where T1 is the total of all observations for Lab 7.
Basis

The basis is the same as for Methods 2.18 and 2.20.

Examples

EXAMPLE 2.28 (a)

The 24 sintered pellets of Example 2.27 (a), were each split into two parts
with one part of each pellet sent to Lab 1 and the other to Lab 2. The data are
tabled below, all values being in (% U-80).

Pellet Lab 1 Lab 2 Pellet Lab 1l Lab 2 Pellet Lab 1 Lab 2
1 7.985 8.025 9 8.139 7.992 17 8.042 7.868
2 7.862 7.975 10 8.051 7.893 18 8.034 8.057
3 8.013 7.938 11 7.940 8.019 19 7.981 8.016
4 8.061 8.071 12 7.918 7.859 20 7.917 7.947
5 8.016 7.862 13 8.204 7.959 21 7.913 7.933
) 7.857 7.866 14 8.059 7.842 22 7.999 7.992
7 8.036 8.010 15 8.044 7.992 23 7.923 8.194
8 8.170 7.974 16 7.948 8.022 24 8.033 8.047

Then,
vV, = 0.007823 V, = 0.006850 V,, = 0.000044

From (eq. 2.6.118),
8% = 0.000044
From (eq. 2.6.119),

62, = 0.007779
w
52 = 0.006806
w2

From (eq. 2.6.121), where T; = 192.145 and T, = 191.353

8% = (.026136 - .014585)/48 = 0.000241
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Plan 2 involves only the two laboratories. When sampling errors are not
small relative to analytical errors, and when separate estimates of the analytical
error variance for the laboratories are desired, the paired subsamples should be
distributed to more than two labs according to the Plan 3 distribution plan.
Method 2.29

Notation
The notation is given by {eq. 2.6.112) and following.

Results

0 estimate 051, fg]]ow Method 2.21, where N of 2.21 is the same as L, and
where oj is the same as o,j.

The sampling variance, o%, is estimated by

L
gﬁ = ég% (s% - 8@%)/L (eq. 2.6.122)

2 . . .
where sj is the variance among the measured values of Lab 1.

To estimate the between lab variance, o%, calculate the means for each of the
L(L-1)/2 columns of differences. Calling this mean iij for Labs i and j, then og 1is
estimated by

ag = X]j %:;q%/L(L-l) - (L—l):; aZ./2n (eq. 2.6.123)

Basis

The basis for Method 2.21 which provides the estimates of ¢2Z; was given
earlier, under that method.

For (eq. 2.6.122) and (eq. 2.6.123), the expected values of 23$ and of
22213 respectively are found and equated to the observed values of these statistics.
The equations are then solved for the parameters to be estimated, o%and<:§ respec-
tively. The quantity 051 is replaced by its estimate for each lab 1i.

Examples

EXAMPLE 2.29 (a)
The 24 sintered pellets of Example 2.27 (a) were each split into two pairs.

The 24 pairs were distributed among 4 labs, with each pair of labs receiving 4
pairs. The data, expressed as (% U-80) are tabled.
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Pellet Lab 1 Lab 2 Pellet Lab 1l Lab 4 Pellet Lab 2 Lab 4
1 8.030 8.048 9 7.839 8.088 17 7.986 8.140

2 8.062 7.954 10 7.932 8.217 18 7.785 8.165

3 7.994 7.981 11 7.970 8.064 19 8.009 8.061

4 8.036 7.988 12 8.020 8.130 20 8.015 8.048
Lab 1 Lab 3 Lab 2 Lab 3 Lab 3 Lab 4

5 7.931 8.096 13 7.909 8.046 21 8.137 7.981

6 8.032 7.990 14 7.934 8.069 22 7.998 8.038

7 8.187 8.033 15 7.927 8.092 23 8.108 8.120

8 8.009 8.196 16 8.009 7.999 24 8.022 8.058

Here,n =24 and L = 4

First, follow Method 2

.21.

the summarizing statistics are:

vy, = 0.002920

vi3 = 0.027197
vis = 0.009334
Then, by (eq. 2.6.94),
S; = 0.039451
S, = 0.034538

By {eg. 2.6.95),

~2
")
wl

-y
Uwz

0.003968

52
Uw3

0.007790

1

52
0&)"’

0.008422

To estimate ci by (eq.
results are

2
Sy

0.007146

2

s,2 = 0.004768

V2s
Vou
Vay

S3
Sy

1l

1]

I

first calculate s% for each lab.

I

0.006245
0.025373
0.008740

0.042182 V = 0.079809

0.043447

(.039451)/2 - 0.079809/6 = 0.006424

0.003964
0.004143
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Thus,

>
[N
[t}

(.000722 + .000800 - .003826 - .004279)/4
-0.001646 (call it 0)

To estimate o by (eq. 2.6.123), first calculate the 6 mean differences.

X1 = 0.03775 X23 = -0.10675

X13 = -0.03900 Xon, = -0.15475

X1y = -0.18450 X3, = 0.01700
Then,

8% = (.073618)/12 - 3 (.026604)/48

0.004389
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Chapter 3

ERROR PROPAGATION

3.1 DEFINITION OF ERROR PROPAGATION

In the Safeguards Dictionary [3.1] prepared by the Brookhaven National Labora-
tory for the then United States Atomic Energy Commission, error propagation is
defined as follows: "The determination of the value to be assigned as the uncer-
tainty of a given quantity using mathematical formulae for the combination of
measurement errors. Error propagation involves many considerations and the choice
of formulae for computing the uncertainty depends upon the functional relations of
the measurement parameters involved."

This definition is made with respect to safeguards applications since it
speaks of combining measurement errors. Nevertheless, the definition accurately
identifies error propagation as a procedure based on using mathematical formulae.

It is consistent with another quote taken from an expository paper on error propaga-
tion by Birge [3.2], "The subject of the propagation of errors . . . is a purely
mathematical matter, with very definite and easily ascertained conclusions.”
Although the practitioner might quarrel with the words "easily ascertained" there
can be no quarrel with the principal point in both guotations, namely, error propa-
gation is a mathematical exercise and hence leads to precise and well-defined
procedures.

Although the error propagation procedures may be exact, this does not mean
that the net effect of the propagated errors is exactly determined. The error
propagation formulas draw a mathematically precise line from some model to the
conclusions; any inexactness in an answer derived from error propagation comes not
from drawing this mathematically precise line, (assuming that this Tine is drawn
correctly), but rather from the starting point, that is, from the mathematical
model. This underscores the importance of the model insofar as it corresponds to
a valid description of reality.

The general error propagation problem may be formulated as follows. Let a
random variable of interest (such as the MUF or material unaccounted for) be written
as a specific function of a number of other random variables as in (eq. 3.1.1).

y = f(x:l:XZa vens Xk) (eq. 3.1.1)

The precise form of this function is known in the error propagation problem,
that is, the problem is not to estimate the parameters of the function (which is a
statistical problem), but is rather to find the uncertainty in y as a function of
the uncertainties in the x's (a mathematical problem) given that the function is
well defined. In the section to follow, error propagation is considered when f is
a linear function, and the more general case for the nonlinear function is treated
in Section 3.3.
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3.2 ERROR PROPAGATION; ADDITIVE MODEL

Error propagation for the additive or linear model is covered by Method 3.1.

Method 3.1
Notation
Let Xj = value for the i-th random variable
a; = i-th constant; i=1, 2, ..., k
My = E(xi) , mean of Xs
2 = -y )2 :
o E(xi ui) , variance of X;
054 E[(Xi'ui)(xj'“j)] , covariance between X and X;
y = value for response or dependent variable
by = E(y) . mean of y
o§ = E(y-uy)2 , variance of y
Model K
y = 2 a.x. (eq. 3.2.1)
i=1 !
Results K
by = .? CHIB (eq. 3.2.2)
i=1
2 § 2.2 K1
o2 = aZg2 + 2 3 S a.,8.0,. (eq. 3.2.3)
A S B S NI E A
Basis

The formulas given by (eq. 3.2.2) and {eq. 3.2.3) are basic results found in
most texts. See, for example, reference [3.3].

Examples

EXAMPLE 3.1 (a)

Consider a number of observations Xis Koo enes Xy and calculate the sample
mean or average, denoted by y
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y = (x1+x2+...+xk)/k

If E(xy) = u and E(xj-p)? = o2 for all i, with E(Xj-p)(xj-u) = 0 for i ¥ J,
then application of (eq. 3.2.2) and (eq. 3.2.3), with aj=1/k for all i, gives

E(y) = ku/k = u
o kaZ2/k2 = ¢?/k

2
y

Note: y, the sample average or mean, js usually denoted by x. This example
shows that the mean of X is u and its variance is o2/k for the simple model considered
here.

EXAMPLE 3.1 (b)

Some 19 UFg cylinders in a shipment are weighed over a period of four days.
The model for a single weighing is written:

3 TG TN T G)
where
Xi(') = observed gross weight for cylinder j weighed on day i
1i(5) = corresponding true gross weight
§ = scale bias or systematic error
6. = error affecting all cylinders weighed on day i

ei(j) = random error in weighing for cylinder j, day i

Assume that

E(@) = E(Gi) = E(E-(j)) = O
2y = 2 . 2y = 42 2 = 42
E(82) og E(ei ) oy 3 E(e1(3)) of
Os = 0.6 1bs Oy = 1.2 Tbs. 3 o= 1.6 lbs.
£

A1l covariances are zero.

0f the 19 cylinders, 4 are weighed on day 1, 3 on day 2, 7 on day 3, and 5 on
day 4. Find the variance of the total observed weight.

Here,

«<
i

IX. /.
i(J3)
Z“i(j) + 196 + 461 + 392 + 763 + 56q + Zei(j)

3-3



- 106 -

There are 19 terms in each indicated sum. Then, by (eq. 3.2.3), the variance
of the total observed weight is

2 = 2 2 2
oy 3610% + (16+9+49+25)oe 192
= (361)(0.36) + (99)(1.44) + (19)(2.56)
= 321.16 1bs?
= 17.9 1b
oy 17.9 1bs

3.3 GENERAL ERROR PROPAGATION; TAYLOR'S SERIES

The key equations, (eq. 3.2.2) and (eq. 3.2.3), apply only if the function
indicated by (eq. 3.1.1) is linear. Although Tinear models are adequate approxi-
mations to reality in many applications, they cannot, of course, be expected to
apply universally. In the area of safeguards applications, in fact, nonlinear
models are frequently encountered, as was discussed in Section 2.3.2.

For nonlinear models, errors are propagated using an approximation based
on Taylor's series. The method follows.

Method 3.2

Notation

The notation is the same as for Method 3.1, except that aj is not defined,
except in particular applications.

Model

In general terms, the model is schematically indicated by (eq. 3.1.1). A
specific model must be written for each application.

Results

The mean of y is given approximately by

My S CTR I TP S uk) (eq. 3.3.1)
The approximation to the variance of y is
02 = ; b2c% + 2 ki} 3 b.b.o.. (eq. 3.3.2)
Yoqsr P 4=l gei P
where b, = 539— , evaluated at M for all i

Note the similarity between the forms of (eq. 3.3.2) and (eq. 3.2.3).

3-4



- 107 -

Basis

The approximations given by (eq. 3.3.1) and (eq. 3.3.2) are based on
approximating the function (eq. 3.1.1) by the linear terms of a Taylor's series
approximation [3.4]. This approximation is

f(xl,xz,...,xk) x f(ul,uz,...,uk) +
i§:(~'°>f~)<x-> (eq. 3.3.3)
BRSNS e 9.9

Since f(uj,u0s...,uk) is a constant, (eq. 3.2.3) can be applied immediately
to (eq. 3.3.3), giving the result in (eqg. 3.3.2). The transition from (eq. 3.3.3)
to (eq. 3.3.2) is an exact one. The approximation comes about by (eq. 3.3.3) in
which only the linear terms of Taylor's series are included. For most safeguards
applications that are routinely encountered, this is an adequate approximation.
Its adequacy depends on errors being "small" in a relative sense, e.g., smaller
than 5%-10% relative. If there is concern about the adequacy of a result based on
Taylor's series approximation in a given instance, statistical guidance should be
sought.

Examp]les

EXAMPLE 3.2 (a)
In connection with Method 2.5 dealing with Tinear calibration, it was indi-

cated that certain results were based on error propagations methods to be discussed
in Chapter 3. With the tools now in hand, the results of interest can now be derived.

From eq. (2.6.21),
Xo = {Yo-a)/B

where o is a constant, y, has variance estimated by o2, and 8 has variance denoted
by V(B). Then, to apply {eq. 3.3.2), find the appropriate partial derivatives:

X0

b1 = 3)’0

> |

oX0 _ —(yo-a)
b X0 - =YO
Y 32

_ Therefore, from (eq. 3.3.2), and keeping in mind that the covariance between y,
and B is zero, the approximate variance of xg is estimated by

V(xg) = 02/B* + (¥o-a)2V(B)/B"
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In Method 2.5, the first term in this expression was regarded as the random
error variance, and the second term, the systematic error variance.

EXAMPLE 3.2 (b)
In Method 2.14 dealing with nonlinear calibration, (eq. 2.6.76) gave the

following expression for X, as a function of the random variables & and 8. (Treat
yo as a constant when focussing attention on the systematic error variance.)

Xg = -a(1- V1+4BY,/a2)/28

[-a+(a2+48y,) 1/ 21728

To apply (eq. 3.3.2),

b, = §§§-= [-1+&(&2+4éy0)'1/2]/2§
= (a-R)/28R
where R = (a2+48y )1/2
Also,
b, = X0 _ ZE(ZyOR"lj - (~at+R)2
2 aé 4@2

[2By+R(6-R)1/2B%R
It is noted that a-R = -28X, so the expressions for b; and b, reduce to

bl = -Xo/R

b, = (¥g-RXy)/EBR

(&2+4éyO)1/2 = &+2éxo

1l

where R

Then, applying (eq. 3.3.2), and letting V(a) and V(g) denote the variances
of & and of B respectively, with CV{(a,B) the covariance between them, the result is

Vo(x0) = (XG/R?)V(a)+[(¥o-RX()?/B2RZTV(R)

- 2% (¥o-RXq)/BR2 CV(a,B)
But since Yo-RXy = BX5+6Xo-aXq-25%3

A2
= -BXg
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the expression for the systematic error variance of xg, vs(xo) reduces to

VS(Xo) = (xg2/RZ)[V(a)+xo2V(R) + 2xoCV(a,B)]

which is the result, (eq. 2.6.80).

Other applications of error propagation will be encountered later in this
volume.

3.4 CALCULATION OF VARIANCE OF MUF

3.4.1 Definition of MUF

The word, MUF, is an acronym for material unaccounted for. It is defined
as the difference between the book inventory and the physical inventory. This
definition may be with respect to either the element or isotope weight.

The facility MUF for a given material balance (or accounting) period is a
measure of the performance of the facility with respect to its control of the
nuclear materials involved. The MUF, as verified by inspection, or alternately,
as adjusted on the basis of inspection results, is the key index of performance
used by the Agency in its quantitative assessment of facility performance.

The MUF calculation is represented schematically by the following egquation:
MUF =1 -0+8B-E (eq. 3.4.1)

where I designates inputs, 0 designates outputs (which are sometimes subdivided
into product and waste streams), B refers to beginning inventory, and E to ending
inventory. The three terms in (eq. 3.4.1), I, 0, and B, collectively represent
the book inventory, while E represents the physical inventory. Note that the
physical inventory for one accounting period becomes a part of the book inventory
for the subsequent period.

The definition of MUF implicity assumes that the material balance is based
completely on measured data. The use of by-difference accounting results in a
meaningless MUF. For example, if the contents of waste streams are calculated as
the differences between the measured amounts entering a process step and those
exiting the step, it is clear that the calculated MUF would be zero over that
particular material balance area, i.e., it would be meaningless as a performance
index.

In order to judge the significance of a given MUF, either as verified or as
adjusted by the inspection results, it is necessary to calculate its variance. A
MUF is affected by many factors. For example, in taking inventory, if a measured
value is improperly recorded, i.e., if a mistake is made in recording the value in
question, this will affect the MUF. Such a mistake will not, however, affect the
variance of MUF as will be defined here, for the variance of MUF is calculated to
incTude only the uncertainties arising from the measurement process under the
assumption that this process is functioning properly.
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In this connection, it may be helpful to make a distinction between an
observed MUF and a true MUF. The true MUF is the actual amount of material un-
accounted for, excluding the effects of errors of measurement. It includes the
effects of unmeasured inventories, process losses, recording mistakes, plus any
diverted material. The observed MUF is a random variable whose expected value is
the true MUF. In the absence of any errors of measurement, the observed MUF is
identical to the true MUF. Equivalently stated, the variance of the (observed)
MUF 1is zero in this case.

Clearly, an observed MUF together with its calculated variance are not
sufficient information on which to make a judgement as to whether or not material
has been diverted. Other information must be brought to bear to make such a judge-
ment. However, it should also be clear that if the calculated variance of MUF is
excessively large due to a poor measurement system, then one can never hope to carry
the MUF evaluation beyond this first stage; any possible diversion would be quite
obscurred by large errors of measurement and no reasonable judgement about diverted
material could be made.

In the next section, it will be indicated how the variance of a given MUF
can be calculated exactly by application of the error propagation formulas already
given. Following that, a general approach to calculating the variance of MUF under
specified rather non-restrictive assumptions will be considered.

3.4.2 Direct Application of Error Propagation Formulas

If a given calculated MUF is based on a simple model, then either Method 3.1
or Method 3.2 already given may be applied directly to calculate its variance. This
is illustrated by the following example in which the variance of MUF is calculated
by application of Method 3.1.

EXAMPLE 3.1 (c)

Consider the plutonium MUF in a somewhat simplified chemical reprocessing
facility. The components of the material balance are identified as follows:

Inputs : A batch consists of a volume of material in the input account-
ability tank. Each volume contains nominally 10 kg Pu. Over the material balance
period, there are 40 batches. The model for batch i is

X:. =T

5+ e,
I §*e

Ii i

where x measured plutonium in batch i

Ii
I

I3 true plutonium in batch i

8

systematic error for batch i

1]

€. random error for batch i

i

A1l quantities are expressed in kilograms. The model has been simplified
in that & and e each represent the combined effects of several measurement errors
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(volume, sampling, analytical). Assume that ¢ and e; (and other measurement errors
identified in what follows) have zero means with:

Os = 0.044 kg o = 0.109 kg

Product : Product is outputted as plutonium nitrate. Each batch contains
nominally 22 kg Pu, and there are 18 batches over the material balance period. For
batch i, the model is

. =T .+ A+ o,
Xpi = Tpy T8+

where Xpi, Tpi, A, and "j are defined in a manner analagous to Xrj, Tri, &, and ej.
Assume

g, = 0.082 kg o, = 0.191 kg

Waste : Waste is batched with a nominal batch size of 0.25 kg Pu. There
are 16 batches over the material balance period. The model is

. N + . i
XW'I TW"I atows with

g
o4

0.030 kg o, = 0.052 kg

Inventory: There are 10 batches (process vessels) in inventory. The inven-
tory level is very low because physical inventories are taken after clean out. For

beginning inventory:

Xgi = Tpi T B * 8y

and for ending inventory,

=T.. +p + Yi

*Bi T 'Ed
Note that g appears in the model for both beginning and ending inventories
and therefore will cancel in the MUF equation. The value of g is hence immaterial.
For e and vy, assume
Og = 0, = 0.002 kg
The model for MUF can then be written and Method 3.1 applied since the MUF
equation is of the form (eq. 3.2.1).

MUF = '3 T.. + 405 + % S o7, -8 - s
= . 2 €, = . —l8A - 2 N
j=1 M =1 ' 5 M =1 )
ST - 160 - s T+ 108+ % ei
- . - 16a - we + . 8 97
=1 W i=1 1 4=1 B i=1
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10
Tgy ~108 -3 vy
i=1
Then, assuming all covariances are zero, (eq. 3.2.3) 1is applied.
Var (MUF) = 1600 (.044)2 + 40(.109)2 + 324(.082)2 + 18(.191)2
+256(.030)2 + 16(.052)2 + 10(.002)2 + 10(.002)2

= 6.6818 kg2 Pu

Standard deviation (MUF) = 2.585 kg Pu

In this example, the standard deviations were expressed on an absolute basis,
i.e., in kilograms plutonium. If they were expressed on a relative basis, multi-
plicative rather than additive models would have been written, and Method 3.2 applied.
The answer, of course, would be the same.

3.4.3 Variance of Element MUF by General Approach

Although conceptually one can apply Method 3.1 or Method 3.2 in calculating
the variance of any MUF, in practice it will often be difficult to write explicitly
the model that is required to apply these methods. Even when it is possible to do
so with moderate effort, as was done in the example just concluded, it may be much
simpler to apply a general solution to the problem based on some simplifying assump-
tions set forth in the section to follow. The assumptions will rarely be 100%
satisfied in practice, but (1) moderate departures from them will often have neg-
1igible effect; and (2) one can make slight alterations in the calculations to
account for departures in assumptions if deemed necessary. This will be illus-
trated in the examples to follow.

The general approach to calculating the variance of element (and of isotope)
MUF is an extension of methods documented in [3.5] and later expanded upon [3.6].
A computerized version of the calculations has been developed and is described in
[3.7]. The computer code, identified as NUMSAS, is available. The program order
form is reproduced as Annex 3.1.

3.4.3.1 Assumptions

The variance of element MUF is considered first. Isotope MUF will be treated
in a later section.

In calculating the variance of element MUF, it is convenient to develop a
hierarchy of classifications consisting of items, batches, strata, and components.

An item is a primary unit which has a weight, volume and destructive analysis or
NDA measurement associated with it. A number of item collectively form a batch, where a
batch consists of all items that are related because they have a common element concen-
tration factor. In the event the element factor is uniquely determined for each item,
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then an item and a batch are identical, i.e., there is one item in that batch. Note
that this definition of batch may be different than used in accounting reports to
the Agency. A number of batches collectively form a stratum, which consists of all
batches of like material. As will be illustrated in the examples, one has a certain
amount of freedom in defining a stratum in a given application; strata of similar
materials may be combined into a single stratum in order to reduce the amount of
calculation at the expense of bending the assumptions somewhat. Finally, strata are
combined to form a component of the MUF equation. There are four MUF components,
jdentified in the schematic (eq. 3.4.1).

With the classifications in mind, the following assumptions are made:

(1) A11 random, short-term systematic, and long-term systematic error stan-
dard deviations are known and are expressed on a relative basis. For example, a
0.4% relative standard deviation is expressed as 0.004. (However, see Section 3.4.3.5.)

(2) Within a given batch, the number of samples drawn and the number of
analyses per sample are both constants.

(3) Within a given stratum, the number of items per batch is constant.
(4) No more than one scale or analytical method is used in a given stratum.

(5) A given element concentration factor cannot apply to more than one
stratum.

Some comments on these assumptions are helpful. First, with respect to
the distinction between short-term and lTong-term systematic errors, it is not always
evident just how a given error should be classified. Whenever a given measurement
system is recalibrated, this signals a change in the error structure and introduces
a new short-term systematic error. However, such error shifts may also occur in a
measurement system even when the system is not recalibrated. Each error source
should be evaluated using the methods of Chapter 2 to properly characterize it
from point of view of how often the error may shift in value. When calculating
the variance of MUF, whether an error is a short-term or long-term systematic error
can have significant impact on the calculated variance of MUF, and hence, it is worth
the effort to properly characterize each error.

With respect to assumption (4), this assumption can be relaxed if the mea-
surement methods in question are of the same design (e.g., same type scale). In
this event, the use of several scales, say, is equivalent to the use of one scale
with several shifts in the systematic error (i.e., with a short-term systematic
error). See examples 3.3 (a) and 3.4 (a).

As regards assumption (5), this assumption is not generally satisfied when
dealing with isotope MUF as opposed to element MUF. Should the assumption be
violated for element MUF, then the methods of Section 3.4.5 for isotope MUF may
be applied.

Before continuing with the general methodology, the notation to be used
in the following sections is summarized.
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3.4.3.2 Notation
The following notation is used.

= total element weight in stratum k, where the element weight is
found using bulk measurement method g, sampling is from material
type p, and analytical technique t is used. If measurement is
by NDA, regard the NDA instrument as an analytical method.
"Dummy" methods can be used for the bulk and sampling measure-
ments.

qupt

Note: It may be that within a stratum, the same systematic error does not
affect all items, i.e., there is a short-term systematic error. Use parentheses
to indicate the total element weight associated with "condition i" for a given
measurement. For example:

Xy £(3) = total element weight identified with condition 3 for analytical
P method t in stratum k

Xy (2)pt = total element weight identified with condition 2 for bulk method
i</ (e.g., scale) q in stratum k.

To continue,

§ = a relative standard deviation; subscripts identify a specific
one.

s,g,r = first subscript on s: s refers to a long term systematic error;
g to a short term systematic error; r to a random error.

q,p,t = second, third, and fourth subscripts on &; defined as for the
subscripts on x; if the measurement method in question is a
bulk method, replace p and t by dots; for example

8 .p- = random error standard deviation in sampling of material type p.

ne = number of items per batch in stratum k.

mk = number of batches in stratum k.

re = number of samples drawn per batch in stratum k to estimate the batch
element concentration factor.

C = number of analyses per sample in stratum k
k = total number of strata
V(-.-) = variance of quantity within parentheses, for example,

V( = variance of element weight in stratum k;

qupt)
V(MUF) = variance of MUF
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Note: s, g, and r subscripted on V is defined as when subscripted on §; if
V has no subscript, this refers to a total variance.

With this notation in mind, Method 3.3 will now provide formulas needed to
compute the random error variance of MUF.

3.4.3.3 Random Error Variance of MUF

Method 3.3
Notation
The notation is given in 3.4.3.2.

Model

The schematic model for MUF is given by (eq. 3.4.1). For the individual
measurements, the multiplicative model is used. This is discussed in 2.3.2.

Results

For stratum k, the random error variance of the total element weight is

62 /rkmk+6 /Ckrkmk) (eq. 3.4.2)

v ( kqpt) N kqpt(arq--/ k k
To find Vr(MUF), Vr(xkqpt) is summed over all the strata.

K

Vr(MUF) = 2 v (x (eq. 3.4.3)

kqpt)

If, in a given situation, a nominal (historical average, stoichiometric) element
ch@or is used, then ar o and 6r ¢ are both zero for that stratum. To avoid
division by zero in (eq.""'3.4.2), '°° re  may be set equal to one.

Basis

The formula for V,.(MUF) is derived by application of Method 3.2.

Examples

EXAMPLE 3.3 (a)

In this first example, consider a simplified material balance for a fuel
fabrication facility. There are seven strata identified. There are 4 bulk mea-
surement methods (g=1-4), 5 material types (p=1-5), and 4 analytical methods (t=1-4).

The error standard deviations are tabled.

8py.. = 0.000658 8p.7. = 0.000531 8p..1 = 0.000433
8pp.. = 0.000877 Sp.p. =0 8p.., = 0.000568
Spg.. = OF Sp. 5. = 0% 6p..5 = 0.0577
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8y, = 0.00250

(s
#

.. = 0.0181 6.,y = 0.0274

0.0418

Oz
1

*"dummy" methods

Stratum 1 is an input stratum consisting of containers of U0, powder. Stra-
tum 2 is an output product stratum consisting of containers of sintered U0, pellets.
Stratum 3 is an output waste stream stratum consisting of containers of solid waste
measured by NDA. Stratum 4 is a beginning inventory stratum consisting of containers
of dirty scrap. Stratum 5 is a beginning inventory stratum consisting of containers
of grinder sludge. Stratum 6 is an ending inventory stratum containing the same
kinds of material as Stratum 4., Stratum 7 is an ending inventory stratum contain-
ing the same kinds of material as Stratum 5.

Before continuing with this example, it is important to emphasize an impor-
tant point. Before any calculations of the variance of MUF are performed, data
for any items that are identical in both a plus and minus component of the MUF
equation must be deleted. For example, if an item in beginning inventory were
remeasured in ending inventory, then depending as the use made of the remeasured
value, this item may or may not be included in the MUF variance calculation. If
the remeasured value were booked, then the item would be included; if it were not
booked, but were only used for verification of the previously booked value, then
it would not be included--it would neither affect the MUF nor its variance.

To continue with the example, it is convenient to organize the parameter
values in tabular form before performing the calculations of (eq. 3.4.2). This is
done below.

Stratum (k)

1 2 3 4 5 6 7
N r 150 47,760 1 300 200 300 200
m 80 1 2770 6 4 6 4
L 5 240 1 10 12 10 12
C 1 1 1 1 1 1 1
q 1 2 3 4 4 4 4
p 1 2 3 4 5 4 5
t 1 2 3 4 4 4 4
qupt(l) LM240,000 238,800 1200 7200 4000 7200 4000

(1) entries are in kg uranium
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Equation (3.4.2) is now applied for each stratum.

v (Xllll) = 69.68 kgz U

V.(x2220) = 77.58 kg® U
(X3333) = 1.73 kg2 U
vr(xquuq) = 931.89 kg2 U
V.(xsusy) = 832.79 kg? U
V. (xeyuy) = 931.89 kg® U
V.(x74s54) = 832.79 kg? U

V_(MUF) is then computed using (eq. 3.4.3)
Vr(MUF) = 69.68 + 77.58 + ++- + 832.79 = 3678.35 kg2 U

EXAMPLE 3.3 (b)

This example deals with the plutonium MUF in a mixed oxide fuel fabrication
plant. Except for the fact that the numbers of containers in beginning and ending
inventories are not the same, the example contains no features not found in the
previous example. It is included, however, because it will later serve to illus-
trate calculation of the short term systematic error variance.

In this facility, there are 10 strata identified (K=10). There are 5 bulk
measurement methods, (q=1-5); 6 material types, (p=1-6); and 4 analytical methods,
(t=1-4). The error standard deviations are listed.

6,.,.. = 0.00025 8.7, = 0.0001 Sp.., = 0.0040
6pp.. = 0.00050 6y.,. = 0.0080 8y.., = 0.0050
Sps.. = 0.00040 Sp.5. = 0.035 Sy.., = 0.0060
8y, = O 8puy. = 0% Sp..y = 0.20
§ps.. = 0.00040 Sp.s. = 0.0040

5 = 0.020

*'dummy" methods

Stratum 1 is an input stratum consisting of containers of P,0,. Stratum 2
is an output product stratum consisting of containers of sintered pellets.
Stratum 3 is an output stratum consisting of dirty powder sent offsite for scrap
recovery. Stratum 4 is an output waste stream stratum consisting of containers
of solid waste measured by NDA. Stratum 5 is a beginning inventory stratum
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consisting of containers of mixed oxide powder. Stratum 6 is a beginning inventory
stratum containing the same kind of material as output stratum 3. Stratum 7 is a
beginning inventory stratum consisting of containers of grinder swarf. Strata 8,
9, and 10 are ending inventory strata containing the same kinds of materials as
strata 5, 6, and 7 respectively.

The pertinent parameter values are given in the following table.

Stratum (k)

1 2 3 4 5 6 7 8 9 10
N 32 200 1 1 20 1 1 20 |1 1
m 24 198 | 10 100 15 4 6 18 |5 3
" 4 5 1 1 3 1 1 311 1
y 2 1 1 1 1 1 1 11 1
q 1 2 3 4 5 3 3 5 3 3
p 1 2 3 4 5 3 6 513 6
t 1 2 3 4 3 3 2 313 2
xkqpt(l) 1536 | 1485 | 9.0 | 0.4 | 112.5 | 3.6 | 4.5 | 135 | 4.5 | 2.25

(1) entries are in kg Pu

Equation (3.4.2) is now applied for each stratum.
VP(Xllll) = 0.197046 kg2 Pu
Vr(xzzzz) = 0.198261 kgz Pu

V,(X3333) = 0.010215 kg? Pu
V, (Xuuuy) = 0.000064 kg? Pu
V. (xss53) = 0.014632 kg? Pu
V.(xg333) = 0.004086 kg? Pu
V. (X7362) = 0.001435 kg? Py
V.(Xgss3) = 0.017558 kg? Pu
V (Xg333) = 0.005108 kg® Pu
V. (X105362) = 0.000717 kg? Pu
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Vr(MUF) is then computed using (eq. 3.4.3)

Vr(MUF) 0.197046 + 0.198261 + --- + 0.000717

0.449122 kg? Pu

EXAMPLE 3.3 (c)

In the example just considered, suppose that after the first 10 batches of
P02 powder receipts were weighed, the scale was replaced by another scale of similar
design. Stratum 1 could still be treated as a single stratum, even though the
assumption that only one measurement method of each type were used for all items,
were violated. A modification in the calculations would be required to accommodate
this second scale, which may be identified by q = 6.

The 10 batches of P,0, powder weighed on scale 1 corresponds to 640 kg Pu
while the 14 batches weighed on scale 2 corresponds to the remaining 896 kg Pu.
In calculating the random error variance of the total element weight in stratum 1,

the term:
xlfll §p21../n1my  or
(1536)2(0.00025)2/768 = 0.000192
is replaced by
(640)2(0.00025)2/320 + (896)2(0.00025)2/448 = 0.000192
The result is the same, as is easy to prove in general. For the random
error variance, it doesn't matter how many measurement methods are used in a given

stratum as long as they have the same measurement error standard deviations. This
statement is not true for systematic error variances, as will be demonstrated later.

3.4.3.4 Systematic Error Variance of MUF

In developing the formulas needed to compute the systematic error variance
of MUF, attention will first be focused on the short-term systematic errors.
Method 3.4 applies.

Method 3.4
Notation
The notation is given in 3.4.3.2.
Model

See the discussion for the model in Method 3.3.
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Results
The calculations indicated need only be performed for those measurements for
which the first subscript on ¢ is g, i.e., for the non-zero short term systematic
error variances.

For each combination of values, q(i), calculate

=
|
M =

A

. = . . 3.4,
q(i)- =1 K xkq(1)pt (eq. 3.4.4)

where A = +1 for input and beginning inventory strata and where A = -1 for output
and ending inventory strata.

For each combination of values, p(i), calculate

K
M .y = X . . 3.4.5
p(1)+ 7 2 Mk Mkap(i)t (e )
where Ak is defined as above.
For each combination of values, t(i), calculate
K
M.-t(i) - kfl Ay qupt(i) (eq. 3.4.6)
where Ar is defined as above.
The short term systematic error variance of MUF is
V_(MUF) = 2 2. + § 2 M2
g{MUF) % 5gq--§Mq(1)-- § g-p-i2 -p(i)-
2 2
+§ 69..1: ? M"t(1) (eq. 3.4.7)

Any stratum in which the element factor is a nominal factor (historical average,
stoichiometric) will not have ¢ as a first subscript on ¢ for the sampling or
analytical errors. Hence, the calculations indicated would not be performed in such
cases.

Basis
The basis for Method 3.4 is the same as for Method 3.3. The distinction is

that for random error variances, one squares quantities and then sums them; for
systematic error variances, one sums and then squares.

Examples

EXAMPLE 3.4 (a)

In the facility described in example 3.3 (b), assume that there are short-term
systematic errors associated with the analytical methods due, in part, to system
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recalibrations during the one-year material balance period. Also, with reference
to example 3.3 (c), the introduction of the second scale in the bulk measurement
of the P,0, receipts can be treated by introducing a short-term systematic error;
since this second scale has the same design as the first one, the effect is the
same as if the first scale had simply been recalibrated.

The following error parameter values are given.

84,.. = 0-00010 8g..1 = 00013
8., = 0.0016
8.3 = 0.0020
8q..s = 0.06

From the information given in example 3.3 {c), for scale (bulk measurement
method) 1,

Xll(l)ll = 640 Xll(Z)ll = 896
Then, from (eq. 3.4.4),
Ml(l)" = 640 Ml(Z)'O = 896

For the analytical methods, assume that the following quantities of materials
are associated with the various shifts in the systematic errors (all quantities in
kg Pu):

stratum 1 (1) T fine) T MNags) T 512
stratum 2 X9222(1) T X2222(2) T *2222(3) - 49
stratum 3 X3333(1) = 0 > X3333(2) = 9.0

stratum 4 Xquuq(l) = 0.16 , quuq(z) = 0.24
stratum 5 Xs553(1) 112.5 , Xss53(2) = 0

stratum 6 x6333(1) = 3.6 , x6333(2) =0

stratum 7 X7362(1) = %5 2 X7362(2) T X7362(3) 7 O
stratum 8 x8553(1) =0 , x8553(2) = 135

stratum 9 x9333(1) =0 , x9333(2) = 4.5

stratum 10 = 2.25

X10,362(1) X10,362(2) =0 X10,362(3)
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Equation 3.4.6 may then be applied for each combination of values t(i):

Mee1(1) = Mee1(2) = Me.1(3) = 512
Mes2(1) = -495 + 4.5 = -490.5
Me.2(2) = -495

Me -2 -495 -2.25 = -497.25

112.5 + 3.6 = 116.1

w
1}

Mse3(2) = -9.0 -135 -4.5 = -148.5
M..4(1) = -0.16
Meeu(2) = -0.24

Equation 3.4.7 is applied to find the short term systematic error variance
of MUF.

kg? Pu
Vg(MUF) = (0.00010)2[(640)2 + (896)2] = 0.012124
+ (0.0013)2[(512)% + (512)2 + (512)2] = 1.329070
+ (0.0016)2[(-490.5)2 + (-495)? + (-497.25)2] = 1.876154
+ (0.0020)2[(116.1)2 + (-148.5)2] = 0.142126
+ (0.06)2[(-0.16)2 + (-0.24)2] = 0.000300

Vg(MUF) 3.359774 kg? Pu

Next, consider the long term systematic error variance of MUF. The calcula-
tions described in Method 3.5 follow easily from those in Method 3.4.

Method 3.5
Notation
The notation is given in 3.4.3.2.

Model

See the discussion for the model in Method 3.3.
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Results
For each value of g, calculate

K
Moo= 5 A

. (eq. 3.4.8)
k=l

kxkqpt

where Ay = +1 for input and beginning inventory strata and Ag = -1 for output and
ending inventory strata. Note that if the calculations indicated by (eq. 3.4.4) are
performed for each value of g, then Mq.. may be found by summing the Mq(i).. values
over i. Similar statements hold for sampling and analytical errors.

For each value of p, calculate

K

M = 3 A X (eq. 3.4.9)
p- k=1 k “kgpt

where Ak is defined as above.
For each value of t, calculate

K

M--t = kzl Ak xkqpt (eq. 3.4.10)

where Ak is defined as above.
The long term systematic error variance of MUF is

= 2 2 2 2 2
v (MUF) : M2, 852, * : M. Ss%p. * 3 M2,

2
6,2,y (eq. 3.4.11)

For any stratum for which the element factor is a nominal factor (historical
average, stoichiometric), set 55 0. = 0. The quantity és t must be assigned
a value that is a measure of the”""" systematic error o between the true
average element factor for that stratum and the nominal factor. In this event,
the subscript t s a dummy index. The quantity J could be quite large
if a stoichiometric factor is used. e

If it is known that the element factor in question is obviously in error by an
appreciable amount in a given direction, it would be preferable to attempt to
correct the data for the bias in the factor, and reduce the value for ¢ &
accordingly to reflect the systematic error in the residual bias. See >°°
example 3.5(c).

Basis
The basis for Method 3.5 is the same as for Method 3.3.

Examples

EXAMPLE 3.5 (a)

Continue with the facility of example 3.3 (a). The following error parameter
values are given. 3-21



6¢,.. = 0.000439 & . =0 s¢.., = 0.000571

Sgp.. = 0.000175 ¢ =0 8., = 0.000341

8g5.. = O 6g.y. = OF 6.,y = 0.0462

8sy.. = 0.00167 6g.y. = 0 6.,y = 0.00896
6.5, = 0.00444

*'dummy" methods

From the data table given in example 3.3 (a), the M___ values of (eq. 3.4.8),
(eq. 3.4.9), and (eq. 3.4.10) are calculated. It is not necessary to calculate
these quantities for g = 3, and p =1, 2, 3, or 4 since the corresponding error
standard deviations are all zero.

=
)

240,000 (all units in kg U)
M, . = -238,800

M,_ . = 7200 + 4000 - 7200 - 4000 = O

It
Q

M_.. = 4000 - 4000
M__, = 240,000
M., = -238,800

M., = -1200

I

7200 - 4000 = O

=
Il

7200 + 4000

Equation (3.4.11) is now applied to find the systematic error variance of
MUF:

kg2U
VS(MUF) = (240,000)2(0.000439)2 = 11100.73
+ (-238,800)%(0.000175)2 = 1746.40
+ (240,000)2(0.000571)2 = 18779.96
+ (-238,800)2(0.000341)2 = 6630.98
+ (-1200)2(0.0462)° = 3073.59

41,331.66 kg2U

VS(MUF)
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From example 3.3 (a) Vp{MUF) = 3678.35 kg2U.

- 125 -

V(MUF) = 45010.01 kg2U

Therefore,

standard deviation of MUF = 212 kg U, or 0.089% of input

EXAMPLE 3.5 (b)

Continue with the mixed oxide fuel fabricatijon facility of examples 3.3 (b)
following error parameter values are given.

and 3.4 (a). The

(Sslcc

65200

653.0

68!.{,..

dss.-

1

0.00020 §g.1. = 0 S,
0.00035 §5.,. = 0.0010 ‘.
0.00025 8.5, = 0.015 Ss..
0* 55-4- = 0 Gs--
0.00025 5.5, = 0.0024

Scug. = 0.008

*"dummy" method

From the data table given in example 3.3 (b), the M
(eq. 3.4.9), and (eq. 3.4.10) are calculated.

0.0007
0.0012
0.0015

0.08

values of (eq. 3.4.8)

For the analytical methods, the M__.

are easily calculated using the results of example 3.4 (a) for which the short-

term systematic error variances were calculated.

Ml-.

i}

1536

-1485

-9.0+ 3.6 +4.5-4.5~2.25=-7.65

112.5 - 135 = -22.5

-1485

-9.0 + 3.6 - 4.5 =-9.9

112.5 - 135 = -22.5

3-23

A11 units are in kg Pu.

b
1

S



- 126 -

4.5 - 2.25 = 2.25

1536

=-490.5 - 495 - 497.25 = -1482.75

116.1 - 148.5 = -32.4

-0.4

Equation (3.4.11) is now applied to find the long-term systematic error

variance of MUF.

VS(MUF)

From examples 3.3 (b) and 3.4 (a), the random and short

= (1536)2(0.00020)?2

+

(-1485)2(0.00035)2

+

(-7.65)2(0.00025)2

+

-22.5)2(0.00025)?

-+

~1485)2(0.0010)2

-

(
(
(-9.9)2(0.015)2
(

+

-22.5)2(0.0024)2

-+

(2.25)2(0.008)?

+

(1536)2(0.0007)2

-+

(-1482.75)2(0.0012) 2

+

(-32.4)2%(0.0015)2

+

(-0.4)2(0.08)2

error varjances are given.

Vr(MUF)
Vg(MUF)

Therefore,

0.449122 kg?Pu

3.359774 kg?Puy

summing, the variance of MUF is

3-24

VS(MUF)

kg2Pu

= 0.
= 0.

il
(2]

term

0.

094372
270140
000004

.000032
.205225
.022052
.002916
.000324
.156055
.165908
.002362
.001024
.920414 kg?Pu

systematic
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)

V(MUF) = 10.729310 kg2Pu

V(MUF) = 3.276 kg Pu, or 0.213% of input

EXAMPLE 3.5(c)

In examples 3.3(b), 3.4(a) and 3.5(b), say that in stratum 1, a nominal plutonium
factor of 0.875 is used for the Pu0, powder, and further say that Xk for stratum
1 is then 1542 kg Pu rather than 1536 kg Pu. In accordance with the HBEes that follow
(eq. 3.4.2), (eq. 3.4.7) and (eq. 3.4.11), the following changes are then made in the

calculations.

In example 3.3(b), set 8p 1. = 8y 1.7 0 and ry; = 1. Then

Vr (Xllll) = (1542)2 (0.00025)2/768

il

0.000194 kg2 Pu, (rather than 0.197046 kg2 Pu),
and Vr (MUF) = 0.252270 kg2 Pu, (rather than 0.449122 kg2 Pu)

In example 3.4(a), & 1= 0, (rather than 0.0013). Then, in the table of calculations
on Page 125, rep1aceg" the quantity 1.329070 by zero so that:

Vg (MUF) = 2.030704 kg? Pu (rather than 3.359774 kg? Pu).

In example 3.5(b), set & = 0.0025, (rather than 0.0007). Then, in the table of
calculations on Page 129, "~ replace

(1536)2 (0.0007)%2 = 1,156055 by
(1542)2 (0.0025)2 = 14.861025 kg2 Pu, so that
Vs (MUF) = 20.625384 kg2 Pu, (rather than 6.920414 kg® Pu).

Finally,

0.000194 + 2.030704 + 20.625384

vV (MUF)

22.656282 kg2 Pu, (rather than 10.729310 kg? Pu).

To continue with this example, the value of § 1° 0.0025 is set this large
because it is known that the nominal factor of>'*" 0.875 is biased high. One
could attempt to correct the data for bias by utilizing a "more reasonable"
factor of, say, 0.872, based on applicable historical data. For a factor of
0.872, the value for X t for stratum 1 is 1536.71 kg? Pu. The new value for
Vg (MUF) is essentiaﬂ§qp unchanged, (0.000192 kg2 Pu) and the new value for

Vg (MUF) is identically the same as before, viz., 2.030704 kg2 Pu. For the 0.872
factor, assign the value 0.0012 to s 1° Then, rather than 14.861025 kg2 Pu as
the contribution to the systematic error variance due to the use of the
nominal factor of 0.875, the contribution for the 0.872 factor is:

(1536.71)2 (0.0012)2 = 3.400528 kg2 Pu. With this change,
Vs (MUF) = 9.164887 kg2 Pu, and
V (MUF) = 0.000192 + 2.030704 + 9.164837

= 11,195783 kg? Pu.
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Before leaving this subject, it is noted that in all of the examples, common
element concentration factors did not appear in different strata. Should this
occur, then the methods suggested in a later section, 3.4.5, may be applied.

3.4.3.5 Case of Constant Absolute Errors

As stated in the assumptions of 3.4.3.1, all errors have thus far been assumed
to be constant on a relative basis, and & with subscripts was used to designate
such an error standard deviation. For example, Spqg.. = 0.0004 designates a rela-
tive error of 0.04% for the random error standard 3eviation of bulk measurement
method qg.

In some applications, and most notably in the case of scales, errors are
more likely to be constant on an absolute basis rather than on a relative basis.
The error propagation formulas given in the foregoing sections must be modified
to account for this. The modifications are very simple if one keeps in mind the
relationship between relative errors and absolute errors.

Letting o with subscripts be the standard deviation in absolute units, then
in stratum k, one has the relationship

n, m, o
8. = k xk ra- (eq. 3.4.12)
q kgpt

assuming that one is speaking of a bulk measurement. Similar modifications can
easily be made for sampling and analytical if needed, but here the common practice
is to express all errors relatively.

With (eq. 3.4.12) 1in mind, then the key equations may be modified as
follows:

In (eq. 3.4.2), replace the first term by
2
e M Opqe -

for all strata in which errors are expressed in o units rather than in § units.
Effectively, this replaces amounts by numbers of weighing.

In (eq. 3.4.4), for the methods for which errors are expressed in absolute
units, multiply qu(i)pt by

" M/ Xkq (1)pt

This is the same as replacing Xkq(i)pt by the number of weighings (or measure-
ments) performed under condition i.
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A similar change is made in (eq. 3.4.8). For the methods in question,
multiply qupt by

" M Xkapt

Example

The examples for the mixed oxide fuel fabrication plant (see examples
3.3 (b), 3.4 (a), and 3.5 (b)) are reconsidered given that for bulk measurement
method 1, the error standard deviations are expressed in absolute units rather than
relatively. The error standard deviations in question are:

0. .. = 0.0005 kg (0.5 g)
Og1.. = 0.0002 kg (0.2 g)
.. = 0.0004 kg (0.4 q)

Then, with the other input data unchanged, upon application of the modified
(eq. 3.4.2),

Vr(xllll) = 768(.0005)% + (1536)2[(.0001)2/96 + (.004)2/192] = 0.197046 ,
(as before)

Turning to example 3.4 (a), the values for Ml(l).. and M (5)-- become
respectively 112

(640)(768)/1536 = 320 (number of weighings)

M.

i
1

(896)(768)/1536 = 448 (number of weighings)

M)

Then, the first term of (eq. 3.4.7) becomes, for q = 1,

1

(0.0002)2[(320)2 + (448)2] = 0.012124 kg® , (as before)

From example 3.5 (b),
Ml.. = (1536)(768)/1536
From the first term of (eq. 3.4.11), for g = 1, one gets

768 weighings

(.004)2(768)2 = 0.094372 kg?

It is noted that in this example the results, of course, are unchanged.
This is because the scale in question is used in only one stratum. If a scale were
used in different strata in which the average weight per item differs, then this
would affect the results.
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3.4.4 Variance of Cumulative MUF

The cumulative MUF is the sum of individual MUF's over a number of material
balance periods. The cumulative MUF has the same model structure as the MUF for
a given material balance period, i.e., the MUF components are still the inputs,
outputs, beginning and ending inventories. Therefore, the variance of the cumula-
tive MUF 1is calculated using the same methods as are used for the MUF over a single
balance period. In this connection, note that if one were interested in calculat-
ing the variance of the cumulative MUF over, say, a three year period, then only
the inventories at the beginning and end of this three year period affect the
MUF, and hence its variance. It doesn't matter how many physical inventories there
are during this period of time; the three year MUF is completely independent of
such intermediate inventories.

In a parallel situation, if one were interested in calculating the MUF and
its variance over a number of combined material balance areas (or facilities),
then the remarks in the foregoing paragraph still apply. The summation is now
over space rather than over time. Thus, if the MUF for a state were to be calcu-
lated, this quantity, and hence its variance, is affected only by inputs to and
outputs from the state, and the beginning and ending inventories in that state.
Clearly, transfers among facilities within the state do not affect the MUF, just
as transfers among locations within a facility do not affect the facility MUF.

The problem is not one of calculating a state MUF or its variance; in concept

this is a simple exercise, or at least, no more complicated than that of calculat-
ing similar quantities for a facility. The problem is rather one of jmplementation,
since all facilities within the state would have to be inventoried simultaneously.
One could back off from this requirement by maintaining records of facility trans-
fers between inventory times, but to be effective, inventories would have to be
reasonably close to being simultaneous in time.

The foregoing discussion suggests the related questions as to how frequently
one should take inventory to close a material balance and compute a MUF, and how
finely one should divide a material balance area into sub-areas. Here is an in-
stance in which one's intuition is perhaps challenged by the facts, for it has
been proven that from point of view of maximizing the probability of detecting
the removal of material from a given material balance area over a fixed time inter-
val, one should neither subdivide the material balance area into smaller sub-areas,
nor should one subdivide the time interval to close the material balance more
frequently [3.8]. There are, of course, criteria to consider other than the detec-
tion probability. It is clear that the role of more frequent material balance
closings (more frequent inventories) is to detect removals of material more quickly.
Correspondingly, subdivision of material balance areas into sub-areas will serve
to localize the removals. It is unfortunate that these two important kinds of
criteria, detection probability and identification of removals in time and space
work at cross-purposes; clearly, some balance is needed. See also references
[3.9]-[3.11].

3.4.5 Variance of Isotope MUF by General Approach

In the foregoing sections, the variance of element MUF was treated. The
isotope MUF for a facility may also be calculated, and so it is necessary to pro-
vide methods for calculating its variance.
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Before providing such methods, it is worthwhile to note that for facilities
other than enrichment plants, primary emphasis should logically be devoted to con-
trolling the element MUF. If adequate control is maintained on the element MUF,
then, except for mistakes in booking isotope values, there is no way the isotope
MUF could be out of control. Since, on a percentage of throughput basis, the
uncertainty in the isotope MUF cannot be smaller than the uncertainty in the ele-
ment MUF, it follows that the element MUF 1is the gquantity of primary concern.

This fact was pointed out, and quantified results were found for a light water
reactor fuel fabrication facility in a paper by Nilson, Schneider, and Jaech
[3.12]. The authors pointed out that the variance of isotope MUF can easily be
twice that of the variance of element MUF on a percentage of throughput basis.

In the type of facility they treated, from a materials control viewpoint, the iso-
tope MUF provides no information beyond that provided by the element MUF. (The
authors do point out, however, that to guard against substitution diversion stra-
tegies, isotope measurements must, of course, be made. The question is not whether
or not such measurements need be made, but rather, how the resulting data are to

be factored into the decision framework.)

The variance of the isotope MUF is, as implied in the preceding paragraphs,
made up of two types of sources of variance. First, any uncertainties in measur-
ing bulks and element concentrations will also result in an uncertainty in the
isotope value since the isotope is normally calculated as the product of bulk,
element concentration, and isotope concentration. The exception is with NDA mea-
surements in which the isotope is measured directly and the element is calculated
from that measurement. Such items normally comprise a small part of the material
balance. That part of the variance of the isotope MUF that is due to errors in
the measurements of bulk and element concentration is covered in Section 3.4.5.1.

Secondly, errors occur in the measurement of isotope concentration. Here,
booking practices play an important role. If a block of material is inputted to a
facility at a given measured isotope concentration value, and if nothing in the
process changes that concentration, then the output would be at the same concentra-
tion as the input. To assure that the concentration remains unchanged, measurements
are also made of the output. But in the situation just described, these measure-
ments should be treated as verification measurements and should not be booked unless
they provide evidence that the isotope concentration had indeed changed. If such
verification type measurements are booked, then they introduce an artifical MUF
in the isotope value and also affect the variance of the jsotope MUF. This will
be illustrated in the example of Section 3.4.5.2 in which section the method 1is
provided for calculating that contribution to the variance of isotope MUF due to
uncertainties in the measurements of isotope concentrations.

3.4.5.1 Variance of Isotope MUF Due to Measurement Errors in Bulk and Element
Measurements

Method 3.6
Notation

The notation is given in 3.4.3.2 except that x now refers to an isotope
weight rather than an element weight.
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Model

See the discussion for the model in Method 3.3.

For isotope weight, the

multiplicative model is still used, since the isotope amount is found by multi-
plying the element amount by the isotope concentration factor when the amount of

isotope is found by the bulk, sampling, analytical measurement route.

Results

Follow methods 3.3, 3.4, and 3.5 after replacing all element weights by

isotope weights in the calculations.

Before performing these calculations,

delete all strata in which the amount of isotope is measured directly by NDA.

This step is necessary because for such strata, the uncertainty in the measure-
ment of the element in no way affects the uncertainty in the measurement of the
isotope; rather, the situation is reversed.

Basis

The basis for Method 3.6 is the same as for Method 3.3.

Examples

EXAMPLE 3.6 (a)

In Example 3.3 (a), the uranium is at six different enrichments.
ple is continued as Example 3.5 (a)). The pertinent data are tabled.

Stratum

1

Enrichment of Uranium

40 batches at 3.25% U-235
30 batches at 2.67% U-235
10 batches at 1.52% U-235

22,900 items at 3.25% U-235
16,720 items at 2.67% U-235
5,900 items at 1.52% U-235
2,240 items at 2.87% U-235

The U-235 is measured directly by NDA.

Delete this stratum

5 batches at 3.12% U-235
1 batch at 2.58% U-235

A1l batches at 2.58% U-235

3 batches at 3.25% U-235
2 batches at 2.67% U-235
300 kgs U at 1.52% U-235
900 kgs U at 2.87% U-235

1 batch at 3.25% U-235

1 batch at 2.67% U-235
500 kgs U at 1.52% U-235
1500 kgs U at 2.87% U-235
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Using the notation of the two cited examples, these data are converted to
kgs U-235. From Example 3.3 (a):

(120,000)(0.0325) + (90,000)(0.0267) + (30,000){(0.0152)

Xi111 T
= 6759.00
Xp000 = 6723.21 Kguuy = 211,47
Xyyy, = 218.16 Xoy5, = 109.85
Xsic, = 103.20
From Example 3.5 (a):
M., = 6759.00 M,., = 6759.00
,.. = ~6723.21 M,., = -6723.21
M,.. = 0.0 M., = 0.04
M . = -6.65

From Example 3.3 (a), to find Vr(MUF):

V.(x1111) = 0.0553 kg2 U-235
Vr(X2222) = 0.0615 kgz U~235
Vr(quqq) = 0.8556 kgz U-235
V (Xsusy) = 0.5543 kg2 U-235
v (ngqq) = 0.8039 kgz U-235
V (X7454) = 0.6280 kg2 U-235
Then,
Vr(MUF) = 2.9586 kg? U-235
From Example 3.5 (a), to find VS(MUF):
kg?y-235
(6759.00)2(0.000439)2 = 8.8043
+ (-6723.21)2(0.000175)2 = 1.3843
+ (0.04)2(0.00167)2 = (0.0000
+ (-6.65)2(0.00444)2 = 0.0009
+ (6759.00)2(0.000571)2 = 14.8949
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(-6723.21)2(0.000341)2
(0.04)2(0.00896)2

5.2561

+
+ 0.0000

VS(MUF) 30.3405 kg2U-235

The variance in the U-235 isotope MUF due to errors of measurement for bulk
and uranium concentrations is the sum,

2.9586 + 30.3405 = 33.2991 kg?U-235

To this must now be added the uncertainties due to the measurement of U-235
concentrations in strata 1, 2, and 4-7, and due to the measurement of the amount
of U-235 in stratum 3. The procedure for incorporating these uncertainties is in
Method 3.7.

3.4.5.2 Variance of Isotope MUF Due to Measurement Errors in Isotope Measurements

Method 3.7
Notation
Si = algebraic sum of isotope weights for isotope factor i. In the
algebraic sum, amounts in input and beginning inventory strata
have a plus sign while those in output and ending inventory
strata have a minus sign.
G = total number of isotope factors
ri* = number of samples drawn to establish isotope factor i
Ci* = number of isotopic analyses per sample
§*, with subscripts = a relative standard deviation associated with
an isotopic measurement. The subscripts are defined as in
Section 3.4.3.2. The only errors assumed to be non-zero are:
aﬁ-p- = random error in sampling for isotope
8%..¢ = random error in isotopic analysis
6:--t = long term systematic error in isotopic analysis
Tt = sum of Si values based on analytical method t
V;(MUF) = random error variance in MUF due to random errors in isotope
measurements
V;(MUF) = systematic error variance in MUF due to systematic errors in

isotope measurements
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Mode1

See the discussion for the model in Method 3.6.

Results
G 2 2 2
= * * * *rx
V?(MUF) izl Si(a r-p-/ri + 6r--t/rici) (eq. 3.4.13)
= 2 % 2
Vg(MUF) % Tt Gs--t (eq. 3.4.14)
Basis

The basis for this method is the same as for Method 3.3.

Examples

EXAMPLE 3.7 (a)

Example 3.6 (a) is continued. The following values are given for the para-
meters. (The nominal factor applies to the NDA measurements in stratum 3.)

Factor (i) ri hat P t
0.0325 2 1 1
0.0267 2 1 1
0.0152 2 1 1
0.0287 14 1 2 2
0.0312 5 2 1 1
0.0258 4 2 1 1
Nominal 2770 1 - 3

6;.1_ = 0.0005 6;.2. = (0.0005
6;. L= 0.0015 62..1 = 0.0008
5;_.2 = 0.0022 62._2 = 0.0010
6?__3 = 0.07 62._3 = 0.04

Equations ( eq. 3.4.13) and (eq. 3.4.14) may now be applied, but first, the
S and Tt values must be calculated. The data are from Example 3.6 (a).
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Sy = 0.0325 (120,000 - 114,500 - 3600 - 1000) = 29.25
S, = 80.10 Ss = 187.20
Sy = -4.56 S¢ = 134.16
S, = -390.32 S, = -36.00

T, =29.25 + 80.10 - 4.56 + 187.20 + 134.16 = 426.15

T, = -390.32

—j
w
|

= -36.00

From (eq. 3.4.13),

V;(MUF) = (29.25)2[(0.0005)2/5 +

= 0.0766 kg2U-235
From (eq. 3.4.14),

+

vg(MUF) (426.15)2(0.0008)2

2.3422 kq2U-235

(0.0015)2/10] + ---

Using the results from Examples 3.6 (a) and the above, the total varijance

of the isotope MUF is V*(MUF):

V*(MUF) = 33.2991 + 0.0766 + 2.3422 = 35.7179 kg2U-235

standard deviation

5.976 kg U-235

To continue with this example, suppose now that booking practices are changed

such that measurements of outputs are not

regarded as verification measurements

but are actually booked. Redefine the factors as follows:

Stratum Factors

1 .03250
.02670
.01520

.03257
.02668
.01521
.02870

nNo
OO0 o OO O
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4,5 0.03122 Measurements of beginning
0.02576 inventory, based on facility
measurements
6,7 0.03257 Measurements of ending in-
0.02668 ventory, based on facility
0.01521 measurements
0.02870

The revised table of factors then appears as follows:

Factor (i) P4t p ot
0.03250 5 2 1 1
0.02670 2 1 1
0.01520 2 1 1
0.03257 25 1 3 2
0.02668 15 1 3 2
0.01521 10 1 3 2
0.02870 14 1 2 2
0.03122 20 1 3 2
0.02576 12 1 3 2
Nominal 2770 1 - 3

The errors remain the same. One additional error is included, the random
error in sampling from material type 3 (sintered pellets). Assume that

6% . = 0.0005.

The Si and T¢ values are recalculated. There are now 10 Sj values.

S, = (0.03250)(120,000) = 3900.00
S, = (0.02670)(90,000) = 2403.00
Sy = (0.01520)(30,000) = 456.00

Sy, = (0.03257)(-114,500 -3600 -1000) = -3879.09
Ss = (0.02668)(-83,600 -2400 ~1000) = -2321.16
S¢ = (0.01521)(-29,500 -300 -500) = -460.86

S, = (0.02870)(-11,200 -900 -1500) = -390.32
.03122)(6000) = 187.32

w
[eo}
1]
—
(]

.02576) (1200 + 4000) = 133.95

w
(Xej
1]
—~
[en]

-36.00

wn
ot
o
i
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T, = 3900.00 + 2403.00 + 456.00 = 6759.00
T, = -3879.09 + .-+ + 133.95 = -6730.16
Ty = -36.00

From (eq. 3.4.13),

Vr*(MUF) (3900.00)2[(0.0005)2/5 + (0.0015)2/10] + ---

il

12.0465 kg2u-235
From (eq. 3.4.14),

]

VS*(MUF) (6759.00)2(0.0008)% + (-6730.16)2(0.0010)2 + (0.04)2(-36.00)2

76.6065 kg2U-235

The total variance of the isotope MUF is then

V*(MUF) = 33.2991 + 12.0465 + 76.6065

121.9522 kg?U-235

and the standard deviation is 11.043 kg U-235. Note that this is over twice as large
as the corresponding value when the measurements of output are not booked but serve
only to verify the inputs. The importance of booking practices is clearly demonstra-
ted by this example.

3.4.6 Effects of Other Factors on MUF and its Variance

In the discussion of Section 3.4.1, it was pointed out that MUF is affected
by factors other than errors of measurement. It is emphasized that the variance
of MUF, calculated by the procedures in the preceding sections, includes only the
effects of measurement errors, and it is implicitly assumed that any measurement
system on which such errors are based is functioning properly during the material
balance period in question. Thus, there are some limitations as to what conclusions
can be drawn about diversion of nuclear materials on the basis of only the MUF
and its variance. That is, it does not necessarily follow that if an observed
MUF differs significantly from zero based on a hypothesis test and using the vari-
ance of MUF as calculated in the preceding sections, this is evidence of diversion.
Before such a conclusion is drawn, the possible effects of other factors on MUF
and its variance should be taken into consideration. How this may be done objec-
tively is a difficult problem.

Consider the factors that may affect MUF and/or its variance. These are
such factors as unmeasured or hidden inventories, improperly modeled measurement
biases, misstatements on error variances, and improperly recorded data. Unmeasured
inventories will increase the size of MUF but will not affect its calculated vari-
ance. Improperly modeled measurement biases may affect both the MUF and its
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variance, depending upon the nature of the improper modeling. For example, if
biases exist but are not corrected for, or if the corrections do not properly
reflect the actual biases, then obviously this will affect the value for MUF.
Such conditions are, of course, presumed to exist since no measurement system

can be free of bias. This is why systematic error variances are a part of the
variance of MUF calculations; to reflect these biases. However, it may be diffi-
cult to model a system properly. For example, the sampling system for a liquid
waste stream may select representative samples the majority of time, but process
upsets may perturb the system on occasion so that the sample does not reflect the
contents of the waste stream during such events. To continue, misstatements on
the sizes of measurement error variances, either under or overstatements, will
clearly affect the variance of MUF. Finally, mistakes committed in the recording
of data will affect the MUF, but not the calculated variance. Such mistakes are
realistically impossible to eliminate completely, and are quite difficult if not
impossible to model properly. Their collective effects make it very difficult

to distinguish between material diversions and losses that may be explained by
innocent causes.

The problems pointed out in the preceding paragraphs are simple to pose
but difficult to solve. The function of inspection is to instill confidence in
the facility MUF and its variance. In Chapter 4, detailed inspection plans are
provided to that end. Further, facility inspection can address itself to other
problems just discussed; for example, an assessment can be made of the magnitude
of unmeasured inventories, and these can be taken into account in the final MUF
evaluation. Even detailed and well conducted facility inspections cannot, however,
provide a complete solution.

One approach that has received some attention starts with the premise that
there is a tolerable level of lack of material control that will not be included
in the standard MUF-LEMUF analysis. This tolerable level is then modeled in some
way. Such modeling may be done synthetically, by identifying the various factors
that might contribute to MUF and/or its variance, assigning tolerable ranges of
values to such factors, and then combining their effects, either analytically
or possibly through simulation methods. This does not provide a simple solution;
it is difficult to be objective and realistic in this modeling process.

Another approach is to evaluate past MUF data from typical plants considered
to have an acceptable Tevel of control. Future MUF performance may then be judged
against this past acceptable performance. It is difficult to be objective with
this approach also. There is no simple solution to the problem of MUF evaluation;
objectivity can only proceed so far in the evaluation process, and semi-objective
evaluation must complete any given evaluation, aided by whatever modeling is
available. It is relatively straightforward to reach a decision as to whether
or not a loss of material is larger than can be explained by errors of measurement;
it is quite a different problem to distinguish between losses due to innocent
causes, and those due to material diversion.

3.5 CALCULATION OF VARIANCE OF D, THE DIFFERENCE STATISTIC
It has been pointed out that the primary role of inspection from an account-

ing viewpoint is to instill confidence in the reported MUF and its variance. 1In
performing this function, the so-called D statistic, or the difference statistic,
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is of prime importance. The quantity D is an estimate of the bias in the facility
MUF. In actuality, it estimates a relative bias between the facility and the
inspection agency, which is interpreted as a bias in the facility MUF when the
assumption is made that the agency inspection measurements are unbiased.

The D statistic, as defined explicity in the next section, has intuitive
appeal in the sense that it seems to be a logical way to compare inspector data
with operator data. Beyond this, the importance of this statistic has been demon-
strated based on theoretical considerations. In reference [3.13], it is shown
that if all items in a given stratum are biased (or falsified) by the same amount,
then D is an optimal statistic from point of view of maximizing the probability
of detecting this bias. The more general case in which items may be biased by
variable amounts has also been studied, but an exact solution has not been found
for this case. However, in view of the aforementioned important result for the
constant bias case, it seems reasonable to base quantitative verification on the
D statistic for the more general case also; one would not expect to find significant
departures from optimality, if any.

In Section 3.5.1, the D statistic is defined. The variance of D is com-
puted directly by error propagation methods in 3.5.2. 1In 3.5.3, a general approach
to calculating the variance of D under specified rather non-restrictive assumptions
will be presented.

3.5.1 Definition of D

A stratum is defined as in 3.4.3.1. Within each stratum, the inspector obtains
measured values for a sampled number of items and compares his results on an item
by item basis with those of the facility. The inspector may not obtain a completely
independently measured value for each sampled item; he may use average concentra-
tion factors to apply to a number of items, just as the facility does.

For each item measured by the inspector, let the difference: facility value
minus inspector value, be calculated. Then, average these differences in each
stratum, Tetting dg be the average difference in stratum k. This difference is
in terms of either element weight or isotope weight. The difference is then extra-
polated to apply to the total weight of element or isotope in stratum k.

(eq. 3.5.1)

where Nk is the number of items in stratum k.

To determine the net effect of the biases in all strata on MUF, the 5 statis-
tic is defined as

D=2, A.ﬁk (eq. 3.5.2)
o
where Ay = +1 for input and beginning inventory strata, and where A; = -1 for out-

put and ending inventory strata. With D defined in this way, a_positive value of
D means that MUF is bijased on the high side while a negative value means that MUF
is biased Tow (see the discussion in Section 3.6).

.
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probability statements about D, i.e.. in order to deter-

bserved D proyvides evidence that the bias in the facility

MUF 1is different from zero, it is_hecessary to calculate its variance.

done by methods discussed and exemplified in the sections to follow.

3.5.2 Variance of D by Direct Application of Error Propagation Formulas

This 7s

If a given calculated D is based on a simple model that may be written
explicitly, then either Method 3.1 or Method 3.2 already given may be applied
This is illustrated by the following example

directly to calculate its variance.

in which the variance of MUF is calculated by Method 3.2.
with a shipper-receiver difference analysis for a single stratum rather than with
Mathematically, the two problems are equivalent.

a facility-inspection comparison.

The example is concerned

EXAMPLE 3.2 (c)

Shipper-receiver data for a receipt of 22 cylinders of low enriched UFg are
displayed below.

Net Weight
UFs{1bs) Percent U Percent U-235 U-235(1bs)
Cylinder S R S R S R
1 4853 4850 67.61 67.590 3.288 3.300 107.88 108.18
2 4855 4851 107.93 108.20
3 4852 4848 107.86  108.13
4 4846 4843 1067.73 108.02
5 4817 4818 67.60 67.605 2.394 2.397 77.96 78.08
6 4838 4835 ¥ ¥ ¥ ¥ 78.30 78.35
7 4506 4504 67.61 67.60 2.832 2.820 86.28 85.86
8 4504 4506 86.24 85.90
9 4503 4496 86.22 85.71
10 4504 4503 86.24 85.84
11 4504 4503 86.24 85.84
12 4502 4502 67.60 67.610 2.821 2.833 85.85 86.23
13 4503 4503 85.87 86.25
14 4498 4499 85.78 86.17
15 4513 4515 86.06 86.48
16 4854 4851 67.58 67.585 3.282 3.294 107.66  108.00
17 4853 4850 107.64 107.97
18 4854 4854 107.66 108.06
19 4849 4848 v v 107.55  107.93
20 4856 4855 67.60 67.595 3.286 3.300 107.87 108.30
21 4853 4850 107.80 108.19
22 4853 4851 107.80 108.21

This is -3.48 pounds U-235.

The quantity ak is the average of the differences in the values for the last
two columns. Since Ng is 22, i.e., since every item in this stratum was measured,
the quantity Dk given by (eq. 3.5.1) is simply the total of the 22 differences.
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table suggest the following model.

Shipper Values

The notation is

= 8 €
X1 % B 0y By ¥y &1 Wy Yy
= 6] v
Xy = My 8y By vy By W1 Yy
X5 = M5 Oy By Yy Exs Wy Yy
= § 6 €
X137 W3 0y By Yy Exi¥%u Vxu
X2 = M2 8y By Yy €405 U0yg Vyg
where X, = observed amount of U-235 in pounds for shipper

uj = true amount of U-235 in pounds

§y = shipper's systematic error in weighing

8y = shipper's systematic error in analysis for uranium concentrate

- = shipper's random error in weighing

= shipper's systematic error in analysis for U-235 concentration

= shipper's random error in analysis for uranium concentrate

vxj = shipper's random error in analysis for U-235 concentration

For the receiver, the notation is similar except that y replaces x through-

out.

and standard deviations given below.

distributed.

Standard Deviations

Random Variable

*x

6
X
Yx
€ s
xi
U)Xj
Vo
XJ

3-40

It is assumed that each error is a random variable with mean equal to one
A11 errors are assumed to be independently

Standard Deviation

0.0001
0.0004
0.0006
0.0001
0.0002
0.0010

(i.e., 0.01% relative)
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6y 0.0005
By 0.0007
Yy 0.0008
syi 0.0005
wyj 0.0004
v, . 0.00025
Yl

The quantity Dy, or D in this instance, is of the form:
D= w1 (8,8,vye,1901V51 'ayeyerylwylvyl)

4+ e o »

+ oy (Gxexyxexqwxlvxl'-6yeyYy€y4wylvyl)

+ -
Us (Gxexyxexswxzvxz 6yeyYy€y5wy2vy2)

+

u13(6xexYx€x1§xhvxh -ayeyYy?ylyvkvyh)

loo (SXQXYXEXZéUXG\)XG - 6‘yeyYyEy?2wy6vy6)

Following Method 3.2, a number of partial derivatives, evaluated at the mean
values of the random variables, must be calculated. These are

3D _sD _ab _ u

88, 88, v,

|
-

O

3D _ 3D _ 3D _ _ "

aay aey uyy i1 1

gg =]-1.i a1=1929'°:22
xi

-y i1, 2, e, 22
yi
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a0 30
= = + + +
3w v H1 T oH2 T oMy T by
X1 X1
) 5D
= = us t pg , etc.
W av
X2 X2

Various sums involving the u; are needed. The quantity u; is unknown and
must be replaced by an estimate. For convenience, estimate uj by x;. (It will
make very little difference in propagating the errors whether one estimates uj by
Xi, or by the mean (y; + xj)/2. Use the simplest value, xi {or yi).) Then

X1 + Xp + x3 + xy, = 431.40

156.26

X5 + Xg

X7 1 Xg * eee + X3, = 431.22

X12 * X133 T X1y t X35 343.56

430.51

X16 ¥ X17 * X18 t X19
Xog T Xo1 + Xop = 323.47

22
xi = 2116.42
<

-

(Eq. 3.3.2) of Method 3.2 may now be applied to find the variance of D. In
the calculations displayed below, the terms having a common coefficient, (bj? in the

referenced equation), are combined. 1bs2 U-235
(2116.42)2(1+16+36+25+49+64) x107° = 8.5553
(107.882+107.93%+--.+107.802) (1+25) x10™° = 0.0537
(431.402+156.26%++--+323.472) (4+100+16+625) x107% = 5.9934

var D = 14.6024
of = 3.82 1bs U-235

Even for this rather simple model and small set of data, the calculations
by the direct approach can quickly become burdensome. The question arises whether
some simplifying assumptions can be made without greatly affecting the results.
For example, in the second and third lines of the calculations displayed in the
example, suppose average values were squared and then multiplied by the number
of terms. The second 1ine becomes:
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22(96.20)2(1+25) xl()'8 = 0.0529 (compared with 0.0539)
This third 1ine becomes
6(352.74)2(4+100+16+625) x107® = 5.5618 (compared with 5.9934)

With these simplifying assumptions, o would be 3.76 1bs U-235 rather than
3.82 1bs U-235, which 1is not a difference of major impact.

This example, and others of a similar nature, suggests that, as for the
variance of MUF, a general approach for calculating the variance of {j based on
simplifying assumptions can also be developed. This is the subject of the next
section,

3.5.3 Variance of D by General Approach

General formulas will be developed to permit simple calculation of the vari-
ance of D. These formulas will be based on assumptions set forth in Section 3.5.3.1
As was true for the calculation of the variance of MUF by general formulas, the
assumptions will rarely if ever be completely valid in given applications. However,
experience has shown that this is not a great difficulty, since in many cases, even
moderate departures from the assumptions have very little effect (as was illustrated
by the example just presented). Further, if one has concern about the validity of
the general formulas in a given instance, they can readily be altered as appropriate
to accommodate a different set of circumstances.

3.5.3.1 Assumptions

The assumptions about the facility data were set forth in Section 3.4.3.1.
(Again, the variance of D for element weight is considered here; see Section 3.5.4
for isotope weight.) The additional assumptions relative to the inspection are as
follows:

(1) For samples of items within a stratum, the inspector also makes mea-
surements. He need not necessarily make the same type of measurement as the
facility, e.g., he may use nondestructive assay methods to a much greater extent
than does the facility operator.

(2) The inspector and the facility use the same material sampling proce-
dures, and hence, systematic errors in sampling will cancel. The effect of
changing this assumption on the calculations should be quite obvious.

(3) When there are batches within a stratum, the inspector may first
sample batches at random and then measure the same number of items in each batch
sampled.

(4) The inspector may utilize a number of laboratories to analyze the

samples, but for a given stratum, all use the same analytical method. This idea
is carried further in the next section.
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3.5.3.2 Notation

The notation is an extension to that given earlier in Section 3.4.3.2. The
quantity Yygqpt is defined as was Xggpt, except that y refers to an inspector value.
The measurement methods g, p, t refer to his methods.

Note: As was the case with the facility operator, it may be that within
a stratum, the same systematic error does not affect all items, i.e., there is a
short term systematic error. Use parentheses to indicate the total element weight
associated with "condition i" for a given measurement.

Since, under assumption (3) of the previous paragraph, the inspector may
utilize a number of laboratories, this concept is extended to accommodate this
possibility. Specifically,

Yy £(i(3)) = total element weight in stratum k as determined by the inspec-
qap J tor using the indicated measurement methods, and for those
items measured under condition j within laboratory 1.

If need be, this idea can be extended further using additional classifica-
tions that may be either crossed or nested. However, the extension just indicated
should be adequate to cover the great majority of applications.

To continue with the notation, & with subscripts still denotes a relative
standard deviation. The first subscript of r, s, or g is defined as in 3.4.3.2.
If the first subscript is h, this refers to a short term systematic error within
another such error, i.e., to a condition or time effect within a laboratory. Sub-
scripts 2, 3, and 4 are defined as in 3.4.3.2. A fifth subscript is either x to
refer to an operator standard deviation or y to refer to one for the inspector.
Further, Tet ug, wg, vk, and ag denote inspector parameters associated with
stratum k:

U = number of batches sampled by the inspector

W = number of items per sampled batch for which the inspector
makes bulk measurements

Vi T number of samples drawn by the inspector per sampled batch
to determine the element factor

a = number of analyses performed by the inspector per sample

With this notation in mind, Method 3.8 will now provide formulas needed to
compute the random error variance of D.

3.5.3.3 Random Error Variance of D

Method 3.8
Notation

The notation is given in Sections 3.4.3.2 and 3.5.3.2.
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Model

The statistic D is defined in (eq. 3.5.2). The model for a given term in
the indicated sum is exemplified by the model discussed in example 3.2 (c).

Results

For stratum k, the random error variance of Dy due to measurement errors
committed by the facility is

rx
That due to the inspector is

Ay = 2 2 2 2
' (Dk) xkqpt[arq--x/ukwk + ar-p-x/ukrk + Sr--tx/ckukrk] (eg. 3.5.3)

A

= 2 2 2 2
Vry(Dk) qupt[Grq--y/ukwk + Gr-p-y/ukvk * Sr--ty/akukvk] (eq. 3.5.4)

The variance of B, is

~

vr(ﬁ =y (6k) + v, (D) (eq. 3.5.5)

k) rX ry

The variance of D is then found by summing V(D) over the strata.
. K .
v (D) = éé% V.(D,) (eq. 3.5.6)

Basis

The formula for Vr(ﬁ) is found by application of Methods 3.1 and 3.2. The
key equations, (eq. 3.5.3) and (eq. 3.5.4) are simple to remember if it is kept
in mind that the divisor for each variance component is the number of measurement
ogerations affecting that component. For example, in (eq. 3.5.3), the divisor on
8yq..x is the number of batches sampled by the inspector, ug, times the number of
items weighed per sampled batch by the inspector. Since these items are compared
on a one by one basis with the corresponding facility measurements, only those items
weighed (i.e., bulk measured) by the inspector affect Dg. A1l other items in that
stratum that are weighed by the facility do not affect Dg, and hence, the number
of such weighings is not in the divisor. Similar reasoning holds for_ the second
term. Only the numbers of samples drawn by the facility that affect Dg are in-
cluded. This is the number of batches sampled by the inspector times the number
of items sampled by the facility per such sampled batch.

Examples

.

EXAMPLE 3.8 (a)

The facility of examples 3.3 (a) and 3.5 (a) is inspected. The matrix below
sets forth the pertinent parameter values for the inspector. The facility data are
given in example 3.3 (a). For purposes of error propagation, assume that xkqpt =

qupt.
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Stratum k
1 2 3 4 5 6 7
q 1 1 2 1 1 1 1
p 1 2 3 4 5 4 5
t 1 2 3 4 4 4 4
U 12 1 10 6 4 6 4
Wy 100 1 3 4 3 4
Vi 24 1 2 3 2 3
ay 2 1 2 2 2 2
The error standard deviations for the inspector are as follows:
srl..y = (0.000658 Gr-1-y = (0.000531 dr--ly = (0.000433
Sppey = 0 Speney = 0 Sy = 0.000822
ar.a_y =0 sr..3y = 0.0923
Gr-uoy = 0.0181 6F"4y = 0.0198
sr-S-y = 0.0418

Equation 3.5.3 is now applied

for each stratum

er(ﬁl) = 1143 kg2U

er(DZ) = 515 kg2l

V. (D3) = 479 kg?u

vrx(ﬁq) = er(BG) = 950 kg2U
V. (Bs) =V (D7) = 839 kg2U

Equation 3.5.4 is now applied

for each stratum

Vry(ﬁl) = 1594 kg2U

Vry(ﬁz) = 1050 kg2U

vry(ﬁg) = 1227 kg2U
ry(Du) =V (Bg) = 2263 kg2
ry(Bs) = v (D7) = 2591 kg2
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The random error variance of D, given by (eq. 3.5.6), is found by summing
all the above values.

vr(ﬁ) = 19,294 kg2U

EXAMPLE 3.8 (b)

The facility of examples 3.3 (b), 3.3 (c), 3.4 (a), and 3.5 (b) is in-
spected. This is a mixed oxide fuel fabrication facility. The matrix below
sets forth the pertinent parameter values for the inspector. The pertinent
facility data are in example 3.3 (b). For purposes of error propagation, assume

that xkqpt = ykqpt'
Stratum k

1 2 3 4 5 6 7 8 9 10
q 1 2 2 3 1 1 1 2 2 2
D 1 2 3 4 5 3 6 5 3 6
t 1 2 3 4 3 3 2 3 3 2
Uk 16 40 4 8 6 2 2 4 2 1
wk 6 12 1 1 5 1 1 7 1 1
Vi 3 5 1 1 2 1 1 2 1 1
ak 2 2 2 1 2 2 2 2 2 2

The error standard deviations for the inspector are as follows.

8p1.ny = 0-00050 8., = 0.0001 Spru1y = 0-0050
Sppuy = 0-00075 .. = 0.0080 8., = 0.0070
Spgeny = 0 Spogey = 0.035 Sprvqy = 0-010
ey = O Speryy = 0-40
5.5y = 0-0040
Sprgay = 0-020
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Equation 3.5.3 is now applied for each stratum, as is (eq. 3.5.4) for the
inspector. All quantities are in ka2 plutonium.

er(61> = 0.296817 vry(ﬁl) = 0.621036

rx(62) = 0.982474 vry(ﬁz) = 0.978395
V., (03) = 0.025538 vry(ﬁs) = 0.025830
V., (Dy) = 0.000800 vry(ﬁq) = 0.003200
v, (0s) = 0.036630 vry(ﬁs) = 0.069715
er(ﬁ6) = (0.008172 vry(SG) = (0.008264
v, (D7) = 0.004305 vry(67) = 0.004301
vrx(ﬁg) = 0.079079 vry(ﬁg) = 0.150722
V. (0s) = 0.012769 vry(ﬁg) = 0.012915
V. (D1o) = 0.002152 vry(ﬁlo) = 0.002152

The random error variance of D, given by (eq. 3.5.6), is found by summing
all the above values.

~

Vr(D) = 3.325266 kg2 plutonium

3.5.3.4 Systematic Error Variance of D

. In developing the formulas needed to compute the systematic error variance
of D, attention will first be directed at the short term systematic error.
Method 3.9 applies.
Method 3.9
Notation
The notation is given in Sections 3.4.3.2 and 3.5.3.2.

Mode1

See the discussion for the model in Method 3.8.
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Results
The calculations indicated need only be performed for those measurements
for which the first subscript on § is g or h, i.e., for the non-zero short term
systematic error variances.
For each combination of values q(i), calculate

K
MQ(1)°'X = 2 Akxkq(i)pt (eq. 3.5.7)

where A = +1 for input and beginning inventory strata and where Ay = -1 for out-
put and ending inventory strata.

For each combination of values t(i), calculate

(eq. 3.5.8)

MK

Mo t(i)x Z kxkqpt(i)

where the Ap are defined as for (eq. 3.5.7).

The contribution to the short term systematic error variance of D due to
facility measurements is

V(D) = 0 oGq..x & MG

q i q(i)-

2 2
+ %; 55 et 2; M2 ()X (eq. 3.5.9)

For the inspector, for each combination of values g(i), calculate
K
M. = A . . 3.5,
Tq(1)-y é;% kYkq(i)pt (eq. 3.5.10)
with the Ay defined as for (eq. 3.5.7).

For each combination of values t(i(j)), calculate

K
Mot (iga))y = éé% Akykqpt(i(j)) (eq. 3.5.11)

?1th Ag def;ned as above. Finally, for each combination t(i), calculate from
eq. 3.5.11),

M, (eq. 3.5.12)

M L.
3 A

t(i)y i(3))y
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The contribution to the short term systematic error variance of D due to
inspector measurements is
v (D) = 52 M2, . + §2
gy (") :é: gq- -y :gz q(i)--y :%: he-t

Y

M2
;%; ~t(i(3))y

£y

82 M2 . . 3.5.
l_.td g“ty 12 "t('])y (eq 3.5 13)

The total short term systematic error variance of D is

vg(ﬁ) = vgx(ﬁ) + vgy(ﬁ) (eq. 3.5.14)

Basis

The basis for Method 3.9 is the same as for Method 3.8. The distinction is
that for random error variances, one first squares quantities and then sums them;
for systematic error variances, one sums and then squares.

It is implicitly assumed in this method that both the inspector and the
facility apply the same material sampling procedures and hence commit the same sys-
tematic errors. For the D statistic, these errors would then cancel. This is why,
in the method, there are no expressions for M, i).x and M, i)eye Should this
assumption not be valid, the equations used to compute these two” quantities are
essentially the same as {eq. 3.5.7) and (eq. 3.5.10), with obvious modifications.
The equations (eq. 3.5.9) and (eqg. 3.5.13) would each contain the additional set
of terms.

Examples

EXAMPLE 3.9 (a)

The low enriched uranium fuel fabrication facility of example 3.8 (a) is
continued. Say that there are no short term systematic errors for either the
facility or the inspector except for those occurring because the inspector dis-
tributes the inspection samples to four laboratories. The values for the error
parameters are:

5 = 0.000544
g-e1y = 0-000

5 = 0.000522
ge.ay = 0-0005
Sg. .4y = 0-00711

The allocation of samples to the various laboratories is given by the
following table. The tabular entries are the amounts of uranium, in kilograms,
represented by the samples sent to the laboratories, i.e., they are Y (1)
values. ap
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Laboratory (i)

Stratum Akt 1 2 3 4
1 1 1 120,000 120,000 0 0
2 -1 2 79,600 79,600 79,600 0
4 1 4 7,200 0 0 0
5 1 4 1,000 1,000 1,000 1,000
6 -1 4 3,600 3,600 0 0
7 -1 4 2,000 2,000 0 0

The quantities M..¢(j)y are calculated from (eq. 3.5.12). First, (eq. 3.5.11)
must be applied, where j ='11n all cases. Since J = 1, M..t(j(j))y and M..t(q)y
are equivalent, and so the latter quantity is calculated from (eq. 3.5.11).

M = 120,000 M = 120,000

«e1(1)y -+ 1(2)y

Mea(nyy T Ma(a)y T Mea(a)y T 79,600

= + - ..2 =
M_.L*(”y 7200 + 1000 - 3600 000 = 2600
M = 1000 - 3600 - 2000 = -4600
cu(2)y
Moa(a)y ™ Moauuyy = 1000

Then, (eq. 3.5.13) is applied.
vgy(ﬁ) (0.000544)2[(120,000)2 + (120,000)2]

-+

(0.000522)2[3(-79,600)2]
(0.00711)2[(2600)2 + (-4600)2 + 2(1000)2]

-+

15,215 kg2U

_ Finally, from (eq. 3.5.14), the total short term systematic error variance
of D is

vg(ﬁ) = 15,215 kg2U

This contribution to the total error is a result of distributing the samples
to different laboratories. Had only one laboratory been utilized, the corresponding
value would have been

vgy(ﬁ) = (0.000544)2(240,000)2 + (0.000522)2(-238,800)2

= 32,584 kg?U
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EXAMPLE 3.9 (b)

Continue with the mixed oxide fuel fabrication facility of example 3.8 (b).
For the facility measurements, the information on the short term systematic errors
was given in example 3.4 (a). The value calculated for Vg(MUF) in that example
is jdentical with Vgx(D), viz,

Ay 5
Vgx(D) 3.359774 kg<Pu

This result is true in general as long as the inspector does not commit the
same systematic errors. Since it is assumed in Method 3.9 that the facility and
the inspector commit the same systematic errors in sampling, but not in analyti-
cal, and since the only short term systematic errors assumed to exist in this
example are those due to analytical, the result that Vg(MUF) = Vgx(D) holds in
this example.

Turning to the inspector measurements, assume that he distributes the sam-
ples to only one laboratory, but that the short term systematic error standard
deviations for analytical measurements, including NDA measurements, are as
follows:

Sg..1y = 0-0016
Sg..2y = 0.0020
Sg..qy = 0-0025
Sg. vy = 0-12

The table below gives the amounts associated with each measurement error
shift by stratum and by measurement method, i.e., the tabled values are y .
. kgpt(i)
values, in kg Pu.

Short Term
Measurement Error (i)
Stratum Ag t 1 2 3
1 1 1 768 768 -
2 -1 2 288 765 432
3 -1 3 - 9.0 -
4 -1 4 0.4 - -
5 1 3 112.5 - -
6 1 3 3.6 - -
7 1 2 4.5 - -
8 -1 3 - 135 -
9 -1 3 - 4.5 -
10 -1 2

B - 2.

™o
[}
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Since only the one laboratory is involved in this example, the quantities
M..t(i)y are calculated as in the previous example. Physically, these values now
represent total amounts of plutonium associated with each measurement error rather
than with each laboratory; the error propagation is identical.

"oy T Mgy T 7
M..p(1)y = 288 + 4.5 = -283.5
M..o(2)y = =765

M..o(g)y = 432 -2.25 = -434.25
M..5(1)y = 112.5 + 3.6 = 116.1

M. 5(ayy = -9-0 -135 -4.5 = -148.5
Mou(r)y = 0-4

Then, {eq. 3.5.13) is applied.

vgy(ﬁ) = (0.0016)2[2(768)2] + (0.0020)2[(-283.5)2 + (-765)2
+ (-434.25)27 + (0.0025)2[(116.1)2 + (-148.5)2]
+ (0.12)2(-0.4)2

6.660956 kg2 Pu

5 Finally, from (eq. 3.5.14), the total short term systematic error variance
of D is

Vg(ﬁ) = 3.359774 + 6.660956 = 10.020730 kg2 Pu

EXAMPLE 3.9 (c)

In the example just completed, assume that the samples of P,0, drawn from
stratum 1 are distributed to three laboratories and that within each laboratory,
they are analyzed under two sets of conditions (shift in short-term systematic
error). Then, the value for 8q..1y of 0.0016 given in the previous example becomes
She.1y Since & .o ly must now represent the laboratory effect for analytical
method 1. Suppose” that

8 = 0.
g..1y = 0-0008

and recalculate V_ (D).
re gy( )
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For application in {eq. 3.5.11) and following, the following input values
are used:

Yirri(i()) ~ Yiii(i(z2)) 256

y1111(2(1)) - y1111(2(2)) 256

256

y1111(3(1)) y1111(3(2))

Applying (eq. 3.5.11), the y values just given are identically the same
as the M values of {(eq. 3.5.11). From (eqg. 3.5.12),

M M = 512

..t(l)y= --t(z)y— <-t(3)y

Then, from (eq. 3.5.13),

ng(ﬁ)

(0.0016)2[6(256)2] + {0.0008)2[3(512)2] + C

1.509949 kg2 Pu + C
The remaining terms are represented by C. From the previous example,

C

6.660956 - (0.0016)2[2(768)2] = 3.641057

Therefore,

Lol
—
[
1l

5.151006 kg2 Pu

[ww B2
S
1l

and V_( 8.510780 kg? Pu

Note that the reduction in size from the previous example occurs because
now there are six sets of analytical conditions rather than three, causing more
of an averaging effect.

Next, consider the long term systematic error variance of D. The calcula-
tions described in Method 3.10 follow easily from those in Method 3.9.

Method 3.10
Notation
The notation is given in Sections 3.4.3.2 and 3.5.3.2.
Model

See the discussion for the model of Method 3.8.
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Results

First, consider the systematic errors for the facility measurements. For
each value of q, calculate

K

Mq--x = égi A Xkapt (eq. 3.5.15)

where Ag = +1 for input and beginning inventory strata and Agx = -1 for output and
ending inventory strata. Note that if the calculations indicated by (eq. 3.5.7)
are performed for each value of q, then Mg..x may be found by summing the Mg(i)--x
values over i. Similar statements hold for equations to follow.

For each value of t, calculate

K

Mgy = Eg& Ay Xkapt (eq. 3.5.16)

with the Ap defined as above.
The long term systematic error varjance of D due to facility measurements is
) = 2 2 2 2
Ve, (D) %; M. ox 82qex * %; M2 82y (eq. 3.5.17)

For the inspector measurements, for each value of g, calculate

K
= A . 3.5.18
Moy T 2y Pk Yiapt (eq. 3.5.18)
and for each value of t, calculate
K
M = A . 3.5.
.oty & k ykqpt (eq. 3.5.19)

A~

where A is again defined as above. The long-term systematic error variance of D
due to inspector measurements is

V_ (D) = M2 62 + M2 82 . 3.5.20
sy (D) 2; q-+y °sqey %; - : (eq )
Finally, the total systematic error variance of D is

vs(ﬁ) = vsx(ﬁ) + vsy(ﬁ) (eq. 3.5.21)

Basis

See the discussion for the basis in Method 3.9.
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Examples

EXAMPLE 3.10 (a)

Continue with the example of 3.9 (a). For the facility measurements, the
information on the long-term systematic errors was given in example 3.5 (a). The
value calculated for V5(MUF) in that example was 41,332 kg?U. In this particular
example, Vg(MUF) and Vsx(D) have identical values because although Vg(MUF) includes
the effects of systematic errors in sampling while Vsx{(D) does not {under the
assumption that the inspector commits the same systematic errors in sampling as
does the facility), in this particular example, the contribution to Vg(MUF) from
this error source was zero. Therefore,

A »
VSX(D) 41,332 kg“U

For the inspector measurements, the error parameter values are:

Sg1eny = 0-000439 Sg.v1y = 0-000172
Sg..py = 0-000165
Sg..qy = 0.0692
Sg.uyy = 0.00225

The values for Mg..y and M..;, are calculated from (eg. 3.5.18) and
(eq. 3.5.19) Y ty

M . .., = 240,000-238,800 = 1200

1y
M.,y = 240,000
M.,y = ~238,800
M,y = -1200
M.y = O

(Eq. 3.5.20) 1is applied.
v (5) = (1200)2(0.000439)2 + (240,000)2(0.000172)2
+ (-238,800)2(0.000165)2 + (-1200)2(0.0692)2

= 10,152 kg2U
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The total systematic error variance of D is given by (eq. 3.5.21).
vs(ﬁ) = 41,332 + 10,152 = 51,484 kqg2U

The results from examples 3.8 (a), (random error) 3.9 (a), (short term sys-
tematic error), and this example are now combined to give the total variance of D.

V(D) Vr(ﬁ) + v (D) + vs(ﬁ)

g
19,294 + 15,215 + 51,484 = 85,993 kg2U

EXAMPLE 3.10 (b)

Continue with the example of 3.9 (b). For the facility measurements, the
information on the long term systematic error variance was given in example 3.5 (b).
The value calculated for Vg(MUF) in that example was 6.920414 kg2Pu.

Unlike the example just completed, Vs(MUF) and Vsx(D) are not the same value
in the current example. This is so because Vg(MUF) includes systematic errors in
sampling while Vgx(D) does not, it being assumed that the facility and the inspector
commit the same systematic sampling errors. From example 3.5 (b), that part of
Vg(MUF) due to sampling is

(-1485)2(0.0010)> + (-9.9)2(0.015)2 + (-22.5)%(0.0024)2 + (2.25)2(0.008)2
2.230517 kg2Pu

Therefore,

D)

1)

- 6.920414 - 2.230517

4.689897 kg2Pu

For the inspector measurements, the error parameter values are:

S1.ny = 000030 Sg..1y = 0-0012

5.0y = 0-00050 S.uqy = 0.0015
Sg..qy = 0-0020
8.4y = 0.15

The values for Mq and M..ty are calculated from (eq. 3.5.18) and
(eq. 3.5.19). From the da¥a matr1ces of examples 3.3 (b) and 3.8 (b},
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M. .., = 1636 + 112.5 + 3.6 + 4.5 = 1656.6
M .., = -1485 -9.0 -135 -4.5 -2.25 = -1635.75

From example 3.9 (b),

M.,y = 2(768) = 1536

M.,y = ~283.5 -765 -434.25 = -1482.75
M,.5y = 116.1 -148.5 = -32.4

M,y = 0.4

Then, (eq. 3.5.20) is applied.

A

Vs, (0)

(1656.6)2(0.00030)2? + (-1635.75)2(0.00050)2
+ (1536)2(0.0012)2 + (-1482.75)2(0.0015)2
+ (-32.4)2(0.0020)2 + (-0.4)2(0.15)2

9.267826 kg2Pu

The total systematic error variance of D is given by (eq. 3.5.21).

vs(ﬁ) 4.689897 + 9.267826

13.957723 kg2Pu
The results from examples 3.8 (b), {(random error), 3.9 (b), (short-term
systematic error, with all samples sent to the same laboratory), and this example
are now combined to give the total variance of D.
V(D) = 3.325266 + 10.020730 + 13.957723

= 27.303719 kg?Pu

3.5.4 Variance of D for Isotope

If the variance of D is to be calculated for isotope weight rather than for
element weight, then the additional uncertainty associjated with the determination
of the isotope factors must be included. Before considering the methods for per-
forming these calculations, the discussion in Section 3.4.5 should be reread. This
discussion places in perspective the preferred role for measurements of isotope in
certain kinds of facilities.

Two methods are given for performing the calculation. Method 3.11 gives the

procedures to follow when calculating the variance of isotope D caused by uncer-
tainties in the measurement of bulk and in the sampling and analytical measurements
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for element. Method 3.12 provides the additional calculations needed to factor in
the uncertainty due to isotope measurements. In application, of course, both
methods must be followed.

Method 3.11
Notation

The notation is given in Section 3.5.3.2 except that the element weights
are now isotope weights.

Mode]l

See the discussion for the model of Method 3.8. For isotope weight, the
multiplicative model is still used, since the amount of isotope is found by mul-
tiplying the amount of element by the isotope concentration factor when the amount
of isotope is found by the bulk, sampling, analytical measurement route as opposed
to by nondestructive assay.

Results

First, delete from the calculations all strata in which the amount of iso-
tope is determined directly by nondestructive assay, i.e., in which the amount of
isotope is not derived from the amount of element by application of a measured
isotope concentration factor. If there are strata for which measurements of the
amount of isotope are found by bulk-sampling-analytical by one party and by non-
destructive assay by the other, delete from the calculations only those that
apply to the party using nondestructive assay.

After making the appropriate data deletions, follow Methods 3.8, 3.9, and
3.10, replacing all element weights by isotope weights in the calculations. This
may be done by determining the weighted average enrichment per stratum for all
the material in the stratum (i.e., not for just those items inspected). Then, in
the case of the random error variance, multiply the previously calculated Vyy(Dk)
and Vry(ﬁk) values by the squares of these average enrichments, expressed as frac-
tions rather than as percentages. In the case of the short-term and Tong-term
systematic error variances, the weighted average enrichment fractions must be mul-
tiplied by the stratum totals (and by the sub-stratum totals in the case of short
term errors) to express these totals in amounts of isotope before finding the
sums associated with each systematic error,

Basis
The basis for Method 3.11 is essentially the same as for Method 3.8.

It is implicitly assumed in this method that the weighted average enrich-
ments for the items inspected are the same as for the uninspected items in each
stratum (or substratum). More exactly, the coefficient that converts relative
error variances to absolute amounts in the error propagation should be the square
of the product of the total number of items in the stratum and the average amount
of isotope per item inspected. Thus, only if the average amount per item inspected
is the same as the average amount per uninspected item will the propagation formu-
las be correct in the strict sense. This assumption is necessary because the D
statistic that is in common usage in Agency inspection is implicitly based on a
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model in which errors are constant on an absolute basis, whereas the error structure
generally assumed in measurements of this type is one in which errors are constant

on a relative basis. (To be consistent, it would be more appropriate to work with
ratios of facility to inspector measurements rather than with differences, but the
advantages that would follow from this change in procedure are outweighed by the
problems in introducing the ratio statistic to replace the familiar difference
statistic.) The problem is quite academic and only becomes important if a given
stratum contains material with widely varying enrichments and if the inspection con-
centrates on certain enrichments in the stratum that are, in total, not representative.

Examples

EXAMPLE 3.11 (a)

Data relative to the inspection of the previously discussed low enriched fuel
fabrication plant are given in examples 3.8 (a), 3.9 (a), and 3.10 (a). Material
enrichments for the plant are given in example 3.6 (a).

Assume that the inspector obtains quantitive measures of U-235 concentra-
tions using the stabilized assay meter (SAM-2) except in stratum 3, the solid
waste output stratum. In stratum 3, nondestructive assay measurements are made
directly of the amount of U-235. Since the same is true of the facility measure-
ments, stratum 3 is deleted in the calculations to follow.

Following Method 3.11, the first step is to calculate the average enrichment
for all strata but stratum 3. From the data tables of examples 3.3 (a) and 3.6 (a),
these weighted enrichments are, by stratum:

Stratum
1 6759.00/240,000 = 0.02816
2 6723.21/238,800 = 0.02815
4 218.16/7200 = (0.03030
5 103.20/4000 = 0.02580
6 211.47/7200 = (0.02937
7 109.85/4000 = 0.02746

Then, the random error variances are (see example 3.8 (a)):

kg2U-235
2.170

vr(ﬁl) = (0.02816)2(1143 + 1594) =

vr(ﬁz) = (0.02815)2(515 + 1050) = 1.2401
vr(ﬁu) = (0.03030)2(950 + 2263) = 2.9498
V,.(Ds) = (0.02580)2(839 + 2591) = 2.2831
V.(Bg) = (0.02937)2(950 + 2263) = 2.7715
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vr(ﬁ7) = (0.02746)2(839 + 2591) = 2.5864
Summing, vr(ﬁ) = 14.0013 kg2Uu-235.

Next, the short term systematic error variance of D for isotope is calcu-
lated, following example 3.9 (a). In the cited example, the data table indicated
the amounts of uranium represented by the samples distributed to the four labora-
tories. By applying the weighted average enrichment per stratum to that table,
these amounts are converted to kilograms of U-235.

Laboratory (i)

Stratum Akt 1 2 3 4
1 1 1 3379.20 3379.20 - -
2 -1 2 2240.74 2240.74 2240.74 -
4 1 4 218.16 - - -
5 1 4 25.80 25.80 25.80 25.80
6 -1 4 105.73 105.73 - -
7 -1 4 54.92 54.92 - -

The quantities Mo-t(i)y are calculated as in example 3.9 (a).

Mei(a)y = Meni(a)y = 3379-20
Meea(a)y = Meea(a)y = Maa(s)y = 2240.74
M, w(1)y = 218.16 + 25.80 -105.73 -54.92 = 83.31
M--q(z)y = 25.80-105.73-54.92 = -134.85
Meeu(s)y = Mou(u)y = 25-80
Then, (eq. 3.5.13) is applied.
v_ (D) = (0.000544)2[2(3379.20)2] + (0.000522)2[3(2240.74)2]

+

(0.00711)2[(83.31)2 + (-134.85)2 + 2(25.80)2]

12,2004 kg2 U-235

Since, in this example, there is no contribution to the short term systema-
tic error variance from the facility measurements

Y = Ny = 2 |-
Vg(D) ng(D) 12.2004 kg2 U-235
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Finally, the Tong term systematic error variance is calculated following
Method 3.10. The calculations of example 3.10 (a) illustrate Method 3.10 for
uranium, and these are now repeated for U-235.

First, consider the contribution to this error variance from the facility
measurements. Following the same argument as presented in the first paragraph of
the example 3.10 (a) discussion, and with reference to the calculations of example
3.6 (a), the result is

vsx(ﬁ) = V (MUF) = 30.3405 kg2U-235

For the inspector measurements, the values for Mq..y and M..ty are calcu-
lated as in example 3.10 (a).

M 6759.00 - 6723.21 +218.16 +103.20

looy
-211.47 -109.85

35.83 ,

since scale 1 is used in all strata.

M.,y = 6759.00
M, .,y = -6723.21
M.,y = 218.16 +103.20 -211.47 -109.85 = 0.04

Note that M..3y, is not calculated since the stratum 3 measurements have
been deleted. Then, Trom (eq. 3.5.20),

it

v_ (0) = (35.83)2(0.000439)2 + (6759.00)2(0.000172)2

sy

+

(-6723.21)2(0.000165)2 + (0.04)2(0.00225)2

2.5824 kg2U-235
The total systematic error variance of 0 is given by (eq. 3.5.21)

Vs(ﬁ) = 30.3405 + 2.5824 = 32.9229 kg2U-235

The random, short term systematic, and long term systematic error variances
are now added to give the total variance of D due to uncertainties in the measure-
ment of bulk and of element concentrations:

14.0013 + 12.2004 + 32.9229
= 59.1246 kg2U-235
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Method 3.11, as exemplified in example 3.11 (a) just completed, gives the
variance of D in isotope weight that is caused by uncertainties in the measurement
of bulk and in the sampling and analytical measurement for element. Thus, the
result in example 3.11 (a), viz, V¢(D) = 59.1246 kg U-235, does not include the
effects of errors in measuring the isotope that are committed by either the facil-
ity or the inspector. Procedures for including these errors are detailed in
Method 3.12

Method 3.12
Notation

The notation is an extension to that given earlier in Method 3.7. For the
error standard deviations, a slight change is made in the notation to distinguish
between facility and inspector errors. Specifically, the following errors are
defined.

:. . = random error standard deviation in sampling for isotope,
P assumed to be the same for the facility and the inspector

6;~-tx = random error standard deviation in isotopic analysis for
the facility's analytical method t
62._tx = systematic error standard deviation in isotopic analysis
for the facility's analytical method t
5;-~t = random error standard deviation in isotopic analysis for
Y the inspector's analytical method t
sg..ty = systematic error standard deviation in isotopic analysis

for the inspector's analytical method t

Additional parameters relating to the inspector's measurement are defined:

Vi* = number of samples drawn by the inspector to verify the
facility's isotopic concentration factor i
a.* = number of isotopic analyses per sample performed by the

inspector
Model
See the discussion for the model in Method 3.11.

Results

For facility measurements, the random and systematic error contributions
to the variance of D due to measurements of isotopic concentrations are denoted
by Vyx(D) and Vgx(D) respectively. They are calculated by:

G
() = 2 2 2
v, (D) 1_2;1 S (a;_p_/w; +§%2 | /rict) (eq. 3.5.22)
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A

vx2 (D) }j'rtx %2 (eq. 3.5.23)

These equations are identical to those for Vy(MUF) and Vg(MUF) given by
(eq. 3.4, 13) and {eq. 3.4.14) respectively. An additional subscript is added to
Spests 65 .t» and Ty in the cited equations to designate that these parameters
relate to facility measurements, but the numerical calculations are identical.

For the inspector, the random error is

G
* 3) = *2 * *2 * A%
Vny (D) 2; : 6 "o v1 t8x y/vi ai) (eq. 3.5.24)

To compute the systematic error, first calculate

T sum of Si values based on the inspector's isotopic analy-

ty tical method t

~

vx (D T2 6*2 . 3.5.
& D %; 2y S22y (eq. 3.5.25)

The total variance of D due to isotopic measurements is

Vo* (D) = V;X(D) + VgX(D) + V;y(D) + ng(D) (eq. 3.5.26)

To compute the total variance of the isotope D due to all sources of error,
the results of Methods 3.11 and 3.12 are combined. That is, find the sum

[www b3

vx(6) = v (B) + v.x (D) (eq. 3.5.27)

Basis
The basis for this method is essentially the same as for Method 3.8.

Some important assumptions on which the computational equations are based
should be emphasized. First, since Spep-has no x or y subscript, it is implicitly
assumed that both parties use the same sampling equipment. Further, it is assumed
that systematic errors in sampling for isotope are zero. Finally, no provision
is made for calculating a short term systematic error variance for isotope measure-
ments; such errors are assumed to be zero.

If any of these assumptions should be invalid in a given application, the

additional calculations required should be apparent from similar applications de-
tajled by the methods of this chapter.

Examples
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EXAMPLE 3.12 (a)

Continue with example 3.11 (a). Additional information relative to the
inspector's measurements is required.

In stratum 1, of the 12 batches inspected, 6 have 3.25% enrichment, 4 have
2.67%, and 2 have 1.52%. To measure the enrichment, the inspector uses the sta-
bilized assay meter (SAM-2) on 5 items per sampled batch.

In stratum 2, SAM-2 measurements are made on 50 items. Twenty of these are
at 3.25% U-235, 15 at 2.67%, 5 at 1.52%, and 10 at 2.87%.

In stratum 3, the inspector measures the amount of U-235 directly on the
10 items. In stratum 4, all 6 batches are measured with SAM-2 measurements made
on 3 items per batch. In stratum 5, all batches are again measured with SAM-2
measurements made on 4 items per batch. No measurements are made of enrichment
in strata 6 and 7.

The inspector's error standard deviations are

5%y = 001 5% . .gy = 0.10
* = * =
$%..,y = 0-004 5%, .,y = 0.06

where the subscript 1 refers to the SAM-2 and the subscript 2 to the nondestructive
assay instrument used in measuring the solid waste in stratum 3.

The pertinent data for the facility are given in example 3.7 (a), and use
is made of some of the results calculated in that example.

_In applying (eq. 3.5.22) to ca]cu]ate Vix (ﬁ) and (eq. 3.5.23) to calculate
V&« (D), it was noted that these equal VR(MUF) and VE(MUF) respectively, quantities
which were already calculated for this facility in example 3.7 (a).

]

. 2 1
Vr; (D) = 0.0766 kg? U-235

Ve (6) = 2.3422 kg2 U-235

For the 1nspector measurements, a1 of (eq. 3.5.23) equals one for all i,
while values for v1 are derived from the information given about the inspector's
measurements per stratum

i Factor vi*

1 0.0325 30 + 20 = 50
2 0.0267 20+ 15 = 35
3 0.0152 10+ 5 =15

4 0.0287 10

5 0.0312 15

6 0.0258 3+ 16 =19

7 Nominal 10
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From (eq. 3.5.24),

vr§ (D) = (29.25)2[(0.0005)2 + (0.01)2]/50

+ (80.10)2[(0.0005)2 + (0.01)2]/35
+ (-4.56)2[(0.0005)2 + (0.01)21/15 + (-390.32)2[(0.0005)2 + (0.01)2]/10
+ (187.20)2[(0.0005)2 + (0.01)2]/15 + (134.16)2[(0.0005)2 + (0.01)2]/19
+ (-36.00)2(0.10)2/10

= 3.1727 kg2U-235

To calculate V¥ (D) from (eq. 3.5.25), it is first necessary to compute
Tty for t =1 (SAM-2) and t = 2 (NDA for solid waste).

29.25 + 80.10 -4.56 +187.20 +134.16 - 390.32 = 35.83

1y
T,y = -36.00
Ve (D) = (35.83)2(0.004)2 + (-36.00)2(0.06)>2

4.6861 kg2U-235
From (eq. 3.4.15),

vy (D)

i 0.0766 + 2.3422 + 3.1727 + 4.6861

10.2776 kg2u-235

The total variance of the isotope 0 is found using {eq. 3.5.27) and the
results from this current example and from example 3.12 (a).

V*(D) = 59.1246 + 10.2776 = 69.4022 kg2U-235

3.6  THE (MUF-D) STATISTIC

3.6.1 Application of (MUF-D)

There are two statistics, or quantities, that are used to evaluate the mater-
ial balance data for a given facility. The first is the facility MUF, the amount
of material that is unaccounted for based on the facility's measurements of inputs,
outputs, and inventories. Methods for calculating the variance of MUF are given
in Section 3.4. The second statistic is the so-called difference statistic, or D
statistic, which measures the relative bias between the facility and inspection

3-66



- 169 -

measurements, or better stated, between the values recorded by the facility and
the corresponding values based on measurements made by the inspector. Methods for
calculating the variance of D are given in Section 3.5.

In making inferences based on the observed or reported values for MUF and D,
one is faced with a choice as to how to proceed. On the one hand, a significance
test can be made of the bias between the facility and inspector values by using the
D statistic. If the test outcome is that there is no evidence of bias, then one
may accept the facility's stated MUF and test it for significance, making no fur-
ther use of D. The other approach is to correct the facility MUF for bias using
the D statistic. The quantity, D, is defined in such a way that if D is positive,
the MUF is overstated while if 0 is negative, MUF is understated. This suggests
that (MUF- D) is the statistic which may be regarded as the inspector's estimate
of the facility MUF.

In the next chapter, in Section 4.6, comparisons are made of the two evalua-
tion approaches: (1) first test for the s1gn1f1cance of D and, if not significant,
then test for the significance of MUF; (2) test for the significance of (MUF-D).
These comparisons are made forAspecific examples, and on the basis of these exam-
ples it is inferred that (MUF-D) is the preferred statistic if, in fact, the cri-
terion for selection of a statistic is based on the probability of detection.

The fact that the probability of detection is 1arger for (MUF-0) than for the
D and MUF tests applied separately, to be illustrated in the examp]es of Section 4.6,
has, in fact, been shown to be true in general [3.14]. This fact is consistent by
analogy with the earlier reported finding discussed in Section 3.4.4 in which the
statistical advantages of making a single test of diversion without making sub-
divisions by time or by space was pointed out. Thus, the (MUF 0) statistic, being
a global statistic in the same sense that the overall MUF is (i.e., the MUF over
the total finite time period and over the total material balance area) would be
expected to have the same advantage as the MUF global statistic.

For other studies in which comparisons are made of (MUF-D) with D and MUF
applied separately, see [3.15] and [3.16].

Consider now the calculation of the variance of (MUF-D), a quantity needed
in the chapter to follow.

3.6.2 Variance of (MUF-D)

Having calculated the variance of MUF and of D separately by the methods
of Sections 3.4 and 3.5, it is a simple matter to calculate the variance of
(MUF-D). This calculation is given by Method 3.13.

Method 3.13
Notation

The notation is consistent with that in previous sections. Specifically,

V(MUF) = variance of element MUF
V*(MUF) = variance of jsotope MUF
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variance of element D

Lew

V(
V*(

1)

)
)

Additional notation includes:

~

variance of isotope D

i

[

V(MUF-D) = variance of element (MUF-D)
V*(MUF-D) = variance of isotope (MUF-D)
V, = that part of the variance of element MUF due to systematic
errors that are common to both the facility and the inspector
V,* = defined as Vj, but for isotope MUF

. One additional quantity is needed. This is the covariance between MUF and
D, denoted by

cov (MUF, D) for element
cov* (MUF, D) for isotope

Model

A simple additive model will be used to provide the bases for the results.
In this model, all errors of a given type, (i.e., random or systematic) are com-
bined and represented by a single error. In this exposition, short-term systema-
tic errors are not included, for simplicity. For the same reason, a very simple
material balance involving only two strata (an input and an output stratum) is
considered. Further, the items within a stratum are presumed to be so ordered
such that the first nj items out of the total of Nj items are the ones inspected.
None of these simplifying assumptions affect the validity of the results.

The model is written as follows. For inputs, the facility measurement of
item i is

Xy = Xli o, t A te (eg. 3.6.1)

and for outputs it is

Xpq = K 546, A e (eq. 3.6.2)

21 21 21
In stratum 1, i runs from 1 to N1 and in stratum 2, i runs from 1 to N,.
The small x's represent observed values and the large X's represent true values.
The quantities 61, 4y, 05, and A, are systematic errors, while ;i and e,4 are
random errors. All errors gre presumgd to be distributed with zero means and

variances denoted by ogl, Op1s *''s Ogp respectively.

The corresponding inspector values are

Yii = Xli 0+ Py Fong, (eq. 3.6.3)

and Yo = Xzi o, ty, ton,. (eq. 3.6.4)
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Note that 6; and 6, are the same as for the facility measurements, i.e.,
they represent those systematic errors that are committed by both parties. In
(eq. 3.6.3), i runs from 1 to n; while in (eq. 3.6.4), i runs from 1 to n,. The
small y's represent inspector measurements.

Results

For element,

V(MUF-D) = V(D) - V(MUF) + 2 V, (eq. 3.6.5)
cov(MUF,D) = V(MUF) - Vg (eq. 3.6.6)
For isotope,
Ve (MUF-D) = v*(B) - V¥(MUF) + 2 V¥ (eq. 3.6.7)
cov¥(MUF,D) = V*(MUF) - V¥ (eq. 3.6.8)
Basis

Equations (eq. 3.6.1) - (eq. 3.6.4) form the basis for the results. They
are written in general terms to apply to either element or isotope so that by
deriving (eq. 3.6.5) and (eq. 3.6.6) for element, the corresponding equations for
isotope will follow.

The approach is to write the model for MUF, for D, and for (MUF-D) using the
model equations, find the variance of these quantities by error propagation, and
demonstrate that the variances are related as indicated by (eq. 3.6.5). If
(eq. 3.6.5) is shown to be true, (eq. 3.6.6) will follow easily, as will be shown.

First, consider MUF.

1 2

N, Ny
= 12::1 Xli + Nlel + N]_A]_ + 12=1 El_i
Nz N2
- Z Xz] -N262-N2A2 - Z 821 (eq. 3.6.9)
i=] i=1
The variance of MUF is
V(MUF) = leog1+N12021+N1c§1+N§032+N%c§2+N2052 (eq. 3.6.10)
Consider D= Nlal-Nzaz where
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- 1 N

dp = 2o X y/n, teytat )0 e L/m
i=1 i=1

n ni
DI VLI W
i=1 i=1

n; ny
=Myt e /0 - 2 npa/m (eq. 3.6.11)
i=1 i=1
Similarly,
- No Nno
dy = Ap-wp *+ 2:1 e,i/M2 - ?:1 n,:/N2 (eq. 3.6.12)
i= i=

The variance of 0 follows immediately:

Ay = 2.2 2.2 2.2 No2.2
V(D) Nl g + Nl O(fll + Nl 0€l/n1 + I‘Il 0n1/n1

A
+ NZZOiz + szciz + szoéz/nz + szoiz/nz (eq. 3.6.13)

From (eq. 3.6.9), (eq. 3.6.11), and (eq. 3.6.12), and including only the
error terms,

(MUF-D) = Ny6y + Nywg - Npby - Noyo
Ny ny N> n»
N N
DY e . +(1- ) e .- D ey -(1-2) > e
i=n,+1 H =y 1 1-n2+1 ! 2" §=1 2
D D R (eq. 3.6.14)
B R E
AY = N.2.2 2.2 2.2 2 2
V(MUF-D) = N og, t N b + N og, T N %o
N, Ny Ny 2 N, 2
1 yg2 N2y 2 a2 2
+ Nl(nl 1)oZ + NZ(n2 o2, + T Oh e o0, (eq. 3.6.15)

Finally, from (eg. 3.6.10), (eq. 3.6.13), and (eq. 3.6.15), and noting that

Vo = leogl + szogz, that the truth of (eq. 3.6.5) is demonstrated. That is

V(D) - V(MUF) + 2Vg = Ni202 + NpZo2 + Ny%02 + Np?o?

V1 V2 62
L R L IR L L L
L', €1 2in, €2 ny n1 N, n2

which is the expression for V(MUF-ﬁ), completing the proof.
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The result of (eq. 3.6.6) then follows immediately. Write
V(MUF-0) = V(MUF) + V(D) - 2 cov(MUF, D)

and equate this to the right hand side of (eq. 3.6.5). Solving for cov(MUF, D)
yields the solution given by (eq. 3.6.6).

Before leaving this section, it is noted that the key result, (eq. 3.6.5),
is also contained in reference [3.17] for a general model that also included short
term systematic errors. In the reference, make the equivalence

T = (MUF-D
T, = MUF
Ty-T, =D

With this equivalence in notation, (eq. 3.6.5) follows immediately from
equations (10), (20), (23), and (24) of [3.17], keeping in mind that A; of [3.17]
corresponds to Vg of this section. The result (eq. 3.6.5) is also contained in
reference [3.18], except that it is assumed in that reference that the facility and
the inspector do not commit common systematic errors, so that V, = 0.

Examples

EXAMPLE 3.13 (a)

Consider the low enriched uranium fuel fabrication facility discussed in
previous examples in this chapter. The following results were found:

from example 3.5 (a) V(MUF) = 45,010 kg2U
from example 3.10 (a) V(D) = 85,993 kg2U
and Vo = 0

(The result that Vy = 0 follows from the fact that although both the
facility and the inspector use the same sampling technique there was zero con-
tribution to V(MUF) due to systematic errors in sampling.)

From (eq. 3.6.5),

V(MUF-ﬁ) = 85,993 - 45,010 = 40,983 kg2U

From (eq. 3.6.6),

cov(MUF, D) = 45,010 kg2U

Note that this size covariance indicates that the correlation coefficient
between MUF and D is
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o = 45,010/ V/(45,010)(85,993)

= 0.72
For isotope,
from example 3.7 (a), V*{(MUF) = 35.7179 kg2U-235
from example 3.12 (a), v¥(0) = 69.4022 kg2U-235
and Vo* = 0

From (eq. 3.6.7),
V*(MUF—ﬁ) = 69.4022 - 35.7179 = 33.6843 kg2U-235
From (eq. 3.6.8),

cov*(MUF,B) = 35.7179 kg2U-235

The correlation coefficient is

35.7179/ V(35.7179)(69.4022)

©
i}

= 0.72 , as for uranium.

EXAMPLE 3.13 (b)

Consider the mixed oxide fuel fabrication facility discussed in previous
examples in this chapter. The following results were found:

from example 3.5 (b), V(MUF) = 10.729310 kg2Py
from example 3.10 (b), V(D) = 27.303719 kg2Puy
and Vo = 2.230517 kg2Pu

From {eq. 3.6.5),

V(MUF-D) = 27.303719 - 10.729310 + 2(2.230517)

21.035443 kg?Pu

From (eq. 3.6.6)
cov(MUF,ﬁ) 10.729310 - 2.230517

8.498793 kg?Pu

The correlation coefficient is

8.498793/ V(10.729310)(27.303719)

P

0.50
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EPDA use only

Progtam Name Program Documentation
Subtotal
1
2
3
4
5
6
7
8
9
10
Charges
A Program reproduction 20 000 Lit/program
B Documentation up to 20 pages 3000 Lit
over 20 pages (per 20) 3000 Lit
C Tapes
50D ft 8 000 Ln
1200 f1 10000 Lit
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Chapter 4
DESIGN OF INSPECTION PLANS

4.1 PURPOSE OF INSPECTION

Stated very simply and in somewhat general terms, the purpose of Agency
inspection is to provide assurance that the material balance data for a facility
properly reflect the state of material control that exists in that facility, and
further, that the state of control is satisfactory, i.e., it provides no indica-
tion of unaccounted for losses of material. In order to provide objectivity,
quantitative criteria are established, and statements about the inspection activi-
ties are framed in terms of these criteria.

Inspection plans are to be derived to apply to a given facility and for a
given material balance period. The inspection plan is not restricted to include
only those activities that take place to verify amounts of material in inventory
at a given time; the plan must also include provisions for monitoring flow streams,
i.e., inputs to and outputs from the facility.

This discussion ofi inspection activities is Timited to those activities that
bear on material accountancy. There are other activities that take place during
an inspection, e.g., checking on containment and surveillance devices, but such
activities, while certainly of importance in helping to provide assurance that the
material balance data are acceptable when evaluated against the criteria, are not
considered to be a part of those activities aimed directly at providing this assur-
ance in quantitative terms.

In planning for inspection, it is assumed that the facility accounting data
may misrepresent the actual amounts of material in discrete items. Although such
data misrepresentations may clearly occur because of innocent reasons, e.g.,
because of mistakes in recording the measured data, it is assumed for planning
purposes that data misrepresentations occur intentionally in order to mask diver-
sion. This assumption is made in order to provide assurance that the inspection is
effective and credible against all possible combinations of understatements and over-
statements of material. To be effective and credible, the inspection must guard
against the worst possible set of circumstances; this worst possible set corres-
ponds to actions that would be taken by a diverter attempting to conceal diversion
through data falsification. More is said to this point in later sections.

It is noted here that the assumed existence of an adversary, the diverter,
is the basis for game-theoretic developments of inspector strategies. Throughout
this chapter, reference will be made to results derived from game-theoretic consi-
derations, and they will be compared with results found using other approaches,
which also assume the existence of an adversary. Generally speaking, there is
close agreement in results among the different approaches to the inspection problem.
This is a comfortable result, and permits some freedom for inspection planners to
choose among the various approaches to inspection planning that are proposed. For
a rather complete treatment of the game theoretic approach to safeguards problems,
see Avenhaus [4.1].

4.1.1 Response of Accountancy Statistics to Diversion Scenarios

Before proceeding further, it is worthwhile to discuss different divergion
scenarios and how the accountancy measures available to the inspector: MUF, D,
and (MUF-D) react to these scenarios. It is perhaps most enlightening to consider
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this problem in the context of a specific example. In this example, errors of
measurement are ignored, total inspection and a perfect material balance are
assumed, i.e., in the absence of diversion, the MUF would be zero. {In the
presence of measurement errors and random sampling corresponding to less than
total inspection, the results of the following discussion are interpreted for the
expectations of the statistics.)

For the example facility material balance, assume the following:

BI = 1000 units (beginning inventory)
R = 500 units (receipts)
S = 800 units (shipments plus waste streams)
EI = 700 units (ending inventory)
MUF = BI + R - S - EI = 0 units

Some representative diversion scenarios are now constructed, and the re-
sponses of the test statistics to these scenarios are noted.

Scenario 1

100 units are moved from BI after having been verified by the inspector.
The facility is therefore short 100 units at the end of the balance period, i.e.,
there are actually only 600 units in EI.

Strategy 1

Do not falsify EI, i.e., book the true 600 unit value for ending inventory.
Then, the MUF being the booked amount gives MUF = 1000 + 500 - 800 - 600 = 100.
The Dk statistics for k = 1, 2, 3, and 4 are all zero since the actual amounts
agree with the book amounts. Thus

D=0
MUF-0 = 100 units, }eflecting 100 units diverted into MUF and 0 units
diverted through data falsification.
Strategy 2

Falsify the EI, i.e., book the EI as 700 units even though there are only
600 units present. Then,

MUF = 1000 + 500 - 800 - 700 = O
61 = 62 =D3 =90
Dy = 700 - 600 = 100
O = -0y = -100 (The minus sign occurs because this represents a

data falsification in a negative component of
the MUF equation.)

MUF-D = 0 -(-100) = 100 units, reflecting O units diverted into MUF

and 100 units diverted through data falsification,
i.e., through overstating the ending inventory.
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Strategy 3

Partially falsify the records to hide the diversion. Overstate the shipments
by 20 units and the ending inventory by 30 units. Then,

MUF = 1000 + 500 - 820 - 630 = 50
ﬁ1=62=0
s = 820 - 800 = 20 , D, = 630 - 600 = 30
D= -20 - 30 = -50
MUF-D = 50 - (-50) = 100 units, reflecting 50 units diverted into MUF

and 50 units diverted through data falsification.

Scenario 2

Although the true BI is 1000 units, this is booked as 900 units. The 100
units are then removed from the process so that at the end, the EI is actually
600 units.

Strategy 1
Do not falsify the EI, i.e., book the 600 value.

=

f

-
[

900 + 500 - 800 - 600 = O
900 - 1000 = -100

o
-
it

D2 = 63 = ﬁq =0

b = -100
MUF-0 = 0 -(-100) = 100 units, reflecting 0 units diverted into MUF
and 100 units diverted through data falsification.
Strategy 2

Being concerned that the inspector will detect the understatement in the
beginning inventory, also understate the ending inventory somewhat so that a de-
tected discrepancy could be explained as a measurement bias. Specifically, book
560 units in EI.

MUF = 900 + 500 - 800 - 560 = 40
Dy = 900 - 1000 = -100
D, =03 =0
0, = 560 - 600 = -40
D = -100 - (-40) = -60
MUF-D = 40 - (-60) = 100 units, reflecting 40 units diverted into MUF

and 60 units diverted through data falsification.
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These examples should make it clear that the (MUF-D) statistic reacts to the
total amount diverted, no matter what diversion strategy is employed. This is al-
ways true, no matter which diversion scenarios may be constructed. 1In this connec-
tion, data falsification can be said to occur only if the material in question is
inspectable, i.e., available to the inspector for verification. Thus, with scen-
ario 1, for example, it is not an admissible strategy to remove the 100 units from
beginning inventory before it is offered for inspection. Clearly, such a diversion
would not be detected within the closed loop of the facility material balance in
question. Material not made available for inspection is clearly not safeguarded.
Also, if material is diverted into MUF, i.e., simply removed from the process and
then shipped to a clandestine facility, such a shipment is not a declared shipment
and hence, the fact that there is a discrepancy between the amount shipped and the
amount booked as shipment does not constitute a data falsification. This is because
the amount booked is in perfect agreement with the amount presented for inspection.

Since the diverter may not restrict his strategies to the "admissible” ones
as defined here, for complete protection other statistics would also need to be
included, such as shipper-receiver differences. For a complete discussion, see
Reference [4.2].

4.2 INSPECTION ACTIVITIES

Inspection activities, while perhaps quite varied in a number of respects,
e.g., measurement complexity, cost, accuracy, etc. may be broadly classified as
falling into one of two categories--attributes or variables inspection. In attri-
butes inspection, the item inspected is classified as being either acceptable or
not acceptable (i.e., a defect) on the basis of the measurement. Attributes in-
spection has nothing to do with the quality of the measurement, but rather, with
the end use to which the measurement is put. Variables inspection, on the other
hand, assigns a measured value to each item inspected, and the measured values for
a group of items are combined in some way to provide a statistic, or a function of
the observations, used in the evaluation in some predetermined way. As was the
case with attributes inspection, the quality of the measurement in question is not
the feature that determines that an inspection measurement is variable in nature,
but rather, it is the end use to which the measurement is put.

The definitions of attributes and variables inspection in the widely refer-
enced U.S.Military Standards are quoted here to close out this discussion.

From [4.3]: “Inspection by attributes is inspection whereby either
the unit of product is classified simply as defective or nondefec-
tive, or the number of defects in the unit of product is counted,
with respect to a given requirement or set of requirements."

From [4.4]: "Inspection by variables is inspection wherein a speci-
fied quality characteristic on a unit of product is measured on a
continuous scale, such as pounds, inches, feet per second, etc.,
and a measurement is recorded."

A more detailed discussion of inspection activities as they relate to this
field of application follows.

4,2.1 Attributes Inspection Activities

The specific attributes inspection activities that may be performed in a
given inspection depend on the circumstances of that inspection. Some activities,
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although attributes in nature, are performed on 100% of the items and hence are not
a part of the statistical planning or evaluation function. They are included in
the discussion to follow for completeness.

In broad terms, the inspection activities discussed in this chapter fall in
one of two categories. One category consists of records examination and the other
relates to inspection of measurements data. Within each category there is a fur-
ther subdivision of possible inspections. Those that might be a part of attributes
inspection are discussed below.

In connection with the records examination, consider the following activities:

1) Inspection to detect recording and/or calculational mistakes in the
stratum subtotals and in combining stratum subtotals to calculate the MUF. This
would normally be a 100% inspection effort.

2) Reconciliation of data for receipts, shipments, and inventories as
stated in the records with those submitted in reports to the Agency. This is a
post-inspection activity and should be a 100% inspection with discrepancies noted
and corrected.

3) Inspection to detect recording and/or calculational mistakes for indi-
vidual items, including checking for proper application of the source data. This
will normally be done on a sampling basis, and is part of the statistical attri-
butes inspection.

Activities of types 1-3 are a part of the records examination. In addition,
two activities related to the verification of amounts of nuclear material are a
part of attributes inspection.

4) Counting of items to verify that the numbers of items located agree
with the number listed on the facility records. This could be a 100% inspection,
or it could be a part of the statistical attributes inspection, combined with
activities 3 and 5.

5) Inspection with an attributes tester to detect discrepancies, or defects,
that are Targer than can be explained by the combined errors of measurement for
the facility and for the inspector's attributes tester.

Some further discussion of this activity is helpful. Consider the attri-
butes tester. This is a measurement device of some sort that will classify an
inspected item as being either a defect or not a defect. The definition of an item
defect is different from a planning viewpoint than it is from an implementation
viewpoint. For planning purposes, a defect is defined in Section 4.3.1. From an
implementation viewpoint, a defect is defined in Chapter 5. The fact that differ-
ent criteria for defining a defect are used should not really be a bothersome
point; in planning, it is important to establish criteria such that the amount
of inspection performed is sufficient to provide protection against the best diver-
sion strategies that might be used by a diverter. (This point was made previously
in Section 4.1).

Measurement devices used as the attributes tester may not even be testers in
the true sense of the word. For example, the attributes test may consist of tipping
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a container to verify that the actual weight does not differ greatly from that
Tisted by the facility. The stabilized assay meter (SAM) may also be regarded
as an attributes tester since it verifies that the item contains uranium of
roughly the proper enrichment,

In summary, statistical attributes inspection might consist of randomly
selecting items from the facility Tisting, locating those items, checking the cal-
culations from the source data for those items, and performing attributes measure-
ments such as tipping the containers and/or measuring with an NDA instrument such
as the SAM. In any particular inspection, and for a given stratum in that inspec-
tion, the definition of an attributes test will, of course, have to be explicitly
set forth in implementation. This is not necessary in planning, however. It is
only required that some type of attributes inspection be anticipated.

4.2,2 Variables Inspection Activities

Variables inspection presupposes the existence of a variables measuring
instrument, or a variables tester. Unlike attributes inspection, it is necessary
to have in mind the specific tester to be used in each stratum at the planning
stage, because the measurement error variances affect the planning. A variables
tester may actually consist of a number of distinct measurement operations such
as weighing, material sampling, and chemical analysis, or possibly, NDA analysis
of the sample.

For planning purposes, variables inspection consists of two types of acti-
vities, both of which are related to the inspection of measurement data (as opposed
to records examination). To continue with the Tist of inspection activities begun
in the previous section, activities 6 and 7 defined below comprise the variable
inspection.

6) Inspection to detect defects that are sufficiently small so as to es-
cape detection with the attributes tester. This inspection activity is referred
to as variables inspection in the attributes mode. As was the case with attributes
inspection, the definition of a defect used in planning, given in Section 4.3.2.1,
differs from that used in implementation, given in Chapter 5, and for the same
reason. Interestingly enough, for planning purposes, it will be seen that the
definition of a defect is related to the measurement error of the attributes tester.
This means that, as stated above, although it is not necessary to specify the
attributes tester when planning for attributes inspection, it is at least neces-
sary to have some idea of its measurement error in order to plan for the variables
inspection in the attributes mode.

7) Inspection to detect small defects or biases that may exist in all or
some items in the given strata. This inspection activity is aimed at developing
data for the difference statistic, D, discussed in detail in Chapter 3.

For a discussion of how activities 6 and 7, both relating to variables in-
spection, are united in the planning stage, see Section 4.3.2.

4.3 CRITERIA FOR INSPECTION PLAN DESIGN
Having outlined the types of inspection activities for both the attributes

and the variables inspection, the criteria used in planning the inspection are now
considered. First these criteria are discussed for attributes inspection.
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4.3.1 Attributes Inspection Criteria

In determining the number of items to be inspected, attention is focugsed
first on a single stratum. Essential to the inspection design is some quantity M.

M = goal amount of element (or isotope) established by external
considerations and supplied as an input to the planning.

The attributes inspection criterion is stated very simply. If an amount,_
M, is missing from the stratum in question, this fact should be detected with (high)
probability, (1-8). The parameter 8 is also an input parameter.

Several comments are relevant. First, the definition of "detected" is con-
sidered. In order to minimize the amount of inspection that must be performed, a
zero-acceptance number plan is used. This means that if even a single defect is
found among the items inspected, this constitutes "detection". The action to
follow in the event of this detection is yet another matter that must be defined.
One action might be to 100% inspect the stratum in question on an attributes basis,
correcting all records for the defective items. This is generally not possible,
and some other action might be required, such as giving the facility the opportun1§y
to improve the data base prior to another inspection to follow soon. A third possi-
bility, and, in fact, the action most Tikely to be taken is that the effects on
MUF of the detected discrepancy will be evaluated in some way. Section 5.1.3
describes a procedure to calculate the confidence interval for the number of
defects in a stratum population. Section 5.1.2.1 describes a procedure to cal-
culate the quantitative effect of defects on MUF. Whatever the follow-up action,
detection is clearly and objectively defined here, and such a definition is all that is

needed in planning.

Next, consider the definition of a defect. It is clearly to a diverter's
benefit to falsify the smallest number of items necessary in order to accumulate
the goal amount of M units. Thus, he would choose to falsify each item falsified
by the maximum amount possible. Assume that this maximum amount corresponds to
the nominal or average amount of element (or isotope) per item, denoted by xk, and
expressed in the same units as M. Thus, the number of items that would have to be
falsified in order to accumulate M units (i.e., the number of "defects") is M/ik
in stratum k. With this in mind, the criterion for attributes inspection stated
above may now be restated in its equivalent form, as follows:

If the number of gross or large defects in stratum k is M/ik, choose the
sample size, nzk, large enough such that at least one of these defects will appear
in the items inspected with probability (1-g).

At this point in the discussion, a possibly worrisome point should be brought
up. The inspection is designed to detect M units if all M units are missing in
stratum k. In actual fact, the adversary would likely not attempt to remove all M
units by this mechanism, i.e., by large data falsifications restricted to a single
stratum. Clearly, if some amount less than M is diverted from stratum k in this
fashion, then the probability of detection in that stratum is some amount smaller
than the desired value, (1-8). This is a valid point of concern and touches on the
general problem of how the diverter would choose to divert M units by various means
so as to escape detection. This general problem is treated in detail in later
sections (see Sections 4.4.1.2 and 4.6). At this point in the discussion, one
need only accept the fact that the inspection criterion as stated is appropriate;
its appropriateness will be demonstrated Tater.
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4.3.2 Variables Inspection Criteria

With variables inspection, there are two kinds of criteria. One set is rele-
vant to variables inspection in the attributes mode and the other to variables in-
spection in the variables mode. The inspection sample size for stratum k will be
derived based on each set of criteria. In implementing the plan, the larger of
the two sample sizes will be used in each stratum. This means that the actual pro-
tection afforded by the plan, i.e., the plan's ability to detect the goal amount,

M, will be least as large as that calculated based on the design criteria as applied
separately in the attributes and variables mode. This point is discussed further
in Section 4.6.

Before presenting inspection criteria for variables inspection in each of
its two modes, it is helpful to discuss briefly why the two separate sample sizes
must be calculated. The reason is that an inspection plan must counter the best
strategy of a diverter. Specifically, it may well happen that if variables inspec-
tion in a variables mode is all that's planned for, then the sample size in a given
stratum may be too small to counter the strategy in which a diverter falsifies
not all items by a small amount, but rather, a selected smaller number of items
by an amount just small enough to escape detection by attributes inspection with
the attributes tester. The argument used by the diverter is that if any such
defected item is included among the items inspected by variables inspection, it is
sure to be labelled a defect; however, chances are that the item would not be in-
cluded among the items to be inspected were variables inspection only planned to
develop data for the D statistic. To combat that argument, variables inspection
sample sizes must also be large enough to detect these medium sized defects, those
sufficiently small so as not to be detected by the attributes tester, but much
larger than would be needed to accumulate M units by small defects were all items
in the stratum to be falsified.

It is remarked that rather than defining these two categories of defects
(medium and small), one could treat both categories of defects simultaneously on
a continuous scale. This is done by defining two quantities for a given stratum,
one being the number of items to be falsified by the diverter, and the other being
the size of the falsification per item. In a game theoretical sense, then, the
diverter chooses these two quantities in some optimum way while the inspector
also chooses his best strategy to combat the diverter. Limited calculations in-
dicate that the two different approaches to the problem Tead to basically the same
results from an inspection planning viewpoint [4.1].

Attention is now directed at presenting criteria for variables inspection,
first in the attributes mode.

4.3.2.1 Criteria for Variables Inspection in Attributes Mode

The discussion in Section 4.3.1 on attributes inspection criteria is rele-
vant to variables inspection in the attributes mode also. The only difference
is in the definition of a defect. As with attributes inspection, it is in the
best interest of a diverter to falsify any item selected for faisification by the
largest amount feasible. In the case of attributes inspection, this amount was
Xks in the case of variables inspection, it is Yy Xk, where yy is some number Tess
than 1.
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The parameter Y is an input design parameter. It describes the ability
of the attributes tester to detect a given degree of falsification. Specifically,
Yk may be defined by the following statement: 1if a discrepancy exceed Yyxg in
size, it will be labelled a gross defect in the attributes tester inspection with
probability one; if it is smaller than Yixk, it will be detected with probability
Zero.

In defining vk in this fashion, there is no need to define a measurement
error as such associated with the attributes tester. For example, if the attri-
butes test involves tipping a container to see if it contains about the recorded
amount of gross weight, it is difficult to assign a measurement error to this
operation. However, the argument can be made that if the item contains say less
than half its recorded amount, then this would be detected by the tipping opera-
tion. In this event, Yk would be assigned the value 0.5.

In the event the attributes tester produces a quantitative response or
reading, thgn vk may be defined in terms of the measurement error standard devia-
tion of the difference between the facility and the inspection measurements. Often,
this reduces to the measurement error standard deviation for the inspector measure-
ment, which will likely be the dominant error in attributes inspection. If the error
standard deviation of this difference is denoted by sy on a relative basis, then
Yk might be defined to be, say, 45x. For example, a 5% relative error standard
deviation results in a value for Yy of 0.20.

When there is some doubt as to the value of Yy in a given application, it
is always preferable to err on the high side. By erring in this direction, the
resulting inspection sample size will be larger than needed, i.e., the error will
be on the conservative side. This is one reason that the definition vy = 46
is used; even though it is quite 1ikely that a discrepancy smaller than Yyxy would
be detected by the attributes tester, the probability of this event is implicitly
assumed to be zero in order to be sure that the sample size for variables inspection
in the attributes mode is conservatively large.

With these thoughts in mind, the criterion for variables inspection in the
attributes mode may now be stated as follows:

If the number of medium defects in stratum k is M/Ykxk, choose the sample
size, nyik, large enough such that at least one of these defects will appear in the
items inspected with probability (1-8).

4.3.2.2 Criteria for Variables Inspection in Variables Mode, Using )

It was mentioned earlier that the data collected from the variables inspection
are used to calculate D, the difference statistic defined explicitly in Section
3.5.1. This fact implies that the criteria for the variables inspection sample
sizes, when variables inspection is in the variables mode, is related in some way
to this D statistic.

The design criteria in this application are again related to the goal amount,
M. In general terms, a sufficient number of jtems must be inspected such that
if the mean value of D is -M, this fact is detected using the D statistic with
probability (1-g). (Note: The mean of D carries the minus sign, -M, because a
negative value for D benefits the diverter, as D has been defined.)
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A number of comments must be made on this genera] criterion. First, the
precise definition of "detected" must be given. This is related to the probab111ty
of a "false alarm", i.e., of claiming detection when in fact the true mean of D is
zero. This probability should be small. It is an input value in planning, and is
labelled a.

Secondly, it is noted that, unlike attributes inspection, the sample size
for variables inspection in the variables mode is calculated over all strata, and
not for a particular stratum. In finding this total sample size, it is implicitly
assumed that the items to be inspected are allocated among the strata in some opti-
mum fashion. Specifically, in this discussion, they are allocated to result in
a minimum variance for D for a fixed total sample size. Other bases for optimum
allocation could be factored in, such as the cost of analysis and the attractiveness
of the material from a diversion standpoint, but this is not done formally here [4.5].

As a third comment, it is noted that it may not be possible to meet the cri-
terion as stated because the variance of 0 is limited by the systematic error vari-
ance. The random part of the variance of D will continue to decrease with increased
inspection sample sizes; the systematic part will not. Further, even in the case
that the design criterion can be met, the effect on (1-g8) of measuring additional
items beyond a certain point may not be worth the effort. Therefore, the emphasis
in this chapter will not be so much on determining a specific variables inspection
sample size, but rather, in examining the relationship between sample size and
(1-8) as an aid in choosing the sample size.

Fourthly, it is recognized that the variance of 0 under the hypothesis that
there is no diversion through small data falsifications may be smaller than that
under the alternative hypothesis that some material may be thus diverted. This is
because under the alternative hypothesis, the diverter will 1ikely choose to not
falsify all items by the same amount. Thus a statistical sampling error will be
introduced because the variance of D will depend on which items were selected to be
inspected. (See eq. (3.38) of [4.1] for an exact expression for this variance
under a specified model.) The parameter C§j is introduced to relate the variance
of 0 under the null hypothesis to its variance under the alternative hypothesis
during the planning stage. Specifically, for planning purposes, it is assumed that
the random error variance of D under the alternative hypothesis is CZ times the
corresponding variance under the null hypothesis.

As a final comment, it has been noted previously that measurements made with
a variables tester may well consist of a number of measurement operations, e.g., a
weighing, a sampling, and an analytical measurement. For simplicity, it is assumed
in this chapter that the sample size in question is taken to be the number of items
sampled to determine the element concentration factor. In calculating the random
error variance of D in planning, the number of items to be weighed is set equal to
the number of items to be sampled. The number of analytical determinations to be
made per sampled item may be arbitrarily inputted.

4.3.2.3 Criteria for Variables Inspection in Variables Mode, Using (MUF-D)

In Section 3.6, the (MUF- 0) statistic was introduced. It was pointed out
that (MUF-D) may be regarded as the inspector's estimate of the facility MUF. Fur-
ther it was suggested that the separate tests on D and MUF could be combined into
one test using (MUF-D)
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Clearly, the variance of MUF is independent of inspection sample sizes.
In the Section 4.3.2.2 just preceding this one, criteria for determ1n1ng the vari-
able inspection sample sizes using the D statistic were given. The aim here was
to detect M units through use of % If the (preferred) test statistic, (MUF-0),
is used in the evaluation phase, then it might be logical that (MUF-D) also be
the statistic used in inspection planning, rather than D. This Tatter statistic
is aimed only at detection of diverted amounts through small data falsifications;
the (MUF-D) statistic responds to the combination of two strategies of diversion,
one through small data falsifications, and the other through diversion into MUF.
Diversion into MUF means that material is simply removed from the process with no
attempts made to alter any records.

When p]ann1ng is with respect to (MUF-0) rather than to 0, then the cri-
teria discussed in the preceding Section 4.3.2.2 still apply, the only difference
being that (MUF-DB) replaces D as the test statistic.

4.4 SELECTION OF INSPECTION SAMPLE SIZES

The methods for deriving the inspection sample sizes may now be given. First,
the attributes inspection sample sizes are considered.

4.4.1 Attributes Inspection Sample Sizes

In Section 4.4.1.1, the method for determining the attributes inspection
sample size in stratum k is given. In Section 4.4.1.2, it is demonstrated that
this procedure provides protection against all diverter strategies in which M units
are diverted through Targe data falsifications but allocated among the various
strata.

4.4.1.1 Attributes Inspection Sample Size in Given Stratum

Method 4.1
Notation

The notation is given in Section 4.3.1 in part. It is repeated here for
convenience, and some additional notation is included.

M = goal amount of element (or isotope)

Nk = number of jtems in stratum k

.k number of items to be inspected in stratum k

B = probability of failing to detect the amount M, if this
amount is missing from the stratum

= average amount of element (or jsotope) per item in stratum k
expressed in the same units as M

bl
~
I
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Model
The random variable is the number of defects found in a sample of ny, items
selected at random from a population of Ny items containing a given number of defects.
It is well known that this random variable follows a hypergeometric density func-
tion [4.6].
Results

The required sample size, Nk is given by

= N (1-g7KM (eq. 4.4.1)

Nak k(
The result should always be rounded up to the next integer.
Basis

A zero acceptance plan is used to minimize the amount of inspection required.
The sample size, nyi, is the solution of the equation:
Prob (0 defects | M/X, defects in the population) = 8

Using the hypergeometric model, this equation is written

(M/ik) (Nk - M/ik>

0 Nak = 8 (eq. 4.4.2)
(o)
Nak

It is shown in [4.7] that an approximate solution to (eq. 4.4.2) is

n,, = 0.5 (1-g"M) (an - iz, + 1) (eq. 4.4.3)

When (M/X, - 7) is small relative to N, , it may be deleted from
(eq. 4.4.3), and beq. 4,4,1) follows immediate1§. When (M/Xx, - 1) is not in-
significant relative to Nk’ the use of (eq. 4.4.1) will resh]t in a conserva-
tively large sample size.

However, it follows from (eq. 4.4.2) that detection is certain (8 = 0) if
n, >N -Mx - i.e., if the sample size is greater than the number of non-
d8¥ecti§e 1tem§ in the population so that the sample size never need exceed
N, - M/x, + 1. Also if cost of sampling is an important factor more precise
aBproxi tion in (eq. 4.4.3) may be warranted.
Note: When computing 8 for given N, , M, Xx,, and n the approximation of
(eq. 4.4.1) may seriously overestimate™ B unfess the cBidition that (M/x, - 1)
is small compared to N, is satisfied, thus indicating a lower probability of
detection than that actha]]y achieved. If the condition is not clearly met the
use of (eq. 4.4.3) is to be preferred for calculating 8 when n K S Nk - M/ik.
If n, >N -MWx, 8 is identically O, a
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Examples

EXAMPLE 4.1 (a)

Let the stratum to be inspected be the feed stratum in the Tow enriched
uranium fabrication plant of Example 3.3 (a). From the data of that example,

12000

Ny

X1

20 kg U

Say that the input design parameter values are

M = 1500 kg U
8 = 0.05
Then, using (eq. 4.4.1),
ny, = 12000(1- 0.05"/"%)

469.87 = 470 items

EXAMPLE 4.1 (b)

Let the stratum to be inspected be stratum 8 of the mixed oxide fuel fabri-
cation facility of Example 3.3 (b). This is the ending inventory stratum of mixed
oxide powder items. From the cited example,

Ng = 360

Xg

0.375 kg Pu

Say that the input design parameter values are

M =8 kg Pu
g = 0.05
Then, from (eq. 4.4.1),
_ 0.375/8
Nog = 360 (1-0.05 )

(]

47.16 = 48 items
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4.4,1.2 Attributes Inspection Sample Sizes Over All Strata

As was mentijoned in Section 4.3.1, a diverter would likely not divert all M
units from a given stratum and, as a result, the probability of detecting an amount
less than M diverted from a given stratum will be less than (1-8). Assume, initially,
that the diverter diverts the goal amount M through gross data falsifications only,
but that he diverts an amount Mg from stratum k so that the sum of Mg over the k
strata is M. (This assumption is relaxed later to permit the accumulation of the
goal amount through a combination of strategies in which not all of it need be di-
verted through gross data falsifications.) What is then the probability of detect-

ing this diversion?

To answer this question, "detection" must be defined. In the case of a sin-
gle stratum, the diversion was detected if one or more defects appeared in the
sampled items. To extend this definition over all the strata, detection will be
said to occur if at least one such defect is found in one or more strata.

Let Bk = probability of finding 0 defects in the sample of nzk
items in stratum k

The overall probability of nondetection is simply the product of the gg
values over all the strata. The nak in this definition of gx is given by (eq. 4.4.1).

The expression for gy is found. The solution to (eq. 4.4.1) with By
replacing g and Mg replacing M provides this expression.

Bk = (1 - nak/Nk) (eq. 4.4.4)

But with nak given by (eq. 4.4.1), the expression (1 - nyy/Ng) may be re-
placed by k
X /M

so (eq. 4.4.4) becomes
g, = 8 k" (eq. 4.4.5)

The product of the Bk values is then
sz/M
Im gy = ek = B (eq. 4.4.6)
k

This gives the probability of nondetection, which is exactly the design
value for a given stratum. Thus, even though the probability of detection is not
(1-g) in any given stratum (unless My = M for that stratum), the overall probability
of detection will be (1-8), given that detection consists of finding at least one
defect in at least one stratum.
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This result may be more clearly understood if a numerical example is con-
sidered. Again consider the facility of Example 3.3 (a) and, following Method 4.1,

find the sample size for each of the seven strata.

plan information is given in the table below.

Stratum (k) Ni

X (kg U) Nak

12000
47760
2770
1800
800
1800
800

SOy R W N

20 470

5 475
0.4332 3
4 15

5 8

4 15

5 8

Use M = 1500 kg U. The sampling

The sample sizes, nak, are calculated from (eq. 4.4.1) for B = 0.05 with all
results rounded up to the nearest integer.

Now, consider three (of the infinitely large number) diversion strategies
by which 1500 kg U can be diverted through gross data falsification. These are

listed below, with entries in kg U.

Mg (kg U)

Stratum Strategy 1 Strategy 2 Strategy 3

1 600 400 760

2 600 1000 220

3 120 0 0

4 80 0 280

5 0 0 40

6 0 100 0

7 100 0 200
Total 1500 1500 1500

From (eq. 4.4.4), Bk is calculated for each stratum, and for each strategy.
The By values are displayed in the following table.

Bk = Probhability of Nondetection in Stratum k

Stratum Strategy

0.3016
0.3014
0.7407
0.8459
1.0000
1.0000
0.7778

Product = 0.0443

SNOYOT W

1

0.4497
0.1355
1.0000
1.0000
1.0000
0.8112
1.0000

0.0494

Strategy 2

Strategy 3

0.2191
0.6442
1.0000
0.5567
0.9044
1.0000
0.6050

0.0430

The key result is that even though the probability of nondetection in any
one stratum is quite large, yet the overall probability of nondetection is at or

below the design value of 0.05.
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4.4,1.3 Game Theoretic Results

One may approach the problem using game-theoretic considerations as a start-
ing point. This is a logical and appealing framework on which to develop an in-
spection strategy because of the presumed conflict between the adversary (the
diverter) and the inspector (see Section 4.1),

The minimax problem is treated in reference [4.1]. Briefly stated, thg '
diverter chooses a strategy of deciding which items to falsify that will maximize

the probability of non-detection (i.e., minimize the probability of detection).
The inspector then selects his sample sizes, subject to cost constraints, that will
minimize this maximum probability of non-detection.

The minimax results are compared with those described in the preceding sec-
tions, i.e., with results based on the criterion that the sample size in a given
stratum is that required to detect M units in that stratum. First, consider the
case in which the cost of inspection is the same in all strata. Then6 using the

notation of the preceding sections, the minimax solution (value for ni on page 58
of [4.1]) is
N, X, & n
_ k "k k Tak
k

where E nak is the total sample size, so chosen to provide a probability of detection
of 1-B. Specifically, it is the solution of the equation

Enak
g = (1 - M/Ekak) (eq. 4.4.8)
The solution is
£ng
N3k = — (eq. 44.9)
- M/Z
Thus, nak ©f (eg. 4.4.7) may be rewritten
Nkikﬁns
Nak = (eq. 4.4.10)

(EMXk )en (17 ENKRk)

Let us compare this game-~theoretic result with the earlier result of
(eq. 4.4.1), which appears on the surface to be quite different.

First, note that since M would normally be much smaller than INkXk, the
total amount available for possible diversion, the denominator of (eq. 4.4.10)
simply reduce to -M, using the result that for small a, £n(l1-a) is approximately
equal to -a. Thus, (eq. 4.4.10) may be rewritten

Nk = —Nkikﬁns/M (eq. 4.4.11)
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Note further that since Ny is common to both (eq. 4.4.1) and (eq. 4.4,11), it
remains to determine if

(1-Bxk/M) and
- kaVLB /M
are approximately equal to establish that the two formulas for ny, give the same
results. To demonstrate this approximate equality, expand
B>-(k/M

in a Maclaurin's series, retaining only the first order term, and with ik/M as the
variable. Thus, approximately,

vi 0 0, - -

M
Thus,

(1-8%kM)

'ik In g/M

thereby establishing the identity. The conclusion is that for all practical pur-
poses, (eq. 4.4.1) and (eq. 4.4.10), giving expressions for nzx that appear to be
quite different, and that are based on totally different solution paths are, in
fact, equivalent.

For those readers who prefer numerical demonstrations of equivalence rather
than mathematical ones, the example of Section 4.4.1.2 is reworked using (eq. 4.4.10)
rather than (eq. 4.4.1). For this example,

2y, = 502,400
N X, en (0.05) i
Nak = T502.400) Zn (1-.002986) ~ 0-001994 Ny x,
Ny = 479 (470) Nay = Nag = 15 (15)
Ngo = 477 (475) s =Ny, = 15 (15)
Nas = 3 (3)

Note the very close agreement with the results found by application of
(eq. 4.4.1), which are given in the parentheses.

Thus far in the development, it has been assumed that the cost of inspection
per sample is the same in all strata. The approximate minimax solution has also
been found for the case in which the cost of inspection may differ from one stratum
to the next. Letting g, be the effort per measurement in stratum k, the sample
size in stratum k is given by

NX Ze. n
n, = Rk ek (eq. 4.4.13)
2 e Ny Xy
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where

~(z e N &, ) Ln B/M (eq. 4.4.14)
k

These equations follow from (3.42 a) of [4.1]. It is seen that the formulas
for nak may be rewritten:

v %k Mak T

N = -NkikﬁnB/M (eq. 4.4.15)

This is identical to (eq. 4.4.11) for the case in which inspection cost is
constant. Hence, from point of view of planning, once M and g are fixed, and for
given Ny and X, the cost of inspection plays no role.

In summarizing these results, the conclusion is that the game theoretic
minimax approach to the problem produces sample sizes in very good agreement with
those found using the criterion that M units diverted in each stratum are to be
detected. The minimax approach does provide additional information, namely, it
does specify optimum strategies for the diverter, but this is not of interest to
the inspector. Either the (eq. 4.4.1) formula or the (eq. 4.4.11) formula may be
applied when finding nak; there is 1ittle to choose between them from point of view
of simplicity of application.

4.4.2 Variables Inspection Sample Size

The discussion in Section 4.3.2 should be reviewed as background. This
provides the motivation for determining the two sample sizes for variables inspec-
tion, one sample size relating to variables inspection in the attributes mode, and
the other to variables inspection in the variables mode.

4.4.2.1 Variables Inspection Sample Size--Attributes Mode

The procedure for finding the variables inspection sample size in stratum k,
when the variables inspection is in the attributes mode, is given by Method 4.2.

Method 4.2
Notation

The quantities M, Ny, 8, and xk are defined as in Method 1. The guantity
Y was defined in Section 4.3.2.1 by the following statement: 1if a discrepancy
exceeds Yy Xy in size, it is sure to be labelled a gross defect in the attributes
tester inspection; if it is smaller than viX,, it will not be detected. The last
quantity to be defined is

Nyik = number of items to be inspected in stratum k with
variables inspection in the attributes mode

Model
Same as for Method 4.1.

Results
The required sample size is given by

Y. X, /M
noo= Nk( oK/ (eq. 4.4.16)

vik
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The result should always be rounded up to the next integer.
Basis

The basis is the same as for Method 4.1, with Ykik replacing ik.

Examples

EXAMPLE 4.2 (a)

Let the stratum to be inspected be the feed stratum in the low enriched ura-
nium fabrication plant of Example 3.3 (a). For attributes inspection, it was found
in Example 4.1 (a) that the sample size was 470 items with M = 1500 kg U and g = 0.05.
For variables inspection in the attributes mode, find the sample size if Y; = 0.20.

Recalling that N; = 12000 and X; = 20 kg U, the solution is given by
(eq. 4.4.16).

1/375

12000 (1-0.05 )

n
Vil

95.48 = 96 items

EXAMPLE 4.2 (b)

Let the stratum to be inspected be stratum 8 of the mixed oxide fuel fabrica-
tion facility of Example 3.3 (b). For attributes inspection, it was found in
Example 4.1 (b) that the sample size was 48 items with M = 8 kg Pu and g = 0.05.

For variables inspection in the attributes mode, find the sample size if Yg = 0.04.

Recalling that Ng = 360 and Xg = 0.375 kg Pu, the solution is given by
(eq. 4.4.7).

0.015/8)

=
It

V18 360 (1-0.05

i

2.02 = 3 items

This example provides the opportunity to indicate a course of action to
follow when ny is very small, as here. In some applications, ny;i may well be
less than 1 which, when rounded up, gives an effective sample of size 1. Since
variables data are to be used for a number of purposes, it seems advisable to set
a lower 1imit on its size, recognizing that a single paired comparison certainly
provides Timited information. In striking a balance between inspection resources
and data requirements, a reasonable minimum sample size for the number of variables
measurements per strata would normally be about three; this minimum is recommended
as a working minimum (subject, of course, to specific circumstances).
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As was the case with attributes inspection, the sample size for variables
inspection in the attributes mode in stratum k will detect an amount M with
probability (1-g8). If an amount smaller than M units were diverted through
medium falsification in stratum k, then the detection probability will clearly
be less than (1-g) in that particular stratum. However, by an argument very
similar to that given in Section 4.4.1.2, if detection involves finding at least
one defect in at least one stratum, then no matter how the M units are allocated
among the strata, the overall probability of detection will be (1-g).

An extension to this result will be given in Section 4.5.2 where the proba-
bility of finding at Teast one gross or medium defect in at least one stratum
for attributes and/or variables inspection in the attributes mode is calculated.
The goal quantity M, or more generally, the amount diverted through gross and
medium data falsifications, which may be less than M, may be allocated arbitrarily
among the strata, and into either gross or medium falsifications.

4.4.2.2 Variables Inspection Sample Size--Variables Mode

Sections 4.3.2.2 and 4.3.2.3 should be reviewed. The sample size for vari-
ables .inspection in the variables mode will utilize either the D statistic or the
(MUF-D) statistic for planning purposes. Method 4.3 provides the equations needed
to compute the sample size.

Method 4.3
Notation

Much of the notation needed for this method has been defined in prior sections.
It is repeated here to facilitate application of the method.

v (5) = short term systematic error variance of D defined

g by (eq. 3.5.14)
Vs(ﬁ) = long term systematic error variance of D defined
by (eg. 3.5.21)

Vsl(ﬁk) = random error variance of Dk due to the facility sampling
and analytical errors, computed for those strata in which
the number of items measured by the inspector exceeds the
number of batches. In this event, the error, although ran-
dom in origin, behaves like a systematic error.

Vrl(ﬁk) = random error variance of 0k per item due to facility
sampling and analytical errors, computed for those strata
for which Vg, (Dg) is not computed.

v (ﬁk) = random error variance of ﬁk per item due to the facility
2 bulk measurement
Vr3(ﬁk) = pandom error variance of ﬁk per item due to the inspector's

sampling and analytical errors.
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The sum of the components of the variance of D whose values do not
decrease with additional inspector measurements (i.e., systematic
errors)

random error variance of ﬁk per item measured by the inspector

random error variance of D under the hypothesis that nothing has
been diverted and obscured by small data falsifications

random error variance of D under the alternative that small data
falsifications have been introduced to mask diversion

variance inflation factor relating Vr(ﬁ)]Hl to Vr(ﬁ)[HO

ratio of Vr(ﬁ)|H0 to og

(Note: o is inversely proportional to the total sample size)
variance of element MUF

that part of the variance of element MUF due to systematic errors
that are common to both the facility and the inspector

test statistic, either D or (MUF-0)
significance level of test

probability of failing to detect an amount M diverted and masked by
small data falsifications

goal quantity in amount of element

defined such that the area under the standardized normal curve t,
to = is o

defined such that the area under the standardized normal curve
from tB to «» is B
number of batches sampled by the inspector

number of items per sampled batch for which the inspector makes
bulk measurements

number of samples drawn by the inspector per sampled batch to
determine the element factor

number of analyses performed by the inspector per sample in
stratum k

number of batches in stratum k

number of sample drawn by the facility per batch to determine
the element factor

number of analyses performed by the facility per sample in stratum k
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It is assumed that the test statistic, either D or (MUF-D), is normally dis-
tributed. For each statistic, the mean is zero under the hypothesis of no diver-
sion, and M under the alternative hypothesis. Also, for each statistic, the random
error variance under the alternative hypothesis is assumed to be larger than under
the null hypothesis.

Results

The quantities czﬁand Sk must be calculated. To calculate oé, the first
step is to calculate Vg?D) and Vg(D) from (eq. 3.5.14) and (eq. 3.5.21) respec-
tively. Next, Vg;(Dy) is computed for each stratum for which the number of items

to be measured by the inspector exceeds the number of batches. It is assumed that
the inspector allocates his samples evenly among batches, or as near evenly as
possible (i.e., he may sample one additional item from certain batches in order

to achieve his required total number of samples). In some instances, it may not

be known a priori whether or not Vg;(Dy) should be calculated for a certain stratum.
One could, of course, iterate to a solution, but the impact of including a given
stratum in this calculation when it should not be included, or vice-versa, will
usually not be very large, and iteration should normally not be required. The
quantity Vgy(Dk) is calculated from:

= x2 2 2
Vsl(Dk) xkqpt (SP'P-X/mkrk * 6r--tx/ckmkrk) (eq. 4.4.17)
Then, o2 is given by
> K
2 = A A A
o Vg(D) + VS(D) + kil Vsl(Dk) (eq. 4.4.18)

To calculate sy, the first step is to calculate Vrl(ﬁk) for all strata for
which Vg1(Dg) was not computed.

N Y = x2 2 2
Vrl(Dk) Xkapt (sr-p-x/rk ol /S ) (eq. 4.4.19)

Next, for each stratum, Vrz(ﬁk) is computed.

2 2
qupt Grq--x

v (D

r, (D) (eq. 4.4.20)

Similarly,

Ay = g2 2 2 2
Vr‘g(Dk) Yiapt (arqny t oyt 6r--ty/ak) (eq. 4.4.21)
Then, sﬁ is computed for each stratum
2 = N ) N
si Vrl(Dk) + Vrz(Dk) + Vr3(Dk) (eq. 4.4.22)
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The quantities V(MUF) and V, are computed using Methods 3.3, 3.4, and 3.5,
keeping in mind the systematic errors that are common to both the facility and the
inspector when computing V,. Then calculate k,

kp = WAHUF) - 2Vo (eq. 4.4.23)

ag

S

With M known, compute

m = M/oS (eq. 4.4.24)

2

The quantities o and g (and hence, t, and tg) are chosen, as is Cp, the

varijance inflation factor. Finally, a decision is made as to the choice of the
test statistic to be used in planning, i.e., either D or (MUF-D). Define

1 if STAT is D

(]

a
(eq. 4.4.25)

i

1-k if STAT is (MUF-D)

The quantity ©, which is inversely proportional to the sample size, is then
calculated.

6 = (A-B)/C (eq. 4.4.26)
where
= 2 242 242 20242
A [(C0+1)atat8 +m ta + Com tB
- at; - Cﬁat%] (eq. 4.4.27)
B = amt t, \/é(cé-l)(cétg-t§)+c§m2 (eq. 4.4.28)
= ($2_0242)2
C (ta Cots) (eq. 4.4.29)
Two special cases are considered. First, if C% = 1, then
o = mz/(ta+t8)2 - a (eq. 4.4.30)
If C=0, i.e., if C%2 = (t /t,)? , then
0 a B
aZ(t2 - t2)2 - 2am?(t2 + t2) + m*
5 = @ B R (eq. 4.4.31)
4m2t2
(¢4
Having computed 6, the total sample size, Ny, s is found by
K
= 21002
nV2 (kEI sk) /ecS (eq. 4.4.32)
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In stratum k, the sample size is

K

Ios, (eq. 4.4.33)
k=1

nv2k - nv2 Sk/

Note 1: The quantity 6 as computed by (eq. 4.4.26), (eq. 4.4.30), or
(eq. 4.4.31) may be negative. This means that the input value for 8 is unattain-
able because of the Timitations due to the systematic error. A Tlarger value of
B must then be selected and 6 recomputed.

Note 2: The number of items inspected in stratum k, ny,k, is interpreted
to be the total number of weighings or, equivalently, the total number of samples
drawn to estimate element concentration factors. That is,

n = UV = U (eq. 4.4.34)

v2k k k

It is quite unlikely that vg and w, will be integers, unless mg, the number
of batches, is either equal to one or to the total number of items in the stratum.
Thus, for some strata, it is more correct to write

Mk mk

n = ¥ V,.= T W,. (eq. 4.4.35)
v2k 21 KIoyop K

where vy is the number of samples drawn by the inspector in batch i of stratum k,
and wij is similarly defined for bulk measurements. For any two such batches, i and
J» the quantities vij and vyj would not normally differ by more than one, nor would
wki and Wk -

Note 3: The results given by this method are quite general in nature. If
certain parameter values are fixed, then simpler graphical solutions for s are
obtained. Specifically, commonly used values are

a = 0.05 C% =4 a =1 (i.e., use D statistic)

For these values of the parameters, the figures in Annexes 4.1 (a) and
4.1 (b) show the relationship between 6 (or more exactly, /o), and g (or, more
exactly, 1-8). Having selected a value for & corresponding to the desired, or
feasibly attainable value for 8, the corresponding sample sizes are again given
by (eq. 4.4.32) and (eq. 4.4.33).

A comment is in order on the value assigned C%. Commonly, the value C% =4
has been used in planning. This means that the random error variance of D under
the alternative hypothesis of diversion is four times that under the null hypothesis
of no diversion. The variance is inflated when not all items are falsified, or
when the items that are falsified (which may be all the items) are falsified by
varying amounts. For the first case, an expression for the variance of 0 under H
is given by equation (3.38) in [4.1], and a similar expression, modified to reflect
the different amounts by which items are falsified, would describe the second
d;version strategy. Examination of the cited equation {3.38) would indicate that
C, = 4 is a reasonable upper bound; this corresponds to falsifying items by an
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amount equal to about 3.5 times the random error standard deviation for each item
element weight. Since the value of 4 represents an upper bound, it is conserva-

tive for planning purposes in that the sample sizes determined for this value of

€2 will tend to err on the high side. (Also see Section 6.3 of this Manual.)

Basis

The sample size is selected using amount of element as the variable rather
than amount of isotope. First, let the test statistic be D rather than (MUF-D).
The variance of D under the hypothesis of no diversion is

o2 + V(D) Ho (eq. 4.4.36)

i

V(D) [Hg

where

V.(0)|Hy = 802 (eq. 4.4.37)

defines the quantity o

A

Under the alternative hypothesis, H;, the variance of D is

V(D)|H, = o2 + C2oo? (eq. 4.4.38)

The quantity Vr(ﬁ)IHO is a function of the total sample size and also of the
allocation of this total sample size among the K strata. From (eq. 3.5.6), and
recognizing that V(D) [H; is the same as V,(D),

R K -
Vr(D)lHo = k§1 Vr(Dk) (eq. 4.4.39)

where Vr(ﬁk) may be written in the form:

+ §2 /DIV + 82

. 5
Vr(Dk) qupt (Grq--x/nvzk repex r--tx/CkDIV)

2 2 2 2
+ Ykgpt (Grq'-y/nvzk ¥ 6r-poy/nvzk * Gr--ty/ak"vzk) (eq. 4.4.40)
where

DIV

1]

min (nvzk’ mkrk) (eq. 4.4.41)

and where ag is a known input value (i.e., the number of analyses per sample per-
formed by the inspector is known)

From (eq. 4.4.19) - (eq. 4.4.23), it is seen that Vr(ﬁ)[Ho may be written
in the form

K

Vr(ﬁ)lHo = 3 sﬁ/n (eq. 4.4.42)
k=1

vaok
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keeping in mind that Vrl(ﬁk) is included in the definition of sy only for those
strata where DIV of (eq. 4.4.41) is ny,k.

In allocating the samples among the strata, this allocation should be per-
formed so as to minimize Vy(D)|Ho. This is seen from (eq. 4.4.48) to follow in
which the aim is to maximize tg. In this equation, 6 is directly proportional
to Vr(D)[Ho. When all items are falsified by the same amount, the variance infla-
tion factor, C%, is one, and tg is clearly maximized as 6 is minimized. At values
of C2 greater than one, tg is maximized as 8 is minimized as Tong as g<0.50, which
is the region of interest. For values of g>0.50, it would benefit the inspector
to have a large variance of 0, but this region of 8 is of 1ittle practical
importance.

Minimization of V,(D)|H, is a standard minimization problem, and it is
easily shown that the hy, k should be chosen by the equation:

K

=Ny, sk/ IS, (eq. 4.4.43)

n
v2k k=1

(This result is derived in [4.8] where it is also shown how other criteria
for optimization may be included.)

From (eq. 4.4.42) and (eq. 4.4.43), along with (eq. 4.4.37), the key rela-
tionship between ny, and 6, given by (eq. 4.4.32), follows easily. If some other
optimization criterion were imposed, then the relationship between ¢ and ny, would
have to be altered accordingly, but the equations to follow, which lTead to the
solution for 6, would remain unchanged.

The value for 6 is selected such that the goal amount, M, is detected with
probability (1-g) under the alternative. Further, the significance level of the
test is set at o. Before writing down the equations that lead to the solution for
8, it should be noted that as D is defined, large negative values of D are evidences
of diversion, and not Targe positive values. It is convenient to replace B by its
negative counterpart, 0, such that large positive values of D~ lead to rejection
of the null hypothesis of no diversion. Thus, define

H- = -b (eq. 4.4.44)

It is obvious that the variance of D~ will, of course, be the same as the
variance of D. The two equations to solve for 6 and the critical value, Dy, are

0) = o (eq. 4.4.45)

Prob (6->Dg|E(D")

and

Prob (B->Dg|E(D?) = M) = 1-8 (eq. 4.4.46)

From (eq. 4.4.45), (eq. 4.4.36), and (eq. 4.4.37),
Do = t,o, V1 +8 (eq. 4.4.47)
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where ta is defined in the Notation section. From (eq. 4.4.46), (eq. 4.4.38),
and (eq. 4.4.47),

tacs V1t =M )
o \/1+Cge

-tB (eq. 4.4.48)

or, replacing M/og by m, solve the following equation for 6.
t, VIte -m = -tB \/1+C%e (eq. 4.4.49)

Before indicating the sglution to this equation, note the effec@ of replacing
the test statistic 0 by (MUF-D) while keeping all other parameters fixed. 1In
this event, from (eq. 3.6.5), the variance of the test statistic, (MUF-D), under

the null hypothesis is

V(MUF-D)|H, = 02(1+6-ky) (eq. 4.4.50)
while its variance under the alternative hypothesis is

V(MUF-D)|H, = 02(1+C20-k,) (eq. 4.4.51)

with k, defined by (eq. 4.4.53). It follows immediately that for (MUF-D) as the
test statistic, (eq. 4.4.49) becomes

t, Vate -m = —tB\/a+C§e (eq. 4.4.52)

where a = 1-k, (eq. 4.4.53)

Thus, in general terms, (eq. 4.4.52) may be solved for 6; where a = 1 if
the sample size is based on detecting M units with the D statis%ic, and a = 1-k,
if the (MUF-0) statistic is used. It is shown in [4.9] that the solution to
(eq. 4.4.52) is given by the key results: (eq. 4.4.26), (eq. 4.4.30), and
(eq. 4.4.31).

Examples

EXAMPLE 4.3 (a)

Consider the low enriched uranium facility of Examples 3.3 (a) and 3.5 (a).
Follow Method 4.3 to determine the variables inspection sample size when inspection
is in the variables mode. Set M = 1500 kg U, and assume that duplicate analyses
are performed in all strata but stratum 3. The inspection samples are distributed
to a single laboratory as indicated in Example 3.9 (a). From that example, and
from Example 3.10 (a),
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=l
——~
O
g
!

= 32,584 kg2U

s
S’
i

= 51,484 kg2U

The quantities Vs1(ﬁk) are then computed using (eq. 4.4.17) for those strata
for which thenumbers of items to be measured by the inspector exceed the numbers
of batches. These strata include strata 2, 4, 5, 6, and 7.

Vg, (B2) = (238,800)2[(0.000568)2/240] = 77
V51(5”) = V(D)

= (7200)2[(0.0181)2/60 + (0.0274)2/60] = 932
Ve, (Ds) = Vsl(ﬁ7)

= (4000)2[(0.0418)2/48 + (0.0274)2/48] = 833

From (eq. 4.4.18),

og = 32,584+51,484+77+2(932)+2(833) = 87,675 kg2U
Next, Vrl(ﬁl) and Vrl(ﬁg) are calculated from (eq. 4.4.19).
Vrl(ﬁl) = (240,000)2[(0.000531)2/5 + (0.000433)2/5] = 5408
vrl(ﬁg) = (1200)2(0.0577)2 = 4794

For each stratum, Vp,(D) and Vps(Dk) are found using (eq. 4.4.20) and
(eq. 4.4.21), and assuming that xkgpt = Ykgpt for all k.

Vro(Dy) = (240,000)2(0.000658)2 = 24,939
Vrz(ﬁz) = (238.800)2(0.000877)2 = 43,860
V,.,(0,) = V., (B¢) = (7200)2(0.00250)2 = 324
V.,(Ds) = V. (D7) = (4000)2(0.00250)2 = 100
Vr3(ﬁl) = (240,000)2[(0.000658)2+(.000531)2+(0.000433)2/2] = 46,579
vrg(ﬁz) = (238,800)2[(0.000658)2+(0.000822)2/2] = 43,956
vr3(63) = (1200)2(0.0923)2 = 12,268
vr3(ﬁ4) = vr3(66) = (7200)2[(0.000658)2+(0.0181)2

+ (0.0198)2/2] = 27,167
vrg(ﬁs) = vr3(67) = (4000)2[(0.000658)2+ (0.0418)2

+ (0.0198)2/2] = 31,099
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The quantity S is now computed for each stratum using (eq. 4.4.22).

S% = 5,408 + 24,939 + 46,579 = 76,926 ; s; = 277
S% = 43,860 + 43,956 = 87,816 3 S = 296
S% = 4,794 + 12,268 = 17,062 5 s3 = 131
s = sé = 324 + 27,167 = 27,491 ; s, = sg = 166
s2 =s2 =100 + 31,099 = 31,199 5 s5 = s; = 177
7
b3 S = 1390
k=1

Suppose that the following criteria are set:

0.05 (significance level)

a:
cg = 4 (variance inflation factor)
a=1 (D statistic used in planning)

Then, following Note 3, the graphical solution for & is found. Here,

M/aS = 1500/296 = 5.07

Set g = 0.05, or 1-8 = 0.95. From Annex 4.1 (b),
/e = 1.75

The total sample size is then given by (eq. 4.4.32).

n (1390)2(1.75)/(87,675)

V2
= 39

In each stratum, the sample size is given by (eq. 4.4.33).

Nyoy = (39)(277)/1390 = 8
oy = (39)(296)/1390 = 8
My23 ~ 4
yay = Myos = 2
ans ) nV27 ) =

Total = 40
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To illustrate app11cat10n of the more general methodology suppose now that
the (MUF-D) statistic is to be used in planning, and that 8 = 0.025 with all other
parameters the same. It is necessary to calculate k, from (eq. 4.4.23) to obtain
the value for a from (eq. 4.4.25). From Example 3.5 (a),

V{MUF) = 45,010 kg2U
From Example 3.10 (a), Vo = 0 since, although both the facility and the
inspector commit the same systematic errors in sampling, the contribution to the
variance of MUF due to these sources of error was zero in this example. Thus,

ko = 45,010/87,675 = 0.5134

a = 1-k, = 0.4866

The quantity 6 is now calculated from (eq. 4.4.26), but first, A, B, and C
are found using (eq. 4.4.27), (eq. 4.4.28), and {eq. 4.4.29).

= [(5)(0.4866)(1.645)2(1.960)2+(5.07)2(1.645)2+(4)(5.07)2(1.960)2
-(0.4866)(1.645)"*-(4)(0.4866)(1.960)"1 = 457.5541

B = (2)(5.07)(1.645)(1.960) V/(0.4866)(3)[(4)(1.960)2-(1.645)2]+(4)(5.07)2 = 360.0746
C

[(1.645)2 - (4)(1.960)2]° = 160.2851

_ 457.5541 - 360.0746 _
8 = 160.2851 = 0.6082

The total sample size in this instance is

= (1390)2/(0.6082)(87,675) = 37

Finally, suppose that the variance inflation factor, C%, were set equal to 1
rather than 4. Then, ¢ is given directly by (eq. 4.4.30).

o = (5.07)2/(1.645+1.960)2 - 0.4866

1.4913

and the sample size is 15 rather than 37.

EXAMPLE 4.3 (b)

Consider the mixed oxide fuel fabrication facility first introduced in
Example 3.3 (b) and considered in a number of examples following that one. Set
M =8 kg Pu, and assume that duplicate analyses are performed in all strata but
stratum 4. Further assume that the inspection samples are distributed to only one
laboratory, and that the short term systematic error structure is as indicated in
Example 3.9 (b). Find the inspection sample size for two cases:
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Case 1 o = 0.05 g8 = 0.05 Co = 4
Use D statistic
Case 2 o = 0.025 g = 0.20 Co =4

Use (MUF-D) statistic

The quantities Vg(ﬁ) and Vs(ﬁ) were calculated in Examples 3.9 (b) and

3.10 (b) respectively.
10.020730 kg2Pu

<

L}

>

p g
{]

13.957723 kg?Pu

O
~——
It

The quantities Vgi(Dg) are then computed using (eq. 4.4.17) for those strata
for which the numbers of items to be measured by the inspector exceed the numbers

of batches. These strata likely include strata 1, 3, 6, 7, 9, and 10

Sl(6 ) = (1536)2[(0.0001)2/96+(0.0040)2/192] = 0.
5, (03) = (9.0)2[(0.035)2/10+(0.0060)2/10] = 0.
<1(De) = (3.6)2[(0.035)2/4+(0.0060)2/4] = 0.
«1(B7) = (4.5)2[(0.020)2/6+(0.0050)2/6] = 0.
1( o) = (4.5)2[(0.035)2/5+(0.0060)2/5] = 0.
( o) = (2.25)2[(0.020)2/3+(0.0050)2/3] = 0.

From (eq. 4.4.18),

o2 = 10.020730+13.957723+. - ++0.000717 = 24,

Next, Vr1(ﬁ2)’ v (ﬁq), V (65), and V (ﬁg) are calculated using
vrl(ﬁ ) = (1485)2[(0 0080)2/5+(0 0050)2/5] 39.

V.. (Dy) = (0.4)2(0.20)2 = 0.
V.. (Bs) = (112.5)2[(0.0040)2/3+(0.0060)2/3] = 0.
vrl(ﬁg) = (135)2[(0.0040)2/3+(0.0060)2/3] = 0.

196854
010214
004086
001434
005107
000717

196865
(eq. 4
253005
006400
219375
315900

For each stratum, Vp2(Dk) and Vy3(Dk) are found using (eq. 4.4.20) and

(eq. 4.4.21), and assuming that Xkqpt = Ykgpt for all k.

"

(1536)2(0.00025)2 0

(]

Vrz(ﬁl)
(D,)

(1485)2(0.00050)2 0

VY‘Z
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(9.0)2%(0.00040) 2 = 0.
(0.4)2 (0) =
(112.5)2(0.00040) 2 = 0.
(3.6)2(0.00040)2 = 0.
(4.5)2(0.00040)2 = 0.
(135)2(0.00040)? = 0
(4.5)2(0.00040)2 = 0.
(2.25)2(0.00040)2 = 0.
(1536)2[(0.00050) %+(0.0001)2+(0.0050)2/2] = 30.
(1485)2[(0.00075)?+(0.0080) %+ (0.0070)%/2] = 196.
(9.0)2[(0.00075)2+(0.035)2+(0.010)%/2] = 0.
(0.4)2(.40)2 = 0.
(112.5)2[(0.00050)2+(0.0040)2+(0.010)2/2] = 0
(3.6)2[(0.00050)%+(0.035)2+(0.010)%/2] = 0
(4.5)2[(0.00050)2+(0.020)%+(0.0070)2/2] = 0.
= (135)2[(0.00075)2+(.0040)2+(0.010)2/2] = 1
= (4,5)2[(0.00075)2+(0.035)%+(0.010)2/2] = 0
= (2.25)2[(0.00075)2+(0.020)2+(0.0070)2/2] = 0.
sﬁ is now computed for each stratum using (eq. 4.4.2
0.147456 + 30.104617 = 30.252073; sy =
39.253005+0.551306+196.402852 = 236.207163; s, = 1
0.000013 + 0.103321 = 0.103334; s3 =
0.006400 + 0.025600 = 0.032000; sy =
0.219375 + 0.002025 + 0.838477 = 1.059877; ss5 =
0.000002 + 0.016527 = 0.016529; s¢ =
0.000003 + 0.008601 = 0.008604; s7 =
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000013
0
002025
000002
000003
.002916
000003
000001

104617
402852
103321
025600
.838477
.016527
008601
.213102
.025830
002152

2).

5.500
5.369
0.321
0.179
1.030
0.129
0.093
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sg2 = 0.315900 + 0.002916 + 1.213102 = 1.531918; sg = 1.238
s92 = 0.000003 + 0.025830 = 0.025833; sq = 0.161
s102 = 0.000001 + 0.002152 = 0.002153; s;0= 0.046

10

2 s, = 24.066

k=1

For the Case 1 criteria, Note 3 of the method may be followed to provide the
graphical solution for ¢, noting that

M/os = 8/4.919 = 1.626

From Annex 4.1 (a), it is evident that it is impossible in this example to
meet the B = 0.05 criterion. Even with very large sample sizes, the 8 value for
M/og = 1.626 is about 0.50. Somewhat arbitrarily set !/6 = 10 which yields a 8
value slightly smaller than 0.50. For !/6 = 10, the total sample size is given
by (eq. 4.4.32).

Ny2 °© (24.066)2(10)/(24.196865) = 240

In each stratum, the sample size is given by (eq. 4.4.33).

Nyoq = (240)(5.500)/24.066 = 55
Ny = (240)(15.369)/24.066 = 153
Ny23 = 3
nvzq = 2
nV25 = 10
fv26 = 1
Ny27 = 1
LIV = 12
Mv2q =2
Ny2,10 =1

Total = 240

(Note that there are 5 strata with less than 3 samples. Refer back to the
comments)fo]]owing Example 4.2 (b) relative to minimum numbers of samples per
stratum.
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This completes the calculations for Case 1. For Case 2, it is first neces-
sary to assign values to V(MUF) and V. From Examples 3.5 (b) and 3.10 (b) respec-
tively,

V(MUF) = 10.729310 kg?Pu

Vo = 2.230517 kg2Pu
Then, from (eq. 4.4.23),

[10.729310 - 2(2.230517)1/24.196865

1

ko

0.2591
and, from (eq. 4.4.25),
a = 0.7409

The quantity ¢ is then calculated from (eq. 4.4.26) and following, where

m= 1.626 ta = 1.960
Co?2 =4 tg = 0.842
A = [(5)(0.7409)(1.960)2(0.842)2+(1.626)2(1.960)2+(4)(1.626)2(0.842)2
-(0.7409)(1.960)"~(4)(0.7409)(0.842)"] = 15.320064
B = (2)(1.626)(1.960)(0.842) V(0.7409)(3)[(4)(0.842)2-(1.960)2]+4(1.626)2 = 15.498965

Since B<A for this value of B, a larger value of g8 must be inputted to pro-
vide a positive value for 6. Trial and error calculations show that g must exceed
0.50. At g = 0.55 (or 1-g = 0.45), tB = -0.126. The revised values for A and B
are

= -0.384323 B = -1.185220

>
1

2
Also, C [(1.960)2-4(-0.126)2] = 14.274009
and

(~0.384323+1,185220)/14.274009

@
[t}

0.0561

At this value for 6, the required sample size is

Ny, = (24.066)2/(0.0561)(24.196865) = 427
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4.5 EVALUATION OF INSPECTION PLAN--INDIVIDUAL TESTS

In this section and in Section 4.6 to follow, methods are given for evaluat-
ing the inspection plan along with the accountability measures taken by the facility.
Evaluation is measured by the probability that the statistical test in question
will return a significant result as a function of the amount of material unaccounted
for by the mechanism to which the test is designed to be responsive.

In applying the statistical tests in question, a distinction is made be-
tween principal and supplemental tests, as discussed in the next section.

4.5.1 Distinction Between Principal and Supplemental Tests

As will be discussed in Section 4.6, of chief concern or interest to the
inspection planner is the overall probability of detection of a specified goal
amount. Detection occurs if at least one of the statistical tests in question
returns a positive response. The statistical tests that are applied collectively
in calculating this overall probability of detection are called principal tests.
One important characteristic of the principal tests is that, taken as a group,
there is control over the value for o, the significance level (false alarm proba-
tility) associated with the collection of statistical tests to be applied.

There are two combinations of tests that are identified as principal tests.
These are as follows.

Combination 1:

1) The tests for gross defects performed with the attributes tester. There
are K such tests.

2) The tests for medium defects performed with the variables tester used
in the attributes made. There are K such tests.

3) The test for the significance of (MUF-D), the facility MUF adjusted for
the bias (small defects) that is estimated by the D statistic.
Compination 2:
1) Same as above.
2) Same as above.

3) The test for the significance of D, the measure of facility bias as it
affects the MUF.

4) The test for the significance of the facility MUF.

These principal tests are discussed separately in Sections 4.5.2, 4.5.4,
4.5.5, and 4.5.6. The tests that comprise Combination 1 are then considered col-
lectively in Section 4.6.1 while those that comprise Combination 2 are treated in
Section 4.6.2.
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In addition to these principal tests, the data analyst (inspector) would
want to perform other statistical tests when analyzing the data for a given
facility over a given material balance period (see Section 4.1.1). These other
tests are referred to as supplemental tests to distinguish them from the principal
tests. Examples of supplemental tests that may be applied include:

1) Tests for the significance of ﬁk, the measure of facility bias in
stratum k.

2) Tests for the significance of shipper-receiver differences.

3) Miscellaneous tests on distributional properties, such as outlier tests
and tests for normality.

4} Tests for randomness of small calculational mistakes.

5) Tests for randomness of data over time and other data groupings, includ-
ing CUSUM plots and analyses of variance.

This listing is not intended to be all inclusive, but rather to portray the
kinds of supplemental tests that the data analyst may apply. The statistical tests
are described in Chapter 5. In this chapter, Chapter 4, the emphasis is not on
the test itself, but rather on its ability to detect a specified missing amount
of material. Not all of the supplemental tests identified above may be evaluated
in this fashion because for some tests, it is difficult to specify an alternative
hypothesis that relates directly and in_a meaningful way to a missing amount of
material. Tests 1 and 2, the tests on Dk and on the shipper-receiver difference
can be so evaluated, and are discussed in Section 4.5.3.

As the above listing suggests, and as will become more evident in Chapter 5,
a Targe number of statistical tests might be performed in the course of evaluating
inspection and material balance data for a given facility. With so many tests, it
would be expected that a few would give positive signals due to chance alone, and
one should not become unduly concerned when this occurs. The important emphasis
should be placed on the principal tests, using either Combination of tests 1 or 2
identified above. For these principal tests, the false alarm rate, o, can be con-
trolled as mentioned earlier. The functions of the supplemental tests are essen-
tially twofold: to provide some degree of assurance that the assumptions under-
lying the application of the primary tests are valid; and to isolate causes of
significant results returned by the primary tests.

4.5.2 Attributes Inspection Tests

Two attributes inspection tests are performed in each stratum, one using the
attributes tester to check for gross defects, and one using the variables tester
in the attributes mode to check for medium defects. For the K strata, there are
a total of 2K attributes tests. There is no problem in performing each test since
the existence of one or more defects in any stratum corresponds to detection, i.e.,
to rejection of the null hypothesis that no defects (gross on medium in size as
the case may be) exist. Further, there is no concern with controlling the false
alarm rate either since o is zero for each attributes test (clearly, if there are
no defects in the population there is zero probability that any will be found in
the sample.)
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Consider the power of the attributes test taken as a whole, i.e., consider
the probability that one or more of the tests will lead to rejection of the hypo-
thesis through observing one or more defects. This is called the probability of
detection. In calculating the probability of detection, it is simpler to find its
complement, the probability of nondetection. Nondetection implies that no defects
are found in any of the strata. To calculate the nondetection probability, define

h amount of element falsified as gross defects in stratum k

k

9
Summed over all strata, the total amount falsified (i.e., diverted and
obscured through data falsification) is

amount of element falsified as medium defects in stratum k

K
S (h, +g,) = ayM (eq. 4.5.1)
- k k
k=1
where 0 <a,=s1

The sample sizes for attributes inspection using the attributes tester and
the variables tester in the attributes mode, nak and nyq, respectively, are given
by (eq. 4.4.1) and (eq. 4.4.16). Let pyk be the probabiiity of not finding a defect
in stratum k with the attributes tester, and let pyk be similarly defined for the
zariab]es gester. Then, letting gy = 8 for all strata and for both testers, from

eq. 4.4.5),

h
pak =B k/M
P (eq. 4.5.2)
ng/4

1]

Pyk

Since the tests are independent, over all strata, the probability of non-
detection, denoted by Q, is

Q2 = Ig PakPvk
(eq. 4.5.3)

2
:Ba

where the last step is a consequence of (eq. 4.5.1).

This result indicates that no matter how the a2M units of element are dis-
tributed among the strata and between gross and medium defects, the overall proba-
bility of nondetection is 832, where the sample size in each stratum and for each
tester is based on the same value for 8.

It is important to note that if g is not the same for all strata-tester
combinations, then the largest value for g must be used in (eq. 4.5.3). This is
so because the optimum strategy of the diverter is to falsify the data in the
strata with the Targest B values. To illustrate the importance of this point,
suppose that a, = 0.6 (60% of the goal amount M is diverted and obscured through
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gross and/or medium defects) and that g = 0.05 for all strata-tester combinations.
Then, by (eq. 4.5.3), the non-detection probability is

Q, = (0.05)0'6 = 0.1657 , (detection probability = 0.8343).

Suppose, however, that constraints on the inspection require that g = 0.50,
say, for the attributes tester in a given stratum. Then, assuming that the stratum
in question is sufficiently large to permit diversion of the entire amount, a,M,
from this stratum, the nondetection probability is

Q, = (0.50)°"® = 0.6598, (detection probability = 0.3402).
This small detection probability occurs in spite of the fact that 8 = 0.05
for all other strata-tester combinations. The example illustrates the need to cover

all strata with comparable intensity of inspection (i.e., to achjeve the same value
for g).

4.5.3 Tests on ﬁk and Shipper/Receiver Difference Tests

From a mathematical viewpoint, there is no distinction between a test on Dk
(defined by (eq. 3.5.1)), and a shipper/receiver difference test. In both cases,
measurements for one party are compared with measurements for the second party.
Thus, it is permissible to discuss the Dy test and have this discussion apply to
the shipper/receiver test as well.

Before giving the method for finding the probability that the Dy test will
detect a given amount of material diverted from stratum k through small data falsi-
fications, two points must be made First, in Section 4.4.2.2, the concept of the
variance inflation factor, Co2, was introduced. That is, the random error variance
of O under the alternative hypothesis was assumed to be Co? times the corresponding
variance under the null hypothesis. A similar inflation factor would app]y to Dk,
the D statistic for an individual stratum. For planning purposes, it is reasonable
to assign a conservat1ve1y large value to Cy2 in order to assure that the correspond-
ing sample size is conservative on the high side. From an evaluation viewpoint,
however, it is more reasonable that the inflation factor be a function of the amount
diverted. An assumed empirical relationship between the variance inflation factor
and the amount diverted under the alternative model is used in the method to follow.

As a second point, the facility value minus the inspector value is the basis
for the Dk statistic. If the stratum in quest1on is either an input or a beginning
inventory stratum, then it is to the diverter's advantage to introduce falsifications
that will result in a negative value for Dy, i.e., the mean of Dy under the alterna-
tive would be a negative value. On the other hand, if the stratum in question 1is
either an output or an ending inventory stratum, then a positive value of Dy would
benefit the diverter. To avoid repetition, and to provide cons1stency with the
development in Section 4.5.4 to follow, assume that the stratum in question is
an output stratum so that the mean of Dy under the alternative is positive. (It
would be a simple matter to app]y Method 4.4 to an input or a beginning inventory
stratum; s1mp1y change the sign of Dk, or, equivalently, redefine Dk to be based
on inspector minus facility values for such a stratum).

Method 4.4 is now given. This provides the eguations needed to calculate the
probability of nondetection and its complement, the probability of detection, for a
specified alternative.
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Method 4.4

Notation

The notation is consistent with that given in Methods 4.3, and 3.8-3.10.
In addition,

C,2? = variance inflation factor under the alternative hypothesis
of diversion through small data falsifications

a; = fractional amount diverted through small data falsifications
in stratum k

total amount of element thus diverted

aM

Q; = probability of nondetection of the amount aiM diverted
through small data falsifications in stratum k

Model

R The random variable, Dk, is assumed to be normally distribyted with variance
V(Dg) |Ho under the null hypothesis of no diversion (i.e., when E(Dy) = 0) and with
variance V(Dy)|H; under the alternative hypothesis, i.e., when E(Dk) = a;M.

Results

The quantities Vp(Di), Vg(ﬁk), and Vg(Dy) are calculated using Methods 3,8,
3.9, and 3.10 respectively. In applying Methods 3.9 and 3.10, which relate to D
rather than Ok, include only the single stratum in question. Then

VB [Ho = V(B 40 (B )+ (By) (eq. 4.5.4)
and V(D) [H; = clzvr(nk)+vg(ﬁk)+vs(uk) (eq. 4.5.5)
where C,;2 = min ﬁ}1+a1M/ \/Vg(ﬁk)+vs(ﬁk{] (eq. 4.5.6)

Next, compute

t \/v(ﬁk)lHO -a M
tl =
VV(D, ) [H,

(eq. 4.5.7)

Q; is then the area under the standardized nominal curve from -- to t;,
i.e., Q; is defined by

t
1 72 . 4.5.
Q, = /ez/zdZ (eq. 4.5.8)
2%

Ner
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Basis

The formula for the variance inflation factor, C;2, in (eq. 4.5.6) is an
assumed relationship. It is felt that a more exact relationship could be derived
under certain reasonable assumptions with regards to diversion strategies, but the
(eq. 4.5.6) model is regarded as being an adequate one and a preferred one because
of its simplicity (see Section 6.3 in this regard).

The null hypothesis, HO:E(ﬁk) = 0, is rejected if Dy is too large, i.e., if
it exceeds some critical value Dkg, where Dgp is chosen such that it is exceeded
with probability a when Hy is true. Thus, Dkg is defined by

Prob (ﬁk >Dk0){H0 = a , which reduces to

Do = t, VW(ﬁk)IHO

ko
Under the alternative, find the probability of nondetection:

Q; = Prob {?k <t \’V(ﬁk)IHleHl -

t VV(ﬁk)IHO - aM

Prob { Z< % (eq. 4.5.9)
V(D) [H,

where z is normally distributed with zero mean and unit standard deviation. This is
the basis for (eq. 4.5.7).

Examples

EXAMPLE 4.4 (a)

Consider the input U0, powder stratum for the facility of example 3.8 (a)
and find the probability of detecting 400 kg uranium if diverted in this stratum
through small falsifications. Set o = 0.01.

From example 3.8 (a),
vr(ﬁl) = 1143 + 1594 = 2737 kg2l

From example 3.9 (a),

~

Vg(Dl)

fl

(0.000544)2(2)(120,000)2

8,523 kg2l

From example 3.10 (a), and with reference to the earlier example 3.5 (a),
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11100.73 + 18779.96 + (240,000)2(0.000439)2

<
——
O
—
N
1}

+ (240,000)2(0.000172)2

42,685 kg2U
By (eq. 4.5.4),

V(D1)|Ho = 53,945 kg2U
By (eq. 4.5.6),

Clz = min (4, 1 + 400/V51208)
= 3.7676 , so that, from (eq. 4.5.5),
V(D) |H, = 61,520 kg2U

By (eq. 4.5.7),

ty = 2.326 V53,945 -400 = 0.5654
V61,520

The nondetection probability, Q;, is the area under the standardized normal
curve from -~ to 0.5654, or

Q; = 0.7141
so the probability of detection is 1-Q; = 0.2859.

4.5.4 Test on O

The test on D is very similar to that on Dy. As with Dy, it is assumed that
the variance inflation factor, C;2, is_a function of the amoun% diverted through
small data falsifications, i.e., of E(D) under the alternative. As explained in
Section 4.4.2.2, in order to work with positive values of the test statistic under
the alternative, it is convenient to replace D as defined in (eq. 3.5.2) by its
negative counterpart, D”. In what follows, then, D of (eq. 4.4.44) is the test
statistic.

Method 4.5 is now given. This provides the equations needed to calculate
the probability of nondetection and its complement, the probability of detection,
for a specified alternative.

Method 4.5
Notation

The notation is consistent with that given in Method 4.3. The variance in-
flation factor, C;%, has the same interpretation as in Method 4.4. In addition,
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a3 = fractional amount diverted through small data falsification
asM = total amount of element thus diverted
Q3 = probability of nondetection of the amount asM diverted through

small data falsifications
Model

The discussion for Method 4.4 applies, with ﬁk replaced byAﬁ’ and a; replaced
by as. For the D” statistic, the emphasis is on the variance of D~ as determined
in the planning stage, i.e., by following Method 4.3 to determine 6 and hence, the
sample size. If the evaluation is rather to be performed with actual sample sizes
used in implementation, and assuming that these may differ appreciably from those
developed in the planning stages, then Method 4.4 may be applied with slight modifi-
cation: replace Dy by D, a; by a3, t; by ts, and Q; by Q3.

Results

Following Method 4.3, calculate o¢ from (eq. 4.4.18) and 6 from (eq. 4.4.26),
(eq. 4.4.30), or eq. 4.4.31). Then, compute

tu\/1_+e— - agm (eq. 4.5.10)
R e e
where m = M/cS , and where
C,% = min (4, 1 + azm) (eq. 4.5.11)

Q3 is then the area under the standardized normal curve from -- to t;, i.e.,
Q3 is defined by

t

1 3 B 2/2

Q3 = f e Z dz (eq. 4.5.12)
Var  J

Basis
The basis for Method 4.5 is developed in the Method 4.3 basis. The key

equation, (eq. 4.5.10), follows directly from (eq. 4.4.49) with t_ replaced by
t; and Cy? replaced by C;2. B

Examples

EXAMPLE 4.5 (a)
Consider the low enriched uranium fuel fabrication facility of example 4.3 (a).

Find the probability that the difference statistic, D, will detect 400 kg U diverted,
with the diversion obscured by small data falsifications. Use o = 0.05.
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From the cited example,

V87,675 = 296 kg U

Os=
o = (1.75)"" = 0.571
asm = 400/296 = 1.351

Then, from (eq. 4.5.10), since Cy? = 2.351 from (eq. 4.5.11),

1.645 V1.571 -1.351 = 0.464

t3=
\V2.342
and Q3 = 0.679 , nondetection probability
1-Q; = 0.321 , probability of detection

EXAMPLE 4.5 (b)

Consider the mixed oxide fuel fabrication facility of example 4.3 (b). Using
the Case 2 criteria in that example, find the probability that the D statistic will
detect 5 kg Pu diverted, with the diversion obscured by small data falsifications.
From the cited example,

4.919 kg Pu ; 6 = 0.0561 ; asm = 5/4.919 = 1.016

g

From {eq. 4.5.11), C;%2 = 2.106, so, applying (eq. 4.5.10),

1.960 V1.0561 - 1.016 = 0.946

t3=
V1.1131
Q3 = 0.828 , nondetection probability
1-Q3 = 0.172 , probability of detection

EXAMPLE 4.5 (c)

For the same mixed oxide fuel fabrication facility in the previous example,
suppose the inspection plan is as indicated in example 3.8 (b), and rework the
example 4.5 (b).

In applying Method 4.5 to solve this problem, the development of Method 4.4

is followed, with Dk replaced by 0, a; by as, t; by t3, and Q; by Q3. From
example 3.8 (b),

4-43



- 222 -
v.(D) = 3.325266 kg%Pu
From example 3.9 (b),
vg(ﬁ) = 10.020730 kg2Pu
From example 3.10 (b),
S(D) = 13.957723 kg2Pu
By (eq. 4.5.4), appropriately modified,
V(D Y |Hg = 27.303719 kg2Pu
By (eq. 4.5.6), appropriately modified,
ci min(4, 1 + 5/ \/23.978453)
2.021

]

i

so that, from the modified (eq. 4.5.5),

5-)[H; = 30.698816
Then,
¢, = 1.960 V27.303719 - 5 = 0.946
V/30.698816
Qs = 0.828
1-Q3 = 0.172

Note that the answers are precisely the same (to three decimals) as in the
previous exampie. In the previous example, the total sample size was 427; in
example 3.8 (b), the number of samples was 287 and the number of weighings was
653. The fact that the detection probabilities agree to within 3 decimals is a
bit fortuitous, but close agreement would be expected because of the dominance
of systematic errors in this example.

4.5.5 Test on MUF

Although the inspector has no direct control over the size of the variance
of MUF, this quantity has an impact on the ability to detect diversion, especially
as it affects the variance of (MUF-D) as considered in the next section. The
test on MUF is considered in Method 4.6.
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Method 4.6
Notation

The notation is given in section 3.4.3.2. In addition,

ay = fractional amount of element diverted into MUF
ayM = total amount of element thus diverted
Qy = probability of nondetection of the amount a,M diverted into MUF

Model

The quantity MUF is assumed to be a random variable which is normally dis-
tributed with variance V(MUF). Under the null hypothesis, the mean of MUF is zero,
while it is ayM under the alternative.

Results
Compute t, = ta - ayM/ VV(MUF) (eq. 4.5.13)
Qy is the area under the standardized normal curve from - to t,, i.e., Q4
is defined by
ty

2
f e 2 /24 (eq. 4.5.14)

Qy = 1
Ven
Basis

The null hypothesis that E(MUF) = 0 is rejected if MUF exceeds some critical
value My, where My is chosen such that it is exceeded with probability o when Hy is
true. Thus, My is defined by

Prob (MUF >Mg)|{(E(MUF) = 0) = o , which reduces to

My = ta V V(MUF)

Under the alternative, E(MUF) = ayM. Find the probability of nondetection:
Qy

Prob (MUF < t V V(MUF) | (E(MUF) = a,M)

1]

Prob (z< t, - a,M/ VV(MUF) (eq. 4.5.15)

where z is normally distributed with zero mean and unit standard deviation. This is
the basis for (eq. 4.5.15).

Examples
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EXAMPLE 4.6 (a)
Consider the mixed oxide fuel fabrication facility of examples 3.3 (b),
3.4 (a), and 3.5 (b), find the probability that the MUF test would detect a diverted
amount of 3 kg Pu if o = 0.05.
From example 3.5 (b),

V(MUF) = 10.729310 kg2Pu
Therefore, by (eq. 4.5.13),

t, = 1.645 - 3//10.729310
= 0.729
Q, = 0.767 , nondetection probability
1-Qy = 0.233 , probability of detection

4.5.6 Test on {MUF-D)

Consider the (MUF-D) statistic introduced in Section 3.6 and discussed fur-
ther in Sections 4.3.2.3 and 4.4.2.2. The detection probability employing (MUF-D)
as the test statistic is covered by Method 4.7. This statistic is responsive to
the combination of diversions employing two strategies: diversion into MUF and
diversion obscured by small data falsifications.

Method 4.7
Notation
The notation is given in Method 3.13. In addition,

Qs = probability of nondetection of the amount (asta,)M diverted
into MUF and small data falsifications (a; and a, are defined
in Methods 4.5 and 4.6 respectively)

Model

The random variable, (MUF-D), is assumed to be normally distributed with
mean zero and variance V(MUF-D)|H, under the null hypothesis, and with mean
(as+ay )M and variance V(MUF-D)|H; under the alternative.

Two approaches to finding the detection probability for the (MUF-D) statis-
tic are used. First, it is assumed that the inspection sample sizes are those
developed in the planning stage, i.e., following Method 4.3. In the second approach,
actual sample sizes used in the inspection are utilized, the assumption being that
they may differ appreciably from the planned sample sizes.
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Results
First approach--

Following Method 4.3, a number of quantities must be calculated. These
include:

oz using (eq. 4.4.18)

V(MUF) and V;, using Methods 3.3, 3.4, and 3.5
k, using (eq. 4.4.23)

a = 1-k,

o using (eq. 4.4.26), (eq. 4.4.30), or (eq. 4.4.31)

Then, compute

ta Vate - (az + ay)m (eq. 4.5.16)
ts = . 4.5,
\/a+C129
where m= M/oS

and where C;2 = min (4, 1+azm) , as given by (eq. 4.5.11).

Qs is the area under the standardized normal curve from - «to ts, i.e., Qs
is defined by

dz (eq. 4.5.17)

-0

Second approach--

Compute the quantities V.(D), Vg(D), and V4(D) using Methods 3.8, 3.9,
and 3.10 respectively. Compute V(D)|H, and V(D)|H; using (eq. 4.5.4) and (eq. 4.5.5)
with Dk replaced by D, and with C,? defined by (eq. 4.5.6), again with 0y replaced
by D. The quantities V(MUF-D)|H, and V(MUF-D)[H, are then calculated using (eq. 3.6.5),
first with V(0)|H, in place of V?D), and then using V(D) |H;. The quantity ts is then
computed from the formula:

_ ta VV(MUF"D)IHO - (a3+a1+)M
VV(MUF-0) [H,

(eq. 4.5.18)

ts

Basis
The basis for the first approach is developed in the Method 4.3 basis. The

key equation, (eq. 4.5.16), follows directly from (eq. 4.4.52) with tg replaced
by ts and Cy2 replaced by C,2.
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For the second approach, refer to the Basis for Method 4.4, replacing ﬁk
by (MUF-D) and a; by (astay).

Examples

EXAMPLE 4.7 (a)

Consider the Tow enriched uranium fuel fabrication facility of example 4.3 (a),
and treated again in example 4.5 (a). Find the probability that the (MUF-D) test will
detect a diversion of 400 kg U obscured by small data falsifications and one of
500 kg U diverted into MUF. Use o = 0.05.

The first approach is used since the test is to be eyaluated based on planned
sample sizes. From example 4.5 (a), values were given foro. and 6. Also, from

example 3.4 (a), which pertains to this same facility, S
V(MUF) = 45,010 kg2U
Vo =0
Then, from (eq. 4.4.23),
k, = 45,010/87,675 = 0.513
and a = 0.487
On applying (eq. 4.5.16),
po = 1645 V0.487 + 0.571 - 900/296 . _4 gg7
V0.487 + (2.351)(0.571)
Qs = 0.159 , nondetection probability
1-Q5 = 0.841 , probability of detection

EXAMPLE 4.7 (b)

In the example just concluded, suppose again that 900 kg U total were diverted
through the same two diversion strategies, but that the split were different, with
100 kg U obscured by small data falsifications and 800 kg U diverted into MUF.

A1l the calculations in the preceding example remain unchanged except that the

value for C;2 in the denominator of the expression for ts differs. In the preced-
ing example, C;2 was 2.351 since agm was 1.351 for asM = 400 kg. If asM = 100 kg U,
then agm is 100/296 = 0.338 and C;~ is 1.338. Thus,

- 1.645 V1.058 - 900/296

ts
V0.487+(1.338)(0.571)

= -1.206
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Qs = 0.114 , nondetection probability

1-Qs
Since the diverter would 1ike to maximize Qg, or minimize 1-Qs, he would pre-

fer the diversion strategy of example 4.7 (a) to that of 4.7 (b). This concept of
best diversion strategies is fully treated in Section 4.6.

0.886 , probability of detection

EXAMPLE 4.7 (c)

Consider the mixed oxide fuel fabrication facility of example 4.5 (c).
Find the probability that the (MUF-0) test will detect a total diversion of 6.5
kg Pu if 5 kg Pu is obscured by small data falsifications and 1.5 kg Pu is diverted

into MUF. Use o = 0.025.

The second approach of Method 4.7 is used since the test is to be evaluated
based on actual sample sizes, rather than on planned sample sizes.

From the cited example, values were given for V(D)|H, and V(D) |H,.

V(D) |Hp = 27.303719 kg2Pu

V(D) |H; = 30.698816 kg2Pu

This value for V(D) |H1 is the appropriate one to use since, in the cited
example, asM = 5 kg Pu as in this example. Were the amount of diversion through
small data falsifications different from 5 kg Pu, then V(0)|H, would have to be re-
calculated since it is a function of C;2, and hence, of a3M.

To continue, values for V(MUF) and V, for this facility were given in
example 3.13 (b).

10.729310 kg?Pu
2.230517 kg2Pu

V(MUF)

Vo
Thus s
27.303719 - 10.729310 + 2(2.230517)

V(MUF-0) |H,

21,035443 kg2Pu
30.698816 - 10.729310 + 2(2.230517)

V(MUF-D) |H,

24.430540 kg2Pu
From (eq. 4.5.18),

- -
_ 1.960 \/21.035443 -6.5 _ 0.504
V24.430540
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Qs = 0.693 , nondetection probability

1-Qs

0.307 , probability of detection

4.6 OVERALL PROBABILITY OF DETECTION OF GOAL AMOUNT

As was mentioned in Section 4.5.1, in evaluating his inspection plan, the
inspector is primarily interested in determining how his plan, together with measure-
ments performed by the facility, will react to diversion strategies used by the
diverter. Although he may perform the evaluations presented in Sections 4.5.2 -
4.5.6 in this connection, either before the inspection or after the fact, this Tleaves
unanswered the question as to how he can combine the resulting information to arrive
at an overall assessment of the inspection plan. This section will address this
question.

Two combinations of principal statistical tests are considered. First, in
Section 4.6.1, test Combination 1 identified in Section 4.5.1 is considered. This
incTudes the combination of attributes tests and of the test using (MUF-D). In
Section 4.6.2, test Combination 2 that employs the attributes tests, the test on
D, and the test on MUF, is discussed.

In evaluating the test combinations in each instance, the measure used is
the overall probability of detecting the goal amount diverted. Detection means
that a positive signal, or significant result, is returned with at least one of the
tests. In application, it is simpler to calculate the probability of nondetection,
the detection probability then being the complement of this quantity.

The detection probability is quite obviously a function of the diversion stra-
tegy, i.e., of how the goal amount is apportioned among the various diversion possibili-
ties. Again responding to the assumption that the plan is to combat an intelligent
adversary bent on diversion, the inspector is chiefly interested in calculating the
probability of nondetection corresponding to the best adversary strategy. For test
Combination 1, this probability is designated by Qpayx while for test Combination 2,

“max denotes this probability. Clearly, the inspector will prefer to apply the
com81nation of tests that yields the smallest value for the nondetection probability,
i.e., the largest probability of detection. In making this decision, of course, he
recognizes that should the adversary not employ his best strategy, the inspector may
be better off using the other test combination; however, his probability of nonde-
tection can be no larger than Qmax in the case of test Combination 1 or Q7pax in
the case of Combination 2.

4.6.1 Attributes and (MUF-D) Tests

In this section, the probability of nondetection is calculated for test
Combination 1 as identified in Section 4.5.1. The discussions in Sections 4.5.2
and 4.5.6 form the basis for Method 4.8 to follow.

Method 4.8
Notation

See the notation in Section 4.5.2 and for Method 4.7 in Section 4.5.6. In
addition,
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Q

probability of nondetection for test Combination 1

= maximum value for Q; that value of Q corresponding to the
best strategy of the diverter

Qmax
Model
See the discussion in Section 4.5.2 and the model discussion for Method 4.7.
Results

The joint probability of nondetection is

Q = 8%2 Qs (eq. 4.6.1)

Qs is a function of az and a,. The quantities a,, a3z, and a, sum to 1. Qs
is given by (eq. 4.5.17) and (eq. 4.5.16) or (eq. 4.5.18) for given a; and a,.

Use a trial and error approach to find Qupax. Vary a, in increments from
0 to 1 (steps of 0.1 are adequate). At a given value of a,, calculate Qs, where
(agtay) is equal to (1-aj).

In calculating C;2, use the following rule to select the value for as:

If tg is negative, choose a; = l-a, (rule 4.6.1)
0

If tg is positive, choose ajg

Qmax is easily determined, either from the table of Q versus a, values,
with a, rounded to the nearest tenth, or from a plot of the tabled data, which per-
mits cﬁoosing a value of a, between tabled values.

Basis

Equation 4.6.1 follows from the fact that the tests on the attributes and
the (MUF-D) test are independent. Rule 4.6.1 applies because that value of aj
should be chosen to give the largest value to Qs. If ts is negative, Qs is maxi-
mized when tg is as close to zero as possible, i.e., when the denominator of tjg
is made as large as possible. This occurs when as=l-ap,. If ts is positive, Qg
is maximized when t5 is made as large as possible, i.e., when the denominator is
made as small as possible. This occurs when az=0.

Examples

EXAMPLE 4.8 (a)
In following up on the low enriched uranium fuel fabrication facility of

example 4.7 (a), set M = 1500 kg U and find the value of Qpax. Assume that
B = 0.05 for the attributes tests and that o = 0.05 for the (MUF-D) test.
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From example 4.7 (a),

1.6920 - 1500(as*as)/296
ts =

V0.487+0.571C, 2

1.6920 - 5.0676(as*ay)

V0.487+0.571C,2

The table below gives the value for Q as a function of a,. The column headed
"NUM" is the sign of the numerator in the expression for ts, which dictates the
value for asj.

ay g2 NUM as ;2 ts Qs Q

0 1.0000 NEG 1 4 -2.028 0.0213 0.0213
0.1 0.7411 NEG 0.9 4 ~1.723 0.0424 0.0314
0.2 0.5493 NEG 0.8 4 ~-1.419 0.0779 0.0428
0.3 0.4071 NEG 0.7 4 -1.115 0.1324 0.0539
0.4 0.3017 NEG 0.6 4 -0.810 0.2090 0.0631
g.5 0.2236 NEG 0.5 3.53 -0.532 0.2974 0.0665
0.6 0.1657 NEG 0.4 3.03 ~0.225 0.4110 0.0681
0.7 0.1228 POS 0 1 0.167 0.5663 (0.0695
0.8 0.0910 POS 0 1 0.660 0.7454 0.0678
0.9 0.0675 POS 0 1 1.152 0.8753 0.0591
1.0 0.0500 POS 0 1 1.645 0.9500 0.0475

For a, rounded to the nearest tenth, Qpayx is 0.0695. Thus, the maximum proba-
bility of nondetection, 0.0695, occurs at a, = 0.7, az = 0, ay = 0.3, or when 1050
kg U is diverted into large and medium data falsifications, and 450 kg U is diverted
into MUF.

EXAMPLE 4.8 (b)

In following up on the mixed oxide fuel fabrication facility of example
4.7 {c), set M = 8 kg Pu and find the value of Quax. .Assume that 8 = 0.20 for
the attributes tests and that « = 0.025 for the (MUF-D) test. (Note: This
large value for g is reasonable because of the inability of the variables measure-
ments to detect the goal amount of M = 8 kg Pu. The value for Quax will be inde-
pendent of the g value for the attributes testing up to fairly large values of B.)

For example 4.7 (c) and the earlier example 4.5 (c),
1.960 V21.035443 -8(aztay)

V23.978453 - 10.729310 + 2(2.230517) + 3.325266C,2
8.9894 - 8(astay)

ty =

V17.7102 + 3.325266C,°

4-52



- 231 -

The table below gives Q values as a function of a .

a2 g2? NUM a3 G2 ts Qs Q

0 1.0000 POS O 1  0.216 0.5855  0.5855
0.1 0.813 P0S 0 1  0.390 0.6517  0.5548
0.2 0.7248 POS 0 1  0.565 0.7140  0.5175
0.3 0.6170 POS 0O 1  0.730 0.7673  0.4734
0.4 0.5253 POS 0O 1  0.913  0.8194  0.4304
0.5 0.4472 POS 0 1 1.088  0.8617  0.3854
0.6 0.3807 POS 0 1 1.262  0.8965  0.3413
0.7 0.3241 POS 0 1 1.437  0.9246  0.2997
0.8 0.2759 POS 0 1 1.611  0.9464  0.2611
0.9 0.2349 POS 0 1 1.786  0.9630  0.2262
1.0 0.200 POS 0 1 1.960  0.9750  0.1950

Quax 1S 0.5855, occurring at ay = 0, i.e., when all 8 kg Pu is diverted into
MUF(ag=1T. Clearly, the adversary would be unwise were he to divert into large and
medium data falsifications in this example since the inspector can control his
g error in the attributes inspection. The ability of the inspector to detect the
goal amount is limited by systematic_errors of measurement that affect the D and
MUF statistics, and hence, the (MUF-D) statistic.

Note that at a, = 0.1, Q would be larger than the value at a, = 0 if
0.6517 8%1 > 0.5855

This inequality holds if g > 0.343, which means that the g value for attri-
butes inspection could be increased to 0.343, with the attendent reduced inspection
sample sizes, before the intelligent adversary would choose to divert even a por-
tion of the goal amount into large and/or medium data falsifications. Stated from
a different perspective, Quax will be 0.5855 for all values of the attributes in-
spection, B, less than 0.343.

4.6.2 Attributes, D, and MUF Tests

In this section, the probability of nondetection is calculated for the test
Combination 2 as identified in Section 4.5.1. With reference to Sections 4.5.2,
4.5.4, and 4.5.2, the probability of nondetection for the attributes, D, and MUF
tests is QQE_Ba Q3Q4 as might be expected because D and MUF are correlated. This
correlation must be taken into account when performing the calculations. This is
not simply an academic point; failure to take into account the correlation may lend
to totally erroneous conclusions.

The procedures for calculating the probability of nondetection using test
Combination 2 are now given by Method 4.9.

Method 4.9

See the notation in Section 4.5.2 and for Methods 4.5, 4.6, and 4.7. In
addition,
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Q° = probability of nondetection for test Combination 2
Q‘max = maximum value for Q”; that value of Q° corresponding to the
best strategy of the diverter
o = correlation coefficient between D~ and MUF

Model
See the discussion in Section 4,5.2 and the model discussions for Methods 4.5
and 4.6. Further, it is assumed that D” and MUF are jointly distributed as the
bivariate normal with correlation coefficient o.
Results

The probability of nondetection is

Q” = %% L(ts, ty, o) (eq. 4.6.2)
where
-(k2 + k3)
p = (eq. 4.6.3)
V(1+C,26) (ko+2k3)
2
where k3 = Vo/og (eq. 4.6.4)

and where k, is given by (eq. 4.4,23)

The expression for o given by (eq. 4.6.3) applies if the evaluation is being
performed based on sample sizes developed during the planning stage. If implemen-
tation sample sizes are used, then the more general expression for p applies.

- -V(MUF) + Vo (eq. 4.6.5)
VIV(D) [H I[V(MUF) ]

To continue with (eq. 4.6.2), L{t3,ty,p) is the probability that two random
variables, distributed as a bivariate normal distribution, are jointly less than
t3 and t, respectively, where p is the correlation coefficient. This probability
may be found by table look-up or by computer calculations. Both approaches are
considered.

Before proceeding further, it is necessary to remark on the choices for
t, used in the equations for ts, (eq. 4.5.10) and for t,, (eq. 4.5.13). If one
were to assume independence between MUF and D, and if o were the overall signifi-
cance level, then a3 and o, would satisfy the relationship
l-a = (1-a3)(1-ay) (eq. 4.6.6)
Further, if a3 = oy, = ap, then oy is the solution of the equation

(1-(10)2 = 1l-a s
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the solution being
apg = 1- Vi-o (eq. 4.6.7)
Thus, for o = 0.05, oy would be 0.0253 and t3 = t, = 1.955.

However, the assumptions leading to the result (eq. 4.6.7) are not valid;
MUF and D are correlated because both statistics are calculated from operator
data. Further, there is no real basis for equating a3 to a,. The problem of
selecting values for o3 and a, in this situation was considered by Avenhaus and
Beedgen [4.10]. 1In a minimax sense, optimal values for as and «, were calculated
for the special but common case in which o = 0.05, and as a function of p. Minimax
means that the inspector chooses values for o3 and a, that minimize the probability
of nondetection given that the diverter had first chosen the strategy that maximizes
this probability. The results are given as Figure 1 in [4.10] and reproduced here
as Annex 4.4. (In the Annex 4.4 plot, the notation of [4.10] is altered to corres-
pond to the present notation.) Thus, one may use the Annex 4.4 figure to select
the values for oy and «y. Graphical interpolation is adequate for purposes of
evaluating inspection plans.

For values of o other than 0.05, the Annex 4.4 plot may also be used as a
good approximation simply by a change of scale. Thus, for o = 0.025, simply divide
o3 and oy in Annex 4.4 by 2; for o = 0.01, divide by 5; etc. This is a good approxi-
mation because it is shown in [4.11] that the shapes of the curves in Annex 4.4
for o = 0.01 and for o = 0.05 are very nearly identical.

Approach 1: Table look-up

Approach 1 is based on reference [4.12]. The probability L(ts,t,,p) is
given by

L{tsstysp) = 0.5 (Q3 + Qu) - T(t3,43) - T(ty,a,) - H (eq. 4.6.8)
_ty, - pt
where Ay = 4 D3 (eq. 4.6.9)
t3 \/1";)2
A, = £3 = Pty (eq. 4.6.10)
and H=01if tst, >0 or if
t3tl+ = 0 and (ts"'tq) 20 (eq. 4.6.11)

= 0.5 otherwise

The function T(tj,aj) for j = 3,4 is tabled as Annex 4.2 (a)-(d) for coarse
groupings on Aj and fine groupings on tj, and as Annex 4.3 (a)-(d) for fine group-
ings on A3 and coarse groupings on ts. In the tables, make the identification
h = tj and a = Aj. Ordinary linear interpolation should be satisfactory in most
applications; if refined calculations are to be made, detailed interpolation pro-
cedures are given in [4.12].
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The T-function is tabulated only for 0 SAjfl and «; for values of A3
between 1 and »,use the following equation

) = 0.5000t5)+Q(t;05) 1-Q(t,)Q(t585)-T(t ., /a) (eq. 4.6.12)

T(t;,a
(tJ J J

where Q(t) is the area under the standardized normal curve from -= to t. To account
for negative values of t. or A., use

J j
T(tys-85) = -T(t;,4), and (eq. 4.6.13)
T('tj’Aj) = T(tj,Aj) (eq. 4.6.14)

Approach 2: Computer Calculations

Evaluation of L(tj3,ty,p) by table look-up involves a fair amount of effort.
It is far simpler to use an existing computer subroutine that computes L(t;,t,.o)
directly, and with greater precision. Subroutine MDBWOR from the IMSL library of
programs (International Mathematical and Statistical Libraries), is one example
of a computer subroutine that is easily applied.

Having calculated Q~, trial and error calculations in which a, and a3 (and
hence a,) are varied must be performed to find Qy x- This exercise is not as
straightforward as for determing Quax because in tﬁat instance, the optimum value
of a; (from a diverter's viewpoint) was known for given a,; this is not true for
determining Q- pax. Thus, two parameters must be varied, and not just the one.

Basis

For approach 1, the basis for (eq. 4.6.6) - (eq. 4.6.12) is given in
pages 184-186 of [4.12].

Examples

—_—

EXAMPLE 4.9 (a)
For example 4.8 (a), Quax was found to be 0.0695 occurring at a, = 0.7,

az = 0, and a, = 0.3. Find Q~ for these values of a,, a3, and a,. In order for
the comparison to be more valid from a false alarm viewpoint, initially set

a = 1- V0.95 = 0.0253
for the D and MUF tests, since a was 0.05 for the (MUF-ﬁ) test.

From example 4.3 (a),

6 = (1.75)"1 = 0.5714
Also, m = 1500/296 = 5.0676
and t_ = 1.955
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so that from (eq. 4.5.10),

t

, = 1:955 \V1.5714 -5.0676 a3
V1+0.5714 C,?

From (eq. 4.5.13) and the data of example 4.7 (a),
1.955 - 1500 ay/ V45,010
1.955 - 7.0703 a,

fl

ty

I

From {(eq. 4.4.23), (eq. 4.6.3), and (eq. 4.6.4), and the data of example 4.7 (a),
ko = 45,010/87,675 = 0.513 ; kz3 =0

-0.513 _ __-0.716
V(1+0.5714C,2)(0.513) V(1+0.5714C,2)

In the expressions for ts and p,
C;2 = min (4, 1+5.0676 a;)

First, use approach 1, (table look-up)}, to compute Q- for a, = 0.7, a3 = 0,
and a, = 0.3.

ty = 1.955
t, = -0.166
= -0.571

P
From (eq. 4.5.12) and (eq. 4.5.14),
Qs = 0.9747 , Q, = 0.4341
From (eq. 4.6.9) and (eq. 4.6.10),
A3 = 0.592 , A, = -13.65
From Annex 4.3 (b) and 4.3 {c),

T(1.955,0.592) = 0.0106

To evaluate T(-0.166,-13.65), use (eq. 4.6.13) and (eq. 4.6.14) to eliminate
the negative values.

T(-0.166, -13.65) = T(0.166,-13.65) = -T(0.166,13.65)

Then use (eq. 4.6.12) since a, >1.
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T(0.166, 13.65) = 0.5 (0.5659 + 0.9883) - (0.5659)(0.9883) - 0.0009
= 0.2169
Finally, H of (eq. 4.6.8) is 0.5 so that, from (eq. 4.6.8)

L(1.955, -0.166, -0.571) = 0.5 (0.9747 + 0.4341) - 0.0106 + 0.2169 - 0.5
= 0.4107

Then, from (eq. 4.6.2),

Q- = (0.05)°°7(0.4107) = 0.0504

Using the MDBNOR subroutine, L(tjz,ty,p) is calculated to be 0.4109, in good
agreement with the table look-up value.

Note that at this combination of values of a,, a3, and a,, Q~ is smaller
than Q; this does not mean, however, that Q7 pay is smaller than Qua, since Q and
Q~ may not reach their respective maximum values at the same combination of values
for a,, az, and a,. Further calculations are needed to determine Q- max.

Before proceeding with these additional calculations, the optimal choices
for ag and a, are used in place of a3 = ay = 0.0253, where these optimal choices

are given by Annex 4.4. In using Annex 4.4, the value of p is, of course, that
calculated under the null hypothesis, i.e., corresponding to C;2 = 1. This is

p = -0.716/ VvV 1.5714 = -0.571

Thus, from Annex 4.4, by graphical interpolation, chose
a3 = 0.035 ay = 0.021
ta3 = 1.811 tau = 2.034

The example calculation is now performed with these values used instead of
1.955 in the expressions for t3 and t,. At ap, = 0.7, a3 = 0, and a, = 0.3,

ty = 1.811 t, = -0.087 o = -0.571
From (eq. 4.5.12) and (eq. 4.5.14),
Qs = 0.965 Q, = 0.465
From (eq. 4.6.9) and (eq. 4.6.10),
Ag = 0,637 Ay = -24.66
From Annex 4.3 (c),
T(1.811, 0.637) = 0.0148

To evaluate T(-0.087, -24.66), use {(eq. 4.6.13) and (eq. 4.6.14) to eliminate
the negative values.
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T(-0.087, -24.66) = T(0.087, -24.66) = -T(0.087, 24.66)

Then, since 4, >1, use (eq. 4.6.12),
T(0.087, 24.66) = 0.5 (0.535 + 0.984) - (0.535)(0.984) - 0.0007

= (0.2324
Finally, since H of (eq. 4.6.8) is 0.5, the result is
L(1.811, -0.087, -0.571) = 0.5 (0.965 + 0.465) - 0.0148 + 0.2324 - 0.5

= 0.4327

This compares with the value of 0.4107 for the case o3 = ay = 0.0253. The
Q~ value is (0.05)0-7(0.4327) = 0.0531, compared with the earlier value, 0.0504.

The further calculations are now made to investigate the relationship between
Q- and diversion strategy, and also determine an approximate value for Q pax. The
table gives values of Q” for various sets of values of a,, a3z, and a;. The
L{ts,ty,0) values are calculated using the MDBNOR subroutine. Two sets of values
for L{t;,ty,0) and Q~ are given. Those with subscript 1 are based on a3z = ay =
0.0253 while for a3 = 0.035 and o, = 0.021, the subscript 2 values are calculated.

o as s €12 8% ) (ta,t,0)  Lo(taat,sp) Qi Q2
0 0 1 1 1 0.0000 0.0000 0.0000 0.0000
0 0.25 0.75 2.267 1 0.0001 0.0001 0.0001 0.0001
0 .50 0.50 3.534 1 0.0098 0.0101 0.0098 0.0101
0 0.75 0.25 4 1 0.0822 0.0757 0.0822 0.0757
0 1 0 4 1 0.0671 0.0559 0.0671 0.0559
0.25 0 0.75 1 0.4729 0.0002 0.0002 0.0001 0.0001
0.25 0.25 0.50 2.267 0,4729 0.0243 0.0259 0.0115 0.0122
0.25 0.50 0.25 3.534 0.4729 0.2097 0.2010 0.0992 0.0951
0.25 0.75 0 4 0.4729 0.2136 0.1879 0.1010 0.0889
0.50 0 0.50 1 0.2236 0.0474 0.0531 0.0106 0.0119
0.50 0.25 0.25 2.267 0.2236 0.3963 0.3946 0.0886 0.0882
0.50 0.50 0 3.534 0.2236 0.4596 0.4224 0.1028 0.0944
0.75 0 0.25 1 0.1057 0.5498 0.5710 0.0581 0.0604
0.75 0.25 0 2.267 0.1057 0.7577 0.7255 0.0801 0.0767
1 0 0 1 0.0500 0.9494 0.9440 0.0475 0.0472
0.333 0.333 0.333 2.688 0.3684 0.1718 0.1733 0.0633 0.0638

Note from this table that the Q; and the Qz values are quite comparable. It
is recommended that in application the Q; values be used, i.e., the nondetection
probabilities be based on the optimal assignment of values for a3 and oy. It is
very simple to determine this optimal assignment using Annex 4.4.

For the values in this table, Q; max is 0.0951, considerably larger than
the Qpax value of 0.0695. (The actual value of Qs pax Over the entire space will
be greater than 0.0951 by some amount which could be determined by performing addi-
tional runs in the region of the maximum.) The Q, max value of 0.0951 occurs when
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375 kg U 1is diverted into large and medium data falsifications, 750 kg U is diverted
into small falsifications, and 375 kg U is diverted into MUF. Note that this region
is quite far removed from the region of Q ma illustrating that the two test combina-
tions react differently to different diversion strategies.

EXAMPLE 4.9 (b)

In example 4.8 (b), Q was found to be 0.3413 at a, = 0.6, a3 = 0, and
= 0.4. Find the correspond1ng value of Q. In order for the comparison tc be
more valid, initially set o = 0.0126 for the 0 and MUF tests, wherea= 1- \/0.975.

Since the sample sizes in this example are implementation sample sizes
rather than p]ann1ng sample sizes, tiz, ty, and p are expressed in terms of
V(D-) [Hg, V(D*)[H,, V(MUF), and V, rather than k,, ks, and @.

From (eq. 4.5.6) and the data of example 4.7 (c),

min (4, 1 + 8a3/ \/23.978453)

min (4, 1 + 1.634a,)

€2

where, in app]ylng (eq. 4.5.6), a; is replaced by a; and Dy by D*. From (eq. 4.5.7),
again applied to rather than to By,

ty = 2.238\/27.303719 - 8as
V23.978453 + 3.325266 (2

_ 11.6942 - 8as3

V23.978453 + 3.325266 C,2
From (eq. 4.5.13),
t, = 2.238 - 8a,/ VvV 10.729310
= 2.238 - 2.4423a,
From (eq. 4.6.5),

_ -10.729310 + 2.230517

V (23.978453 + 3.325266C,;2)(10.729310)

_ =2.5946

V/(23.978453 + 3.325266C,2)
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First, use the table Took-up approach 1 to compute Q- for a, = 0.6, a3 = 0,
a, = 0.4. Since az = 0, C;2 =1 s0

ty = 2.238 ty, = 1.261 p = -0.497
From (eq. 4.5.12) and (eq. 4.5.14),
Q3 = 0.9874 Q, = 0.8964
From (eq. 4.6.9) and (eq. 4.6.10),
Ay = 1.222 Ay = 2.618
From Annex 4.3 (d),
T(2.230, 1.222) = 0.0063
To evaluate T(1.261, 2.618), apply (eq. 4.6.12),
T(1.261,2.618) = 0.5 (0.8964+0.9995)-(0.8964)(0.9995) - 0.0002
= (0.0518
Finally, since H of (eq. 4.6.8) is 0,
L(2.238,1.261,-0.497) = 0.5 (0.9874+0.8964) - 0.0063 - 0.0518
= (0.8838
Then, from (eq. 4.6.2),
Q” = (0.20)°°%(0.8838) = 0.3365

Using the MDBNOR subroutine, L(ts, ty.e) is calculated to be 0.8838, in
agreement with the table Took-up value.

Before performing further calculations at other combinations of diversion
strategies, use the optimal values of a3 and o, in place of a3z = ay, = 0.0126.
These are found from Annex 4.4 where the values for a3 and o, read from the graph
must be divided by 2 since o = 0.025 instead of 0.05. The value for p at C;2 =1
is p = -0.497. Then, from graphical interpolation in Annex 4.4,

]
fl

0.5(0.036) = 0.018 ay = 0.5(0.018) = 0.009

a3

2.098 t 2.365

o3 Ay

The example calculations are now performed with these values used instead
of 2.238 in the expressions for t; and t,. At a, = 0.6, ag =0, and a, = 0.4,

1l

t; = 2.098 t, = 1.388 p = -0.497
From (eq. 4.5.12) and (eq. 4.5.14),
Q; = 0.982 Q, = 0.917
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From (eq. 4.6.9) and (eq. 4.6.10),
Ay = 1.335 Ay = 2.315
From Annex 4.3 (d),
T(2.098, 1.335) = 0.0093
To evaluate T(1.388, 2.315), apply (eg. 4.6.12),
T(1.388, 2.315) = 0.5(0.917+0.999)-(0.917)(0.999) -~ 0.0003
= 0.0416
Finally, since H of (eq. 4.6.8) is 0,
L(2.098, 1.388, -0.497) = 0.5 (0.982+0.917)-0.0093-0.0416
= 0.8986

This compares with the value of 0.8838 for the case a3 = oy = 0.0126. The
Q- value is (0.20)0-6(0.8986) = 0.3421, compared with the earlier value, 0.3365.

The further calculations are now made to investigate the relationship between
Q- and diversion strategy, and also to determine an approximate value for Q”max.
The table gives values of Q~ for various combinations of values of a,, a3, and ay.
The L(t3, ty,p) values are calculated using the MDBNOR subroutine. Two sets of
values for L(t3,ty,p) and Q~ are given. Those with subscript 1 are based on aj =
oy = 0.0126 while for o3 = 0.018 and ay, = 0.009, the subscript 2 values are cal-
culated.

az

az as ay €12 B Li(ts,tu,p)  Lo(ts,tu,p) QL Q2
0 0 1 1 1 0.4080 0.4531 0.4080 0.4531
0 0.25 0.75 1.409 1 0.6243 0.6579 0.6243 0.6579
0 0.50 0.50 1.817 1 0.7666 0.7733 0.7666 0.7733
0 0.75 0.25 2.226 1 0.7941 0.7732 0.7941 0.7732
0 1 0 2.634 1 0.7285 0.6890 0.7285 0.6890
0.25 0 0.75 1 0.6687 0.6454 0.6854 0.4316 0.4583
0.25 0.25 0.50 1.409 0.6687 0.8107 0.8270 0.5421 0.5530
0.25 0.50 0.25 1.817 0.6687 0.8682 0.8586 0.5806 0.5741
0.25 0.75 0 2.226 0.6687 0.8327 0.8033 0.5568 0.5372
0.50 0 0.50 1 0.4472 0.8329 0.8558 0.3725 0.3827
0.50 0.25 0.25 1.409 0.4472 0.9131 0.9133 0.4083 0.4084
0.50 0.50 0 1.817 0.4472 0.9072 0.8891 0.4057 0.3976
0.75 0 0.25 1 0.2991 0.9355 0.9423 0.2798 0.2818
0.75 0.25 0 1.409 0.2991 0.9523 0.9439 0.2848 0.2823
1 0 0 1 0.2000 0.9748 0.9730 0.1950 0.1946
0.333 0.333 0.333 1.545 0.5848 0.8758 0.8776 0.5122 0.5132

For the values in this table, Q; max is 0.7733. The Q max value was 0.5855
from example 4.8 (b). As in the prior example, Q2 max is much Targer than Qmax.
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Annex 4.1 (a)
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Annex 4.1 (b)
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Annex 4.2 (a)

A Funclion for Computing Bivariate Normal Probabilities [162]
Table A of T(h, a}

a
NN 0425 0450 0475 1.00

0.00 0.038990 0.073792 0102416 04125000
0.01 0.038988 0+073788 0102410 0e124992
0.02 0.038982 04073776 06102393 Gel24968
0.03 0.038972 0e0737%6 0.102363 0e124928
0.04 0.038958 0.073728 0.102321 04124873

0,05 0.038%40 04073692 0+102267 0124801
0.06 0.038918 04073649 0.102202 0el24716
0.07 0.038892 0073597 0.102124 0+124611
0.08 0.038862 0.073538 04102035 0124492
0.09 0.038829 06073470 0.101934 0s124357

0.10 0.038791 04073395 0.101821 0.124207
Oell 0.038750 0073312 0101697 0el124061
0s12 0.03870¢4 0073221 04101561 0123860
013 0.038655 04073122 06101413 04123663
Ool4 0.038602 0073016 0.101253 0¢123450

0.15 0.038545 04072902 0101082 04123223
0.16 0.038484 0.072780 0.100900 04122980
0s17 0.038419 04072651 0,100706 0122722
0.18 0.038350 0e072516 0.100501 04122449
0.19 0.038278 06072369 0100285 0e122162

0420 0.038202 0072217 04100057 0121859
0.21 0.038122 0072058 0099819 0+121542
0.22 0.038038 0071891 0099569 0+121210
023 0.037951 0071717 0099308 0120864
0.24 0.037860 0.071535 04099037 06120503

0.25 04037766 0071347 Ns098755 0120129
0.26 04037668 0071151 04098462 06119740
0.27 Ce037566 04070948 0.098158 04119337
0.28 0037461 06070738 04097844 0.118921
0.29 0.037352 04070521 0.097520 0¢118492

0.30 0.037240 04070297 0.097186 0.118048
0.31 0.037124 0.070066 0096841 04117592
0.32 0.037005 0.069828 0.096487 0.117123
0.33 0.036882 C«069584 0096122 Osll6641
0. 34 0.036756 0069333 0095748 Oe«llbl46

0435 0.036627 Ve 069076 04095365 04115639
0.36 0036495 0.068812 0094971 0115119
0437 0.036359 0.068542 0.094569 04114587
0.38 0.036220 0068265 0.094157 OellaOss
0439 0.036078 04067983 0.093736 0+113489

040 0.035933 0067694 0093306 04)12922
Qa1 0.035785 04067399 04092868 0112344
0.2 0.,035634 0067098 0.092421 0111755
0.43 0.035479 04066791 0.091965 04111155
0.446 0.015127 0.0664179 0.071501 0+110545
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Annex 4.2 (b)
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Annex 4.3 (d)

A Function for Computing Bivariate Normal Probabilities (cont.)
Table B of T{h, o)

AN

0.00
0e25
0450
0e75
1.00

1425
1450
1.75
200
2425

2450
2.75
3.00
3625

0.00
025
0.50
075
1.00

1.25
1.50
1.75
2.00
2425

2+50
2.75
3.00
3425

0.00
0425
0450
0.75
1.00

1.25
1.50
1475
2400
2425

2450
2475
3000
3429

0,90

0e116631
0112243
0.100073
0082731
0063507

04045348
04030185
04018771
04010929
04005969

04003063
0.001479
0.000672
0000288

095

0.120920
04116290
04103474
0085276
0065203

0046355
04030717
0.019021
04011034
0.006008

04003076
0«001483
0.000673
04000288

1«00

0125000
04120129
0+106671
0087634
0e066742

04047244
0.031172
04019227
0.011116
04006038

0.003086
04001485
0.000674
04000288

0.91

0.117506
04113069
0.100770
0+083256
0.063859

0+045559
0.030298
0.018825
0.,010952
0.005978

0.003066
0.001480
0.000673
0.000288

0496

De121752
0.117074
04104129
0.085762
0.065523

04046542
0.030814%
04019066
0.011052
0.006015

0.003078
0.001483
0,000674
0,000288

125

De142612
04136540
0e119952
0.096973
0.072452

0.050283
0.032582
0.019798
0.,011318
0.006100

0.003103
0,001490
Us000675
0.,000289

0.92

04118372
04113887
04101458
0.083772
0064205

0.045766
0030408
0.,018877
0010974
0.005986

0+003069
0.001481
0000673
0.000288

Q.97

0122576
0+117850
0.104777
0.086241
0.065837

06046724
0.030%08
0019109
0.011069
0.006021

0.003080
0001484
0.000674
0.000288

1+50

04156416
04149156
06129584
0.103119
0075735

0+051753

‘0033134

0019973
0+011365
0.006111

0.003105
0.0014%0
0.000675
0.000289

4-73

0493

04119230
0114696
0+102138
0.084281
04064544

0+045967
0+030514
0.018927
04010995
04005994

04003072
0001482
0000673
0.000288

0.98

06123392
0e118617
0e105416
0086713
04066145

04046902
04030999
04019150
0011086
04006027

04003082
0001485
0000674
04000288

2,00

0e176208
0s166613
0e141581
0109570
0078468

04052673
0«033383
0020028
04011375
0006112

0.003105%
040014690
0« 0006175
0000289

094

04120079
0115497
04102810
02084783
0e064877

0046163
0.030617
04018975
04011015
04006001

0«003074
04001482
0000673
0000288

0499

04124200
0+119377
04106047
0087177
0066446

04047075
0031087
0.019189
0.4011101
0006032

0,003084
06001485
0000674
0+000288

o0

04250000
04200647
06154269
04113314
0«079328

04052825
04033304
04020030
0s011375
0006112

0003105
04001490
0s000675
0+000289
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Chapter 5

IMPLEMENTING INSPECTION PLANS

5.1 ON-SITE ACTIVITIES

The activities that are statistical in nature and that are performed on site,
i.e., at the facility, are those activities that relate to attributes inspection,
using both the attributes and variables tester, and to variables inspection. A
detailed description of the kinds of activities involved is given in Section 4.2.
The discussion in Section 4.2 does not address specific problems in implementation
however. Such problems include the procedure for drawing a random sample, and the
means of establishing defect criteria. These topics are now addressed in Sections
5.1.1 and 5.1.2 respectively. A third topic dealing with on-site inspection activi-
ties is the construction of confidence intervals based on data derived from the
attributes inspection. This topic is covered in Section 5.1.3.

5.1.1 Drawing a Random Sample

It is important that items selected for measurement during an inspection
be selected in a random fashion. Clearly, it is unacceptable to select only those
items that are easily accessible, for then the diverter would falsify only the
items that are not readily accessible. Nor should one rely on his own ability to
select a random sample; this is difficult to do without introducing some non-
random features into the selection process. In order to combat the possibility
that the diverter might anticipate which items are 1ikely to be inspected, the
sample should be selected by some random process. Some means for doing this are
set forth in the next three sections. In each case, it is necessary that the items
in the population be numbered serially from 1 to N, and the problem is to randomly
select n from these N items.

5.1.1.1 Random Number Table

Random number tables may be used to supply random numbers. Annex 5.1 (a)-(e)
gives 5,000 four digit random numbers taken from [5.1]. More extensive tables are
available [5.2].

Random number tables are simple to use. The procedure for using the
Annex 5.1 tables is given as Method 5.1. Clearly, Method 5.1 may be applied to
any set of such random numbers.
Method 5.1

Notation

=2
1

number of items in population to be sampled
number of samplied items, with n<N

=
1]
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Model

In Annex 5.1, each four digit number from 0000 to 9999 is equally likely to
occur, i.e., will occur with probability 0.0001 at each entry. This probability
is independent of entries preceding the entry in question so that movement in the
table may be in any direction (down, up, left, right). A similar statement applies
if one uses only the first or last three, two, or one digits.

Results

Arbitrarily select a starting point in the random number tables of Annex 5.1,
and decide upon a method of moving in the tables to select successive entries.

Determine the number of digits to use. If 14N49, use either the first,
second, third, or fourth digit of each number; if 104N499, use either the first
two, middle two, or last two digits; if 1004N4£999, use either the first three or
last three digits. For N>9999, use all 4 digits plus the first digit in the next
column, etc.

Examine each tabled value in turn and write down all numbers between 1 and N
until the n items are identified. Do not duplicate numbers already listed and
ignore any numbers in the table that exceed N.

Basis
The numbers tabled in Annex 5.1 meet the criteria for randomness suggested

by the model. Numbers selected from this table in the fashion indicated will like-
wise meet these criteria.

Examples

EXAMPLE 5.1 (a)

From example 4.1 (b), 48 items are to be inspected from the total of 360 items
in the stratum. For n=48 and N=360, use Method 5.1 to select the items to be
inspected.

Arbitrarily start with the four digit number, 3501, in column 4 row 12 of
Annex 5.1 (b). Select the numbers by moving downward in the table. Arbitrarily
use the last three digits of each four digit number, since N=360 is a three digit
number. The 48 three digit numbers between 001 and 360 are as follows.

183 177 216 170 256 68 9 66
29 341 53 160 100 183 178 339
279 125 93 8 237 22 148
202 126 82 131 107 144 60
166 354 156 -53- 1 293 297

270 33 12 274 166 116 123
347 38 284 295 340 306 223

Note that 51 numbers had to be selected to obtain the 48 distinct numbers
since the numbers 53, 156, and 183 were duplicates, as indicated.
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5.1.1.2 Pocket Calculator

Many of the pocket calculators available to the inspector either have built-
in random number generators or else they can be programmed very easily to generate
random numbers. Further, the problem illustrated in Example 5.1 (a) where so many
numbers had to be ignored because they exceeded N=360 can be circumvented quite
easily so that virtually all of the numbers generated are useable. (A modifica-
tion may be made to Method 5.1 to accomplish this also, but it is usually simpler
when using random number tables to simply ignore the unwanted numbers.)

Method 5.2 indicates how a pocket calculator may be used to generate random
numbers.

Method 5.2
Notation
N and n are defined as in Method 5.1.
d = number of digits in N
Model
The numbers generated by this method are uniformly distributed on the inter-
val 0 to 1. By using the first d digits and ignoring the decimal point, random
numbers from 1 to N are created.

Results

Assume initially that the pocket calculator is not programmable. Then, the
random numbers from 1 to N may be generated as follows.

Calculate m = 109/N, rounded down to integer (eq. 5.1.1)

Select an arbitrary "seed number" between 0 and 1 and containing d digits.
Call this number fq, and enter it in the calculator.

Calculate g; = 997 f, (eqg. 5.1.2)

Define f, = fractional part of g,

f1/m (eq. 5.1.3)

1l

Calculate h;

Ignore the decimal in h;. The first d digits is the first random number
from 1 to N. If this number should exceed N, ignore it. To find the next number,
repeat the above steps, replacing fg by f,, f1 by fo, g7 by 9o, and hy by hy.

[f the pocket calculator is programmable, the above procedure may be pro-
grammed very easily to generate random numbers. This is illustrated for the HP-67
pocket calculator. The specific programming steps will depend on which calculator
is available.
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Programming Steps:

RCL 2
RCL O
X
g frac
STO 2
RCL 1

h rtn
To execute the program, make the following entries.

DSP d

g97 STO 0O

m STO 1

fo STO 2 (The arbitrary seed)

Then, repeatedly initiate the program to generate the numbers, ignoring the
decimal. If a given number exceeds N, ignore it. Also, as with Method 5.1, numbers
that are duplicates of numbers previously generated must be ignored.

Basis

The algorithm used for generating the random numbers is adapted from the
algorithm of Reference [5.3]. The adaptation consists of dividing by m to reduce
the number of generated numbers that exceed N. As stated in [5.3], the generator
in question passes the chi-square frequency test for uniformity, and the serial
and run tests for randomness. Of course, with each application, a different seed
number, f,, must be used. This is true also if the calculator in question has a
built-in random number generator.

Examples

EXAMPLE 5.2 (a)
Redo Example 5.1 (a) using Method 5.2. The parameter values are

N = 360 d=3
integral part of 103/360 = 2

m
Choose the arbitrary seed number

f, = 0.298 (contains d=3 digits)
In applying Method 5.2, all numbers generated by the algorithm are listed

below. Those that are deleted either because they exceed 360 or because they are
duplicated are crossed out until the n=48 useable numbers are generated.
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53 233 213 493 73 463 133 113 303
341 301 36+ 21 281 141 101 161 321
477 97 4317 434 157 77 197 17 37
69 209 249 189 29 269 499 449
293 353 253 433 413 193 273 153
121 381+ 241 201 261 421 181 41
137 357 277 -394 217 237 454 be oA
89 429 169 309 349 289 129 369
5.1.1.3 Computer

The Agency has computer programs available that facilitate the drawing of
random samples. These are especially useful if the inspector has good knowledge
of his inspection parameters, N and n, prior to leaving for the facility. In this
event, he can request that he be supplied with a Tisting of randomly selected items
in advance.

Available computer programs are of two types. In the first type, one inputs
values for n and N, and the n items to be inspected are printed out. These are
An example of computer output

1isted in numerical order to facilitate inspection.

for n=65 and N=1200 is shown

18 31 39 70 91 97 98
100 104 129 139 146 155 161 237 262 280
281 285 297 306 309 330 335 336 339 349
362 365 383 385 392 461 488 515 533 597
645 689 696 700 709 729 740 757 781 815
829 835 865 902 911 920 923 944 970 978
1011 1032 1048 1057 1073 1080 1162 1179

In some inspection situations, a different kind of sample selection process
may be simpler to implement. For example, if the population items are stacked in
some sort of array, a skip~sampling procedure may be used conveniently. With skip
sampling, the sampling scheme indicates how many items are skipped, then how many
are inspected, then how many are skipped, etc. A computer program for this time of
inspection sampling is also available and may be used, again if the inspector has
advance information on the inspection parameters, N and n.

An example of computer output for skip sampling with N=1200 and n=65 is
If this specific plan were implemented, the inspector would decide on how
Then, he would skip 2 items, sample 1, skip 12,

shown.
he would order the array of items.
sample 1, skip 16, sample 1, etc.

For either type of random sample selection, once a set of computer-generated

random numbers have been used on an inspection, they should not be reused at the
same facility. A new computer request should be made for each application.
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Sample Size: 65 Population: 1200

Sampie Skip Sample Skip Sample Skip

B= 2 C=1 D =25 E=1 F= 2
A=1 B =12 C=1 D =16 E=1 F =23
A=1 B =16 C=1 D =281 E=1 F= 6
A=1 B =15 C=1 D= 8 E=1 F=15
A=1 B =18 C=1 D=1 E=1 F=232
A=1 B = 33 C=1 D =23 E=1 F= 8
A=1 B= 8 C=1 D =48 E=1 F =23
A=1 B =13 C=1 D= 33 E=1 F =23
A=1 B =16 c=1 D= 7 E=1 F= 2
A=1 B =19 c=1 D =24 E=1 F =35
A=1 B= 2 C=1 D =24 E=1 F= 9
A=1 B= 8 C=1 D= 3 E=1 F =74
A=1 B =60 C=1 D=24 E=1 F=5
A=1 B =11 c=1 D= 52 E=1 F= 2
A=1 B =25 c=1 D= 7 E=1 F=1
A=1 B =19 c=1 D= 3 E=1 F=10
A=1 B = 23 C=1 D= 4 E=1 F=15
A=1 B= 7 C=1 D= 5 E=1 F =34
A=1 B= 5 C=1 D =15 E=1 F =10
A=1 B =12 C=1 D =27 E=1 F=20
A=2 B= 3 C=1 D= 8 E=1 F= 2
A=1 B= 2 C=1 D =17

5.1.2. Attributes Inspection Defect Criteria

In Section 4.2, the concept of attributes inspection was discussed, and it was
pointed out there that in attributes inspection, each item inspected is classified
as being either acceptable or a defect. Attributes inspection activities were
described in Section 4.2.1. Three inspection activities described there, activities
3, 5 and 6 require that a defect be defined, i.e., that defect criteria be established.
Activity 3 deals with inspection to detect recording and/or calculational mistakes,
and the problem of defining defect criteria for this activity and the effect of such
mistakes on MUF are considered in Section 5.1.2.1. Section 5.1.3.1 considers the
confidence interval for the number of mistakes. The effect of defects observed in
connection with activity 5 and 6 of Section 4.2.1 are treated in exactly the same
way in Sections 5.1.2.1 and 5.1.3.1, except, the basis for the defect criteria are
different as described in Section 5.1.2.2 for attributes inspection and Section 5.1.2.3
for variables inspection.

5.1.2.1 Effects of Mistakes (Defects) on MUF

Defects observed in checking source data for recording and/or calculation
mistakes and the large or medium defects observed during attributes and variables
inspection are treated in this section in order to determine their effect on MUF.
It may be impossible to detect and eliminate all mistakes in recording or measure-
ment when there are thousands of entries in a material balance period. One hundred
percent inspection may also be impossible. Therefore it is desirable to require
that the net effect of mistakes and defects on the facility MUF be evaluated.
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Method 5.3 to follow provides a procedure to determine the quantitative effect
of medium and large defects on MUF, Small mistakes in records are also considered by
this method, however Method 5.3 will tolerate many more of the small defects than it
will medium or large defects. When a mistake is found, the records for that item should
be corrected. However, since only a sample of items are checked, the 1ikelihood (or
at least the possibility) exists that other mistakes still exist that will affect the
facility MUF., In Method 5.3, the random variable Z is introduced. This 1is the
adjusted sum of defects as they affect MUF in their combined effects. The mean and
variance of Z are calculated under specific assumptions about the probability distri-
bution of defects. A confidence interval may then be constructed about the true mean
of Z to assess the overall impact of the defects on MUF in a probabilistic sense. The
evaluation of defects is made to combat the diversion strategy in which "mistakes"
are made to conceal diversion.

Method 5.3
Notation
Ny = number of items in stratum k
nagk = sample size for attributes inspection in stratum k
nqx = observed number of defects in stratum k
dy; = facility value minus inspector value for the i-th defect
in stratum k
U = Targest value for dgi in stratum k
Ly = smallest value for dij in stratum k
3, = a constant, equal to +1 if stratum k is an input or beginning
inventory stratum and equal to -1 otherwise.
Model

. Under the assumption that mistakes are unintentional, it is assumed that
dki is uniformly distributed in the interval from Xgg-6k to Xgit6k. Estimates are
found for xo¢ and for ek for each stratum in which defects are found in the
inspection.

Results

Estimate xok and 6k by the following equations.
(Lk + Uk)/z (eq. 51.4)

(U, - L,)/2(0.05)"/Mdk (eq. 5.1.5)

1

xok
8

0]

k
These equations apply for ngk22. For ngx=1, set xgk= dy; and oy is given by

(eqg. 5.1.5) with (Uk-Lk) replaced by [di;|. For ngg=0, the stratum is not included
in further calculations.
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The quantity Z is given by

7= éi Qe Ny Xok (eq. 5.1.6)
k=1
where h = (Nk - nak)/nak (eq. 5.1.7)
if the Pk mistakes are corrected for, or
hy = Nk/nak (eq. 5.1.7a)
if the n,. mistakes are not corrected for.

The variance of Z is
K 2 42
v(z) = 1/3 k; hZ o2 ny, (eq. 5.1.8)

A two-standard deviation confidence interval on Z is given by
Z+2VV()

If Z s approximately normally distributed, which will occur in a Timiting
sense as a result of the central limit theorem, then the above confidence interval
is an approximate 95.% interval. The interpretation of this interval is very similar
to that for MUF or D as described in Section 5.2.3.1. 1In fact, the intervals for
MUF, Z and D should be compared with each qther. Z represents the result of the
Agency's attribute verification of MUF and D is.the result of the variables
verification. If Z 1is much Targer than MUF or D then one might conclude that the
effect of mistakes (defects) is much greater than normal measurement errors. Under
such circumstances the evaluation of MUF may not be meaningful until the frequency
and magnitude of such defects can be brought under control at the facility level by
improvements in accounting practices and measurement control programs. Of course,
the Agency must also make sure that the observed mistakes (defects) are not caused
by misapplication of their own verification procedures.

Basis

First, consider the basis for (eq. 5.1.4) and (eq. 5.1.5). Dropping the k
subscript for simplicity, it is assumed that the size of a mistake is uniformly
distributed between xg - 6 and xg + 6. The mean of this distribution is xg, and
it is estimated by the mid-range, (eq. 5.1.4). To estimate 6, equate the proba-
bility that all nd observations will fall between L and U, given 8=0.05, and
solve for 6. The quantity 6 is then the solution of the equation:

 \nd
(%é-L—) = 0.05 (eq. 5.1.9)

The solution is given by (eq. 5.1.5).
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Given Xq, which represents the average difference per mistake in the stratum,
the average difference per inspected item is

ndxo/na
The total number of uninspected items is (N-nz), so the extrapolated net

effect on MUF of the mistakes in the stratum is given by

a (N-na)ndxo/na

if the observed mistakes nd were corrected for.

Upon replacing (N-nz)/na by h and summing over the strata, the result is
(eq. 5.1.6). However, h should be replaced by N/ng 1f the observed mistakes
ng were not corrected for.

To compute the variance of 7, use the fact that the variance of dy is,
from reference [5.4].

V(di) = (20)2%/12 = 82/3

The variance of Ny such values is simply ny times V(di), and (egq. 5.1.8)
follows immediately.

Examples

EXAMPLE 5.3 (a)

In the low enriched uranium fuel fabrication facility of Example 3.3 (a),
say that the attribute sample sizes for the 7 strata are 470, 470, 3, 15, 8, 15,
and 8 respectively. Review the following calculational mistakes detected during
the inspection and make a judgement as to their acceptability.

Stratum Facility Inspector dii

1 20.116 20.143 -0.027
19.853 21.356 -1.503

20.231 20.328 -0.097

21.021 22.021 -1.000

19.899 19.987 -0.088

20.072 19.514 0.558

19.847 19.184 0.663

20.128 20.170 -0.042

20.019 20.103 -0.084

2 5.015 4.599 0.416
5.133 5.142 -0.009

4,978 4.993 -0.015

5.024 4.712 0.312

4.961 4,950 0.011

4 4.120 4.348 -0.228
7 5.013 5.103 -0.090
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The following values are found for Lk and Uk

L, = -1.503 U, = 0.663
L, = -0.015 U, = 0.416
From (eq. 5.1.4) and (eq. 5.1.5),
Xo; = -0.420 6, = 1.511
X, = 0.201 6, = 0.392
For strata 4 and 7,
Xyy = -0.228 xp7 = -0.090
6, = 2.280 6, = 0.900
Then, by (eq. 5.1.7),
hy = (12,000 - 470)/470 = 24.532
h, = (47,760 - 470)/470 = 100.617
h, = (1800 - 15)}/15 = 119.000
h, = (800 - 8)/8 = 99.000

Z 1is calculated by (eq. 5.1.6)

Z = (24.532)(9)(-0.420) + (100.617)(5)(0.201) + (119.000)(1)(-0.228) +
+ (99.000)(1)(-0.090) = -212 kg U

(Note that Z is negative, a direction favorable to a diverter).

The variance of Z 1is calculated from (eq., 5.1.8)
V(Z) = 1/50(24.532)2(1.511)2(9) + ... + (99.000)2(0.900)2(1)]
= 101,698/3 = 33,899 kg2 U

The two-standard deviation confidence interval is
-212 + 2/33,899 = -212 + 368 kg U
or (-580, 155)

Note that:

(1) The confidence interval embraces zero, i.e., there is no reason
to believe that the net effect on MUF due to these mistakes differs
from zero. Note, however, that Y V(Z) is larger than v V(MUF) =
212 kg U from Example 3.5(a).

(2) The lower limit (-580), is smaller than the goal quantity for this
type facility. Thus, these small mistakes in recording do not have
a large effect on MUF.
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5.1.2.2 Large Defects--Attributes Tester

For planning purposes, a gross or large defect was defined in Section 4.3.1
to be of size equal to the average element weight in the stratum, this weight being
denoted by Xkx. However, for many attributes testers, a discrepancy need not be
as large as xk to be detected, since detection simply implies that the tester has
determined that the facility value associated with the item in question is incor-
rect, with high probability. As an illustration, if the attributes test involves
tipping a container to see if it has the listed amount of materjal in it, then
quite clearly the defect need not be of size Xk (i.e., empty container) to be
detected. Quite likely, if the weight were off by, say, 50% or more, this would
be detected as a significant discrepancy, i.e., it would be classified as a defect.

The foregoing discussion leads to the following definition of a large defect.

Definition: In attributes inspection with the attributes tester, a defect
is a discrepancy between the facility and the inspector values that is larger than
Yk xk in absolute value.

To further explain this definition, if the tester in question has an asso-
ciated error of measurement, then Y| may be a multiple of the measurement error
standard deviation. On a relative basis, let &y be the standard deviation of the

attributes tester. Then, yk=46 would be a reasonable value for «y._ since any
discrepancy larger than 4 meakurement error standard deviations is almost certainly

a real discrepancy, one that cannot be explained as being due to measurement errors.
This relationship between &, and vy, assumes that the facility error of measure-
ment is negligible in size cgmpared w%th the inspector measurement error for the
attributes tester. If this is not the case, then &, would be the standard deviation
of the difference between the facility and the inspector value, i.e., would be the
square root of the sum of the squared standard deviations for both parties.

This discussion may be summarized as Method 5.4, the procedure for defining
a defect in attributes inspection with the attributes tester.

Method 5.4
Notation

X, = average element weight for an item in stratum k
Yk = a fractional value which, when multiplied by X, , defines a dis-
pancy that is larger in absolute value than caﬁ be explained by

errors of measurement
8k, = relative random error standard deviation for facility measurement
Spo = relative random error standard deviation for inspector measurement
Note: The definition for Xy implies that the characteristic being measured
is the element weight. More generally, X¢ relates to any measured characteristic

being checked by the inspector, e.g., the enrichment being verified by a stabilized
assay meter (SAM).
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Model

When relating Yk to &i; and Skoo it is implicitly assumed that a discrepancy
due to measurement errors is normally distributed.

However, this is not an important assumption since the factor of 4 used in
(eq. 5.1.10) has significance for distribution functions other than the normal
distribution, i.e., it is quite unlikely that an observation will differ from the
mean by more than 4 standard deviations even for non-normal populations that might
occur.

Results

Assuming that the attributes tester in question has an associated measure-
ment error, calculate

1/2
= 4(5§1 + 5&2) / (eg. 5.1.10)

Tk
Calculate the product Ygxk. If a discrepancy exceeds this product in

absolute value, it is labeled a defect. If a zero-acceptance sampling plan is
being utilized, then discovery of at least one defect leads to "rejection" of
the stratum in question, and whatever action such rejection implies (see
Section 4.3.1). Procedures for evaluation of the effect of discrepancies on the
material balance are given in Section 5.1.3, Confidence Interval for Defects and
Section 5.1.2.1, Effect of Mistakes (Defects) on MUF.

If the particular attributes tester cannot be characterized as having an
error of measurement in the strict sense of the word, assign a value to Yk such that
there is Tittle question but that a discrepancy larger in absolute value than Yyxg
is unexplainable as being due to errors in measurement.

Basis

For Y, defined by (eq. 5.1.10), and assuming measurement errors to be nor-
mally distributed, a discrepancy as large as Yyxg would occur due to chance alone
less than 7 times out of 100,000. Thus, a discrepancy larger in absolute value
is correctly labeled a defect with very high probability.

Examples

EXAMPLE 5.4 (a)

With reference to example 4.1 (a), a total of 470 items (containers of U0,
powder) are to be inspected. Suppose that the attributes inspection consists of
verifying the enrichment with a stabilized assay meter (SAM), which has a relative
error standard deviation of 0.025 (2.5% relative). The problem is to define a
defect.

In applying (eq. 5.1.10), 8k, = 0.025. The value for &, is negligibly
small and may be ignored since the facility value is based on a mass spectrometer
measurement. Therefore,

\ (4)(0.025) = 0.10
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To assign a value to ik, note from Example 3.6 (a) that the U0, powder 1is
at 3 enrichments: 3.25%, 2.67%, and 1.52%. Therefore, 3 different defect criteria
are established.
0.325% U-235
0.267% U-235

0.152% U-235

1]

For the 3.25% containers, Yyxy

1)

For the 2.67% containers, Ygxg

For the 1.52% containers, Yix

5.1.2.3 Medium Defects-~Variables Tester

The discussion in this section perhaps more logically belongs in Section 5.2
dealing with post-inspection activities as opposed to on-site activities because
the final data analysis will probably have to depend on awaiting the results from
the laboratory. However, the statistical aspects of this problem are closely related
to those discussed in Section 5.1.2.2, and on that basis, it is reasonable to con-
sider the subject at this time. Further, variables measurements may, in fact,
be performed nondestructively so that in some cases, the evaluation discussed here
could be performed on site.

As was the case with gross defects, there is a distinction between a medium

defect as defined for inspection planning purposes and a medium defect defined in
implementation. In planning, the inspector wants assurance that his sample size
is large enough to combat the diverter's best strategy, that of falsifying given
containers as much as feasible to escape detection with the attributes tester.
From this viewpoint, defect size was related to the measurement error of the attri-
butes tester. On the other hand, in implementation, any discrepancy that cannot be
explained as being due to the measurement errors of the variables tester, and of the
facility measurement, is labeled a defect.

Previous results may be used in defining a defect specifically for a given
stratum. The computational formulas given by Methods 3.8, 3.9, and 3.10 are adapted

to apply to a single item. Method 5.5 gives the procedure for defining a defect
when the variables tester is used in the attributes mode.

Method 5.5
Notation

The notation is given in Sections 3.4.3.2 and 3.5.3.2. Further notation
is as follows:

dki = facility value minus inspector value for element weight of
item i in stratum k
Xikant = facility value for element weight of item i in stratum k based
ap on facility measurement method q for the bulk measurement,
p for sampling, and t for analytical
yikqpt = defined as Xikqpt’ except it is an inspector value
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Model

Under the hypothesis that discrepancies are due to measurement errors, it is
implicitly assumed that a given discrepancy is normally distributed inasmuch as a
discrepancy larger than four standard deviations is concluded to occur with very
small probability due to chance alone. If the assumption is valid, then this
probability can be calculated exactly. There is little reason to question the
validity of this assumption in most applications but, in any event, it is not an
important assumption. For any reasonable probability distribution Tikely to be
encountered in this application, a four standard deviation discrepancy will occur
with very Tlow probability if measurement error is the only cause of the discrepancy.
The actual value of this "low" probability is not really important.

Results

Calculate the following quantities:

V() = x%kqpt (G%q--x * 5$.p.x/rk 82O (eq. 5.1.11)
Vg (i) = Yikapt (rgeey * Stepey/Vk * S5 ty/3Y) (eq. 5.1.12)
Vr(dki) B er(dki) * Vry(dkj) (eq. 5.1.13)
Vox(dii) = X%kqpt (88qu.x ¥ 65eetx) (eq. 5.1.14)
Voyldis) = Yigpt (88q.y * 85..ty) (eq. 5.1.15)
Vg(dki) ) Vgx(dki) ¥ ng(dkj) (eg. 5.1.16)
st(dki) - X%kqpt (6§q..x * 65--tx) (eq. 5.1.17)
Vsy(dki) = Yikqpt (ééq--y * 6%--ty) (eq. 5.1.18)
Vs(dki) - st(dki) * Vsy(dki) (eq. 5.1.19)

Vidy;) = Vuldyy) + Vg ldyg) + V(dy ) (eq. 5.1.20)

If a discrepancy, dygj, exceeds 4 V V(dys) in absolute value, it is labeled
a defect. (Physically, \)V(dki) is the standard deviation of a given difference.
In view of the dominance of certain type errors, it may not be necessary to calcu-

late all the above components; some may be ignored in practice). Procedures

for the evaluation of the effect of discrepancies on the material balance are given
in Section 5.1.3, Confidence Intervals for Defects and Section 5.1.2.1, Effect of
Mistakes (Defects) on MUF.
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Basis

If the assumption of normality is valid, then a discrepancy as large as
4/ V(dy;) would occur due to chance alone less than 7 times out of 100,000. Thus,
a discrepancy larger in absolute value is correctly labeled a defect with very

high probability.

It is noted that the results were given on the basis that the item charac-
teristic in question is the element weight. It is simple to modify the key equations
should another characteristic be under investigation. Only those measurement
operations that affect the difference statistic are, of course, included in the
calculations. It may be that additional terms would be required, e.g., if the
item characteristic is isotope weight rather than element weight. The results in
Section 3.5.4, appropriately modified to apply to the single item, are pertinent
in this event,

The calculations indicated by the equations seem quite involved. However,
they may be applied quite easily by noting that: (1) for error propagation
purposes, Xikgpt and yik pt are essentially identical so that various pairs of
equations may Be combineg; (2) some error variances are zero and will hence not
appear in the equations; and (3) the calculations for Vy(dgi), Vq(dii)s and Vg(dy;)
need not actually be performed; they are intermediate values 1eaging up to the
final (5.1.20).

Examples

EXAMPLE 5.5 (a)

The Tow enriched uranium fuel fabrication facility of example 3.3 (a) is
1n§pected. In the U0, powder stratum, 36 measurements are made of jtem element
weight, using the data of example 3.8 (a) (12 batches sampled with 3 items weighed
per batch). Determine the defect criterion for the variables tester in the attri-
butes mode. Use the nominal value of 20 kg U for Xikqpt and Yikqpt for all items.

The following parameter values are given in prior example. From example
3.3 (a), for the facility:

q=1 p=1 t=1 k=1
r; =5 c; =1
arl--x = 0.000658 ar-l-x = (0.000531 Sr--lx = 0.000433
From example 3.5 (a)
S .y = 0-000439 s = 0.000571

From example 3.8 (a), for the inspector

g=1 p=1 t=1
vy =2 a; =2
(S = = -
Pleey 0.000658 Gr.l.y 0.000531 sr..ly = 0.000433
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From example 3.9 (a),

8.1y = 0-000544

From example 3.10 (a),

5.y = 0.000439 5. = 0.000172

The equations, {eq. 5.1.11) - (eq. 5.1.20) are now applied to give the fol-
Towing results.

rx(dli) = 0.000211 Vry(dli) = (0.000248 Vr(dli) = 0.000459
vgx(dli) =0 ng(dli) = 0.000118 Vg(dli) = 0.000118
st(dli) = (0.000208 Vsy(dli) = (0.000089 Vs(dli) = 0.000297

V(dli) = 0.000874
4 VV(d..) = 0.118 kg U, defect criterion

11

5.1.3 Confidence Intervals for Defects

5.1.3.1 Numbers of Defects

Upon completion of the attributes inspection, a confidence interval may be
calculated for the number of defects in the population, (or, in the case of mistakes,
the number of mistakes). This interval may be helpful in reaching a decision as to
the need for further inspection in a given stratum. A procedure for estimating
the effect of the defects on MUF 4s given in Section 5.1.2.1.

The methods for constructing a confidence interval are given. Method 5.6
applies when zero defects are observed. Method 5.7 is applicable for =1 observed
defects.

Method 5.6

Notation

number of items in population

sample size
confidence coefficient

et
J

- ™ S =
i}

upper 1imit of confidence interval
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Model

The random variable is the number of defects found in a sample of n items
selected at random from a population of N items containing a given number of
defects. It is well known that this random variable follows a hypergeometric
density function [5.5].

Results

With 100(1-g8)% confidence, the upper 1imit on the number of defects in the
population, given that no defects are observed in the sample, is

_ 1/n
U= 0.5(1-8 " ") (2N-n+1) (eq. 5.1.21)

Basis
If U is the number of defects in the population of N items, find that value

for U such that the probability of observing zero defects in the sample of size n
is g. This defines the 100(1-g)% upper confidence 1imit on the number of defects.

The appropriate value for U is the solution of the equation:

) ()
0 n _
= B (eq. 5.1.22)
N
n
The left hand side is

Uyt (N-n)! _ (N-U)(N-U-1)-<+(N-U-n+1)
U-n)}t NI N(N-1)+-«(N-n+1)

N-
N-
090 et - e

These are n factors in this expression. The "middle" factor is

2u
(1 - oyorD

so that the approximate value for g is

g = (1 - ﬁyﬁ)” (eq. 5.1.23)

Solving this for U gives (eq. 5.1.21).
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Examples

EXAMPLE 5.6 (a)

With reference to example 4.1 (b), in the mixed oxide powder stratum of the
mixed oxide fuel fabrication facility, 48 items out of the 360 total items were in-
spected in attributes sampling. No defects were found. What is the 95% upper con-
fidence 1imit on the number of defects in the remaining 312 items?

The parameter values are:

N = 360 n = 48 g = 0.05

By (eq. 5.1.21), the Timit is

0.5 (1-0.05"*®)(720-48+1)

U

20.4, or 21 items

Method 5.7 is applicable when 1 defects are observed in the sample.

Method 5.7
Notation
N, n, {(1-8), and U as in Method 5.6
d

number of defects observed in the sample
Model
See Method 5.6

Results
Define tl-B by
t
1-8
2
L e'z /Zdz = 1-8 (eq. 5.1.24)
V21

That is, the area under the standardized normal curve from - to tl_B is
(1-8).
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Calculate the quantities z, x, A, B, C, and p using the following equations.

z = d+0.5 (eg. 5.1.25)
x = 1- (n-1)/(N-1) (eq. 5.1.26)
A=n2+ t%_snx (eq. 5.1.27)
B =nz+ O.5t§_6nx (eq. 5.1.28)
C =2z (eq. 5.1.29)
p=(B+ VB2-AC)/A (eq. 5.1.30)

Then, the upper 1imit, U, is given by
U= [pN+ 0.5]-1 (eq. 5.1.31)
where the brackets indicate that the largest integer contained in (pN+0.5) should

be used. Note that since U is the 1imit on the number of defects in the 1ot, then
(U-d) is the 1imit for the (N-n) uninspected items.

Basis

The normal approximation to the hypergeometric distribution forms the basis
for this result. See reference [5.6].

Examples

EXAMPLE 5.7 (a)

With reference to example 5.6 (a), suppose that 2 defects were found in the
sample of 48 items. What is the 95% upper 1limit on the number of defects in the
remaining 312 items?

N = 360 n = 48 g = 0.05 d=2
t1~8 = 1.645 z=2.5 X = 0.8691
A = 2416.8867
‘B = 176.4434
C =6.25
p = 0.1254
U= 45.14 -1 = 44 defects, including those found in the sample.

U-d = 42, required 1imit
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5.2 POST-INSPECTION ACTIVITIES

Generally speaking, the statistical activities discussed in Section 5.1 are
those that would be performed on-site during the course of an inspection. In
Section 5.2, further statistical analyses are described, those that would normally
be performed after the physical inspection has been completed and the appropriate
inspection data accumulated.

Not all of the statistical techniques described need be performed on any
given inspection. The collection of techniques are those available to the inspec-
tor for his use in evaluating the data, and include those techniques most likely
to be utilized, if not in connection with each phase of each inspection, certainly
frequently enough to warrant inclusion here.

In Section 5.2.1, supplemental statistical tests of hypotheses are described
(see Section 4.5.1 for the distinction between supplemental and primary tests).
These tests include the test for normality, tests for randomness, variance tests,
and the test for the significance of Dg, the difference statistic in stratum k.
The principal statistical tests are described in Section 5.2.2. These include
the test on D, the test on MUF, and the test on (MUF-D). Finally, the construc-
tion of confidence intervals for the facility MUF and for the inspector's estimate
of the facility MUF, (MUF-D), are treated in Section 5.2.3.

5.2.1 Supplemental Tests of Hypotheses

5.2.1.1 Normality Tests

Various statistical procedures to be applied in the analyses of variables
data are based on the assumption of normality. The effect of a failure in this
assumption on the validity of the procedure depends on the nature and degree of non-
normality and on the specific statistical procedure involved. Tests for normality
are given in Methods 5.8 and 5.9. 0One of these tests may be applied whenever there
is a question on the validity of this assumption. If the test results indicate
that the assumption is of questionable validity, then guidance should be sought
from a statistical expert to determine the effects of the non-normality on the
statistical procedures to be applied. Guidance can also be given on the need to
modify the procedures to account for the non-normality. Further, non-normality
of the data in question may be indicative of unindentified variables affecting
the results, and may therefore provide valuable insight into the structure of the
data. For example, data falsifications introduced by a diverter, if not carefully
and thoughtfully introduced, could perhaps be detected by a test of normality. Of
course, it doesn't necessarily follow that detection of non-normality in the data
signals diversion; it merely signals the need to perform a more careful investiga-
tion of the data in order to uncover the reasons for the departure from normality.

There are a number of statistical tests of normality that have been suggested.
Some require large sample sizes and are therefore generally inappropriate for most
situations 1likely to be encountered by the inspector. In the absence of knowledge
about the alternative hypothesis, i.e., about the particular type of non-normality
likely to exist, it is advisable to apply a statistical test that is generally sensi-
tive to all kinds of non-normality. The so called W-test for normality is such a
test. It is applicable for sample sizes up to 50, and is described in Method 5.8.
For sample sizes larger than 50, a related test referred to as the D” test may be
applied. Method 5.9 describes this test.
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Method 5.8
Notation

X1sXg5etesX, = sample values for some random variable, ordered such that
X1<X2<"'<Xn

Model

Under the null hypothesis, the data are normally distributed. The distribu-
tion under the alternative hypothesis is not specified.

Results

Using the coefficients ajy_j+7 given in Annex 5.2, calculate

b= a (x -x )+a  _ (x _ =x )+eeera o (x 0 -X) ) (eq. 5.2.1)
where k = n/2 for even n
= (n-1)/2 for odd n
Calculate
n o, n
52 = ggi X; = (;;é xi)z/n (eq. 5.2.2)

(Note that S2 is simply (n-1) times the calculated variance of the xj
values.)

Calculate
w = b2/S2 (eq. 5.2.3)
A small value for W is indicative of non-normality. If W is less than the
critical value given in Annex 5.3 for a given significance level, a, conclude that
the data are not normally distributed.

Basis

The W-test for normality is covered in [5.7].

Examples

EXAMPLE 5.8 (a)

In the low enriched uranium fuel fabrication plant treated in previous exam-
ples, 19 U0, powder cans in stratum 1 are measured for total uranium by the inspector.
His results are compared item by item with the facility values by noting the differ-
ence in uranium weights. These facility-minus-inspector values are given in grams
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uranium. Test the hypothesis that the differences are normally distributed, using
a significance level o of 0.01.

-32 32 -31 -4
-10 -71 -20 -1
-72 40 42 0

8 33 12 -22
40 25 13

The first step is to arrange the differences in descending order, i.e.,
from the largest to the smallest.
42 25 -1 -31
40 13 -4 -32
40 12 -10 -71
33 8 -20 -72
32 0 -22

The i1 values are taken from Annex 5.2, and (eq. 5.2.1) is applied.

b

0.4808(114) + 0.3232(111) + .-+ + 0.0303(9)

140.28
$2 is then calculated using (eq. 5.2.2).

19 19

x; = -18 2 x% = 21290
i=1 i=1

§2 = 21272.95

From (eq. 5.2.3),

W= 0.925

From Annex 5.3, for n = 19 and o = 0.01, the critical value is 0.863. Since
0.925 is greater than 0.863, do not reject the hypothesis that the differences are
normally distributed.

For sample sizes greater than 50, the D~ test of Method 5.9 may be applied.

Method 5.9
Notation

The X; are defined as for Method 5.8.
Model

See Method 5.8.
Results

Calculate

-
1
M=

[i-0.5(n+1)] x, (eq. 5.2.4)

i=1

calculate S2 from (eq. 5.2.2)
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Compute
D- = T/S (eq. 5.2.5)
If D* 1ies between the critical values given in Annex 5.4, do not reject the
hypothesis that the data have been sampled from a normal population. For an o -
level of significance, the two critical values are in columns P = a/2 and
P = 1-a/2.
Basis

The D” test for normality is given in reference [5.8].

Examples

EXAMPLE 5.9 (a)

In the same context as in example 5.8 (a), 59 differences in amounts of
uranium are recorded. The values, ordered from smallest to largest, are given
below. Apply the D” test for normality with the significance level o = 0.01.

-100 -29 18 69 142 186
-95 -26 29 71 146 190
-76 -22 31 86 147 215
-69 -12 34 95 155 218

-68 -5 39 100 156 220
-62 -1 42 103 159 268
-50 2 45 107 163 298
-48 4 50 108 169 301
-39 5 50 116 180 344

-30 14 60 128 182
From (eq. 5.2.4),
T

-29(-100) -28(-95) - - + 29(344)

104,398
From (eq. 5.2.2),

59 59
b3 - 4513 3 xg = 1,004,439
j=1 i=1
S? = 659,232.75
S = 811.93

From (eq. 5.2.5),
D” = 104,398/811.93 = 128.56
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For o = 0.01, and n = 59, the lower critical value in the P = 0.005 column
is 121.0 by interpolation. In the P = 0.995 column, the upper critical value is
130.1. Since D~ falls between these two critical values, do not reject the hypo-
thesis that the data have been sampled from a normal population.

5.2.1.2 Randomness Tests

Testing for randomness of a set of data is difficult because randomness is a
characteristic that is difficult to define. It is simpler to approach the problem
from the alternative viewpoint, i.e., to consider different types of non-randomness
that may characterize the data. In the context of inspection, certain kinds of
diversion strategies that include data falsification could create some types of
non-randomness, e.g., the creation of sub-populations of falsified and non-falsified
items. Further, tests for randomness could uncover assignable causes in the data,
i.e., could lead to a better understanding of the data structure that would aid
the statistical analysis.

The tests for normality discussed in Section 5.2.1.1 may be regarded as
tests of randomness in the specific instance in which randomness is equated to nor-
mality. This equivalence between randomness and normality is often present with
measurements data, and so the normality tests could have wide application here.

As another special case especially relevant to inspection, inspection of a
flow stratum may take place over a period of time. Bias shifts in either the facil-
ity's or inspector's data could create non-randomness in the data. A similar state-
ment applies to shipper-receiver data. Thus, a particular type of non-randomness
that the inspector should be aware of is shifts in the population parameter values
when data are ordered in time. This is the particular type of non-randomness
addressed in this section.

Two methods are given to address this type of non-randomness. The first
method is simple to apply and is very effective in providing a good visual impres-
sion of the data. It detects bias shifts very effectively but is partly subjective
in that a quantitative measure of non-randomness is not produced. Often, this
first method, involving a CUSUM (cumulative sum) plot is sufficient in detecting
non-randomness due to bias shifts. If a more objective measure of non-randomness
is needed, then the second method, involving an analysis of variance, may be applied.
Collectively, these two methods plus the test for normality provide the tests needed
to test for the most important types of non-randomness likely to characterize
inspection data.

Method 5.10
Notation

X. = observed value for the random variable, ordered in time or
with respect to some other factor

Model

For the CUSUM plot as presented here, the inferences are made on the basis
of a visual impression from the plot. This impression is generally adequate in
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making conclusions about the presence of parameter shifts. There are objective
means for making inferences from CUSUM plots. These involve the use of V-masks
and are not considered further here [5.9]. Such decision-making tools assume a
certain structure in the data, commonly, that the observations are drawn at random
from a normal distribution. When the plot is made just to create a visual impres-
sion, this assumption about the data structure is not required.

Results

From an inspection of the data, as based on some other considerations,
select some central value for the data. In the case of difference data, this cen-
tral value would be zero. The purpose of this central value selection is to force
the plot to be nearly horizontal in the absence of shifts in the parameter value.
Call the central value yu.

Calculate the difference values:

d; = (x5-u) (eq. 5.2.6)

Calculate the CUSUM values

S; = 51-1+di (eq. 5.2.7)
where sg = 0. Thus,

s; = d)

Sz =51 tdz

s3 =S, +dy , etc.

Using an equal spacing along the abscissa, plot the sj values. Observe
the plot to determine if more than one line segment is needed to connect the plotted
points. If so, conclude that there is non-randomness exhibited by the data in the
sense that the parameter describing central tendency is not constant (bias shift).

Basis

As long as the mean of the xj values remains constant, all the plotted
points may be connected visually by a straight line segment. If there is a shift
in the mean, then this straight line will change direction, or, stated alternately,
more than one line segment will be needed. If the central value, u, is wisely
chosen, and if there are no shifts in the parameter value (i.e., in the mean of
the x4j values), the sTope will be zero.

Examples
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EXAMPLE 5.10 (a)

Percents uranium in cans of dirty U0, scrap powder are listed below in con-
tainer number order. Construct a CUSUM plot for these data. (Data ordered by columns.)

73.33 85.41 81.10 84.41
77.63 86.31 79.62 83.26
75.18 86.24 83.76 83.33
83.55 76.03 81.36 74.79
81.93 85.45 85.64 82.96
71.93 82.08 74.95 75.87
79.49 82.92 76.44 77.45
83.52 76.76 70.76 75.45
78.92 83.25 81.39 73.32
68.24 66.24 70.35 73.35
82.42 83.31 76.26 76.40
84 .84 79.92 81.40 77 .65
72.73 74.46 74.28 83.06
75.47 87.02 76.14 83.23
88.17 77 .44 80.98 72.07
81.04 84.02 82.32 84.64
71.26 67.99 87.64 79.46
85.70 82.30 73.04 76.38
85.25 80.69 82.26 75.39
75.84 69.91 74.49 82.73
74.74 79.07 67.08

76.45 72.34 81.96

Upon inspection of the data, a reasonable central value, u, is 78. The table
below Tists the di values for the first few observations using (eq. 5.2.6), and all
the si values, using {eq. 5.2.7)

X; di S5 sj Si Si
73.33 -4.67 -4.,67 19.04 47.89 58.42
77.63 -.37 -5.04 27.35 49.51 63.68
75.18 -2.82 -7.86 35.59 55.27 69.01
83.55 5.55 -2.31 33.62 58.63 65.80
81.93 3.93 1.62 41.07 66.27 70.76

-4.45 45.15 63.22 68.63
-2.96 50.07 61.66 68.08
2.56 48.83 54.42 65.53
3.48 54.08 57.81 60.85
-6.28 42.32 50.16 56.20
-1.86 47.63 48.42 54.60
4.98 49,55 51.82 54.25
-0.29 46.01 48.10 59,31
-2.82 55.03 46.24 64 .54
7.35 54.47 49,22 58.61
10.39 60.49 53.54 65.25
3.65 50.48 63.18 66.71
11.35 54.78 h8.22 65.09
18.60 57.47 62.48 62.48
16.44 49,38 58.97 67.21
13.18 50.45 48.05

11.63 44.79 52.01
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The data plot suggests quite strongly that the data divide into at least
three groups. There is also some indication of cyclic behavior in the plotted
points within the last grouping, but this is not as evident; objective tests would
be required to determine if the non-randomness that appears to exist within the
last group is real in a statistical sense.

Having detected this apparent non-randomness in the data, one would try to
find an explanation for it. Perhaps the samples are taken and then stored for a
brief time prior to performing the analyses on a campaign basis. Any analytical
shifts could explain the non-randomness detected. It is the results of the inves-
tigation triggered by the CUSUM plot that are of primary interest, and not merely
the fact that such non-randomness was detected. The aim, of course, is to deter-
mine if data falsification is the explanation, or if there are more innocent assign-
able causes that should be identified and corrected if possible.

When the data are grouped according to some criteria external to the data
themselves, the analysis of variance previously given as Method 2.4 may be applied
to determine if there are significant differences among the group means. In
Method 2.4, the analysis of variance was presented as a method of estimating mea-
surement error variance components. In the current problem situation, the analysis
of variance is given from point of view of testing for significant differences among
group means. The problem solution is presented as Method 5.11.

Method 5.11
Notation

The notation is consistent with that of Method 2.4 but is repeated here in
part and redefined to meet the present problem situation.

Xij = value for j-th observation in group i; i=1l, 2, <-+, m
n

it

j number of observations in group i
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Modei

Xi3 1s normally distributed about u;, the mean for group i, and with variance
62, constgnt for all groups. Under the hypothesis, uy is the same for all i.

Results
Following Method 2.4, calculate the quantities:
T1" T, So, Sls 52, MB, and Mw
Form the F ratio:

F = Mg/M, (eq. 5.2.8)

Select a value for o, the significance level of the test. For o = 0.05,
0.025, and 0.01, enter the table in Annex 5.5 (a), 5.5 (b), or 5.5 (c) respectively.
If F exceeds the tabled value for degrees of freedom for the numerator, (m-1),
and degrees of freedom for the denominator, (n-m), conclude that u; # u for all
i, i.e., reject the hypothesis that the group means are the same.

Basis

The statistical technique that forms the basis for this method is the one
way analysis of variance which is described in many texts. See, for example, [5.10].

Examples

EXAMPLE 5.11 (a)

In Example 5.10 (a), say that the percent uranium values were determined in
four analytical compaigns, i.e., during four distinct periods of operation in the
laboratory. The data are divided into groups as follows:

Group 1: 73.33
Group 2: 85.70
Group 3: 66.24
Group 4: 84.41

71.26 (ny = 17)
83.25 (n, = 14)
81.96 (ns = 35)
82.73 (n, = 20)

Following Method 2.4:

T, = 1329.65 Sy = 533761.2853
T, = 1142.43 S; = 533902.8742
Ty = 2727.93 S, = 536132.4325
T, = 1575.20 My = 47.1963

T = 6775.21 M, = 27.1897
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From (eq. 5.2.8),
F =47.1963/27.1897 = 1.736

Choose o« = 0.05 and enter the table of Annex 5.5 (a). The tabled value
for 3 degrees of freedom in the numerator and 82 degrees of freedom in the denomina-
tor is 2.74, by interpolation. Since the F value of 1.736 does not exceed this
tabled value, do not reject the hypothesis that the group means are equal.

Some further comments are in order because this conclusion seems to conflict
with that reached in Example 5.10 (a) on the basis of the CUSUM plot. First, it
was pointed out that the CUSUM plot provide a visual impression of the data, and
in this particular example, is quite suggestive of a real difference in group means.
However, the statistical significance of that conclusion is not stated. On the
basis of this current example, it appears that the conclusion of a significant
difference is not warranted at the a = 0.05 significance level; the actual value
for o, it turns out, would be slightly larger than o = 0.10. The up~-and-down pattern
of the data plot is an indication of a large random error variance or in this case,
of a rapidly shifting bias, which tends to obscure the differences in the group
means.

Further, from the data plot, in observing the slopes of the line segments,
it is apparent that group means 1, 3, and 4 are nearly equal whereas group mean 2
is relatively high. The analysis of variance tests the global hypothesis that all
group means are equal; if three are in fact equal while one differs somewhat, the
analysis of variance may not detect this fact so readily. In fact, had groups 1,
3, and 4 been combined and tested against group 2, then Mg and My would have been

MB = 133.0415 Mw
and F with 1 and 84 degrees of freedom is 4.993, a significant result at o = 0.05.
Here is an example in which the CUSUM plot was perhaps more sensitive in detecting
the particular alternative hypothesis that apparently exists; with the analysis
of variance, the alternative hypothesis is not specified.

= 26.6441

By way of summary, the four group means are
Xy = 78.21 X3 = 77.94

81.60 = 78.76

=
N
i

X
=
[

5.2.1.3 Variance Tests

In advance of an inspection, the facility provides values for its random
and systematic error variances. These values are used in planning the inspection
and also in the data analysis if, in fact, the inspection data substantiate the
stated values. This section addresses the problem of verifying that the facility's
stated values for the random error variances are valid. The method makes use of
the facility minus inspection data.
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Method 5.12
Notation
di = differencg bgtween facility and inspector values for specified
characteristic and stratum
n = number of di values
og = facility's stated random error variance for given characteristic
and stratum
0% = corresponding inspector's value
Model

The quantity dj is normally distributed with arbitrary mean and variance

equal to (o%+o%) under the null hypothesis that 0% and c% are correctly stated.

Results

Calculate

S

M=

n
d - ( 2 di)z/n (eq. 5.2.9)

g
1! i=1

;
Calculate the chi-square statistic

in_l = Sg/(c% + o?) (eq. 5.2.10)

Select a value for a, the signifjcance 1ey§1 of the test. Enter the table
in Annex 5.6 under the columns headed Xy/2 and Xi.y5/2, and for degrees of freedom
(df) equal to (n-1). If X%-l of (eq. 5.2.10)falls between the two tabled values,
do_not reject the hypothesis, i.e., conclude that the sum, (o3+0%), is correct.

In the event the hypothesis is rejected, conclude that c% misrepresents
the actual variance for the facility. This conclusion assumes that the inspector
can properly assign the o7 value.

Basis

The statistical technique that forms the basis for this method is the chi-
square test on the variance which is described in many texts (see, for example,

[5.11]).

Of underlying importance to this test is the validity of the assumption that
the inspector's value, o%, is correct. This should pose no problem because of the
wide base of experience upon which the 0% value will generally be based. However,
the problem can be circumvented under some circumstances, i.e., it is possible to
test the hypothesis about the validity of 0% irrespective of the value for o%.
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The procedure for making this test, and the conditions under which the alternate
test is preferred, are given in reference [5.12].

Example

EXAMPLE 5.12 (a)

Consider the data of Example 5.8 (a). These data represent differences
between facility and inspector measurements of total uranium in containers of Tow
enriched U0, powder.

From example 3.3 (a),

o% = [(.000950)(20000)]2 = 361.00 g2U
From example 3.8 (a),

g% = 361.00 g2U

Then, again from example 5.8 (a),

sé = 21272.95

From (eq. 5.2.10), the chi-square value is
Xl% = 21272.95/722.00 = 29.46

At o = 0.05, from Annex 5.6, the tabled critical values are 8.23 and 31.53.
Since 29.46 lies between these two numbers, do not reject the hypothesis that

(o%+c%) = 722.00.

5.2.1.4 Test on Dy and on Shipper/Receiver Differences

The final supplemental test to be considered is the test on Dk, the difference
statistic in stratum k. Although primary emphasis in the analysis of the variable
inspection data is on the difference statistic appropriately summed over all strata,
there are occasions when one might wish to test for the significance of Dy in a given
stratum. As a prime example of this, it was pointed out in Section 4.5.3 that a
shipper-receiver difference test is formally equivalent to a test on Dk, and one is
interested in routinely performing such tests on shipper-receiver differences.

The ﬁk test was considered in Section 4.5.3 from point of view of its proba-
bility of detection. In this current section, emphasis is on how the significance
test is performed.

Method 5.13
Notation

The notation is consistent with that given in Methods 3.8 - 3.10.
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Model

R The random variable, Dy, is assumed to be normally distributed with variance
V(Dk) and with mean zero under the null hypothesis.

Results

Calculate V(ﬁk) as the sum of three variance components

v(6,) = v (D) + Vg(B) + Vg (B) (eq. 5.2.11)

r k)
where Vy.(Dy) is given by (eq. 3.5.5), and where Vg(By) and V4(Dy) are given res-
pectively by (eq. 3.5.14) and (eq. 3.5.21), in each case the calculations being per-
formed for only the single stratum.

Having observed ﬁk, compute the statistic

t = ﬁk/ \/V(ﬁk) (eq. 5.2.12)

Select a value for o, the significance level of the test, and find the cor-
responding critical value, t,, from Annex 5.7. Then,

(a) if stratum k is an input or beginning inventory stratum, reject the
hypothesis that the mean of Oy is zero if t<-t,;

(b) 1if stratum k is an output or ending inventory stratum, reject the
hypothesis if t>t,.

Basis

This is the standard test on the mean of a normally distributed random
variable with known variance [5.13]. The test is constructed as a one-sided test
because from a diversion viewpoint, only those values of D, that djffer from zero
in one direction favor the diverter. Of course, a Targe value of Dy in the opposite
direction would also be called to the attention of the facility as evidence of a
malfunctioning measurement system.

Examples

EXAMPLE 5.13 (a)

In example 3.8 (b), the inspection sample sizes are given for the mixed
oxide fuel fabrication facility. In the PuO, powder stratum, 16 of the 24 strata
are randomly selected with 6 items weighed per batch and with 3 samples drawn per
batch to determine percent plutonium. Duplicate analytical determinations are
made. For the resulting 96 paired differences, say that

d, = -0.00468 kg Pu, so that, from (eq. 3.5.1)

o

1 = -(768)(0.00468) = -3.594
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At a significance level, o= 0.010, does this represent a significant
difference?
From the cited example,
Vr(ﬁl) = 0.296817 + 0.621036 = 0.917853 kg?Pu

From example 3.9 (b), the calculations for the short term systematic error
variance are performed for stratum 1. Example 3.9 (b) made use of earlier calcula-
tions performed in Example 3.4 (a). In the expression for Vq(D;) given below, the
first two terms come from example 3.4 (a) and the last term grom example 3.9 (b).

0.012124 + 1.329070 + (0.0016)2[2(768)2]

Vg(ﬁl)

1]

4.361093 kg?Pu

From example 3.10 (b), the calculations for the long term systematic error
variance are performed for stratum 1. Example 3,10 (b) made use of earlier results
from example 3.5 (b). In the expression for V¢(D;) given below, the first two terms
come from example 3.5 (b) and the last two from example 3.10 (b).

Vs(ﬁl) 0.094372 + 1.156055 + (1656.6)2(0.00030)2+(1536)2(0.0012)2

4,894802 kg2Pu

The {(eg. 5.2.11) may now be applied
V(ﬁl) 0.917853+4.361093+4,894802 = 10.173748 kg2Pu

From (eq. 5.2.12),
t = -3.594/V 10.173748 = -1.127

At o = 0.010, t, = 3.090. Since -1.127 is not less than -3.090, conclude
that the facility measurements of plutonium are not significantly smaller than the
inspector measurements for this input stratum, i.e., there is no reason to conclude
that the input values are understated.

5.2.1.5 International Standards of Accountancy [5.15]

In Section 3.4 the variance of MUF, V (MUF), i i
that the true MUF is equal to some stated va1£e (g.g?f ggsg)Fo §efﬁu§?em2§p§§h6515
calculated from the operator's design information data on his random and systematic
random error variances. The inspector may verify these error estimates using
inspection results, estimation methods described in Chapter 2 and the Chi-square test
gf Section 5.2.1.3. Depending on the outcome of these many possible tests the
Tnspector may calculate his own estimate of V (MUF) in order to determine whether the
gperator‘s system of measurements conform to international standards or be equivalent
in quality to such standards.

5-33



- 286 -

Standards do not exist for each measurement method and material combination.
Instead the Agency has defined such standards for V (MUF) which are considered
achievable in practice at bulk facilities of each identified type. For example,
at uranium fabrication facilities the international standard of accountancy for
OMUE is 0.3 %, expressed as a percentage of the larger of inventory or throughput.
ThQS represents a maximum expected value for SMUE that is easily achievable by the
majority of facilities using well known measureHent methods that are widely used in
the industry.

EXAMPLE 5.13(a)

From example 3.3(a) we see that the outputs of 238800 + 1200 = 240000 kg U
are much Tlarger than beginning or ending inventory. In this case, the standard of
accountancy would be

SMUF (0.003) (240000) = 720 kg U

and the calculated value of ¥V (MUF) from Example 3.5(a) is

vV (MUF) = v 45010 = 212 kg U,

Since 212 < 719 kg U we conclude that the operators system of measurements is well
within this international standard. In the event that VYV (MUF) is greater than

the standard the test of MUF in Section 11.9 should be based on the standard value
rather than the calculated value and the state should be informed that the system

of measurements does not meet the maximum expected values for IMUF *

A similar approach can be used for testing the quality of the inspector's
system of measurements as represented by V (D). In fact this may be more important
than checking V (MUF) since V (D) is the primary measure of the Agency's verification
accuracy. Safeguards effectiveness based on nuclear material accountancy will be
limited by this verification accuracy as the size and throughput of bulk handling
facilities increase.

5.2.2 Principal Tests of Hypotheses

- In assessing the safequards performance of a facility, the key measures are
D, MUF, and MUF-D. The observed values of these quantities and their calculated
variances form the basis for both the principal tests of hypotheses discussed in
Section 4.5.1 and the estimation of the true MUF. This section describes the
performance of significance tests, and the next section describes the construction
of confidence intervals estimates.

5.2.2.1 Test on D
The D test was considered in Section 4.5.4 from point of view of its

detection probability. In this current section, emphasis is on how the significant
test is performed.

5-34



- 287 -
Method 5.14
Notation
The notation is that used in Methods 3.8 to 3.10.
Model

The random variable, ﬁ, is assumed to be normally distributed with zero mean
and with variance V(D) under the null hypothesis.

Results
Calculate V(D) as the sum of three variance components:

V(D) = v,.(D) + V (D) + V (D) (eq. 5.2.13)

where V,.(D), Vg(ﬁ), and V¢ (D) are given in (eq. 3.5.6), (eq. 3.5.14), and (eq. 3.5.21)
respectively.

Compute
t = b/ VV(D) (eq. 5.2.14)
Select a value for o, the significance level of the test. 1If t<-ta, conclude
that there is a significant difference between the facility and inspector results.
The value for t, comes from Annex 5.7.
Basis
The basis is the same as for the ﬁk test of Method 5.13. For D, a large

negative value favors the diverter and so the test is a one-sided test against that
alternative.

Examples

EXAMPLE 5.14 (a)

Continue with the mixed oxide facility of example 5.13 (a). This relates to
the inspection described in example 3.8 (b). At o = 0.025, how large must D be in
a negative direction in order to reject the hypothesis that its mean is zero?

From (eq. 5.2.14) and Annex 5.7, the hypothesis in question is rejected if

f<-1.960 VV(D)

The quantity V(ﬁ) for this example was calculated in example 3.10 (b).
V(D) = 27.303719 kg2Pu
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Therefore, the hypothesis will be rejected if

D<-1.960 V27.303719 , or if

D<-10.242 kg Py

5.2.2.2 Test on MUF
The test on MUF was considered in Section 4.5.5 from point of view of its
detection probability. In this current section, emphasis is on how the significance
test is performed.
Method 5.15
Notation
The notation is given in Section 3.4.3.2.

Model

The random variable, MUF, is assumed to be normally distributed with zero
mean and with variance V(MUF) under the null hypothesis.

Results
Calculate V(MUF) as the sum of three variance components.
V(MUF) = Vr(MUF) + Vg(MUF) + VS(MUF) (eq. 5.2.15)

where Vp(MUF), Vq(MUF), and V(MUF) are given in (eq. 3.4.3), (eq. 3.4.7), and
(eq. 3.4.11) respéctively.

Compute
t = MUF/ V V(MUF) (eq. 5.2.16)

Select a value for o, the significance level of the test. If t exceeds t,
from Annex 5.7, reject the hypothesis that the mean of MUF is zero.

Basis
The basis is the same as for the Dy test of Method 5.13. For MUF, a large

positive value is an indication of diversion and so the test is one-sided against
that alternative.

Examples

EXAMPLE 5.15 (a)

Consider the MUF for the mixed oxide fuel fabrication facility. Values for
V-(MUF), Vg(MUF), and V(MUF) were calculated in Examples 3.3 (b), 3.4 (a), and
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3.5 (b) respectively. At o = 0.050, how large must MUF be in order to reject the
hypothesis that its mean is zero?

From the cited examples, as summarized in example 3.5 (b),
/V{MUF) = 3.276 kg Pu
For a = 0.050, t, = 1.645 so that the hypothesis is rejected if MUF exceeds
(1.645)(3.276) = 5.389 kg Pu

5.2.2.3 Test on (MUF-D)

The test on (MUF-0) was considered in Section 4.5.6 from point of view of its
probability of detection. In this current section, emphasis is on how the signifi-
cance test is performed.

Method 5.16
Notation
The notation is that of Method 3.13.

Model

The random variable, (MUF-ﬁ), is assumed to be normally distributed with zero
mean and with variance V(MUF-D) under the null hypothesis.

Results
Calculate V(MUF-0) from (eq. 3.6.5). Compute
t = (MUF-B)/ V V(MUF-D) (eq. 5.2.17)

Select a value for o, the significance level of the test. If t exceeds t,
from Annex 5.7, reject the hypothesis that the mean of (MUF-D) is zero.

Basis
The basis is the same as for the ﬁk test of Method 5.13. For (MUF-0), a

large positive value is an indication of diversion and so the test is one-sided
against that alternative.

Examples

EXAMPLE 5.16 (a)
Consider the low enriched uranium fuel fabrication facility of example 3.13 (a).

At o = 0.050, how large must (MUF-D) be in order to reject the hypothesis that its
mean is zero?
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From the cited example,
V(MUF-D) = 40,983 kg2U

For o = 0.050, t, = 1.645 so that the hypothesis is rejected if (MUF-D)
exceeds

(1.645) vV 40,983 = 333 kg U

EXAMPLE 5.16 (b)

Suppose that in the previous example, (MUF-0) were calculated for U-235
rather than for uranium. Then, since

V*(MUF-0) = 33.6843 kg2U-235
from Example 3.13 (a), the critical value is
1.645 V33,6843 = 9.547 kg U-235
This example illustrates how Methods 5.13-5.16, written in terms of element

weights, may easily be adapted to relate to isotope weights. The changes in cal-
culations are obvious.

EXAMPLE 5.16 (c)
Consider the mixed oxide fuel fabrication facility of example 3.13 (b). At
o = 0.050, how large must (MUF-D) be in order to reject the hypothesis that its
mean is zero?
From the cited example,
V(MUF-D) = 21.035443 kg2Pu

For o = 0.050, t, = 1.645 so that the hypothesis is rejected if (MUF-D)
exceeds

1.645 v 21.035443 = 7.545 kg Pu

This completes the discussion on tests of hypothesis for the various statis-
tics derived from the inspection data. The final topic on the analysis of inspection
data is the construction of confidence intervals.

5.2.3 Confidence Intervals on Material Unaccounted For

The values of MUF and MUF—ﬁ are estimates of the true material unaccounted for
calculated from facility data and facility data plus inspection data, respectively,
These observed values and their calculated variances contain all the information about
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the magnitude of the true MUF available to the inspector. In addition to the specific
tests of the hypothesis of no diversion (true MUF equal to zero) described in the
preceding section,it is revealing to display the total information about material un-
accounted for upon completion of the analysis of facility and inspection data. In
particular, the estimated magnitude of a significant diversion relative to the goal
quantity M used as a basis for inspection planning may be of interest.

A convenient way to convey this information is through the determination of
a confidence interval estimate of the true MUF and a graphical presentation of this
interval as it relates to both the absence of any diversion (true MUF equal 0) and
the diversion of a significant quantity (true MUF equal M). In Section 5.2.3.1 the
facility MUF forms the basis for construction of the confidence interval while in
Section 5.2.3.2 the basis is the adjusted estimate MUF-D based on inspection data.

5.2.3.1 Confidence Interval Based on MUF

Method 5.17
Notation

The notation is given in Section 3.4.3.2. Further, M is the goal amount.

Model

The random variable, MUF, is assumed to be normally distributed with variance
V(MUF). The observed MUF 1is assumed to be the estimate of the true unknown MUF in
the sense that its expected value is the true MUF. (No small biases or data fal-
sifications.)

Results

Calculate V(MUF) by (eq. 5.2.15). Choose a value for the confidence coeffi-
cient (1-o) and compute

L = MUF -t _, VV(MUF) (eq. 5.2.18)
and U= MUF + t,_,,VV(MUF) (eq. 5.2.19)

where tl_a/2 is read from Annex 5.8 for given (1l-a).

To display the results graphically, draw a horizontal Tine scaled in amounts
of element. Let the smallest value on the left be min (0,L) and the largest value
on the right be max (M,U). Indicate the values for 0, L, U, and Mon this Tine
by appropriately marking the line, and connect the L and U marks.

There are six possible ways in which the 0, L, U, and M marks may be )
ordered. (Note that L must be Tess than U and O is less than M.) These possi-
bilities are listed below along with a narrative description of their interpreta-

tions. In the first three cases the test of the hypothesis of a true MUF less than
or equal to zero would be rejected,
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Case Ordering . Description
1 0-L-U-M The true MUF is greater than zero, but is less than the goal
amount.
2 0-L-M-U The true MUF is greater than zero but not greater than the goal
amount.
3 0-M-L-U The true MUF 1is greater than the goal amount.

L-0-M-U The uncertainty in the estimate of MUF is large and 1little de-
finitive can be said about the true MUF relative to zero or to
the goal amount.

5 L-0-U-M The true MUF 1is less than the goal amount and not greater than
Zero.
6 L-U-0-M The true MUF is less than zero.
Basis

The method js based on the construction of confidence Timits on the mean of
a normally distributed random variable with known variance [5.14].

Examples

EXAMPLE 5.17 (a)

Suppose that for the mixed oxide fuel fabrication facility of example 5.15 (a),
the MUF were 4.212 kg Pu and the goal quantity were 8 kg Pu. Then, from the cited
example,

VV(MUF) = 3.276 kg Pu

The T1imits, L and U, are calculated from (eq. 5.2.18) and (eq. 5.2.19) for
(1-a) = 0.95.

L
U

4.212 - (1.960)(3.276)
4.212 + (1.960)(3.276)

-2.209 kg Pu
10.633 kg Pu

The horizontal line is drawn extending from -2.209 kg Pu to 10.633 kg Pu,
and 0, L, U, and M are indicated on this Tine.

kg Pu

This is case 4; Tittle definitive can be said about the true MUF relative to
zero or to the goal amount.
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5.2.3.2 Confidence Interval Based on (MUF-D)

Method 5.18
Notation
The notation is that of Method 3.13. M is the goal amount.
Model
The random variable (MUF-B)ATS assumed to be normally distributed with vari-
ance V{MUF-D). The observed (MUF-D) is assumed to be the estimate of the true un-
known MUF in the sense that its expected value is the true MUF (facility MUF cor-
rected for biases or data falsifications).

Results

Calculate V(MUF-D) from (eq. 3.6.5). Choose a value for the confidence
coefficient (1-a) and compute the lower and upper confidence Timits:

L = (MUF-D) - L V'V(MUF-D) (eq. 5.2.20)

U= (MUF-D) + t) V' V(MUF-D) (eq. 5.2.21)

~a/2
where tl_u/2 is read from Annex 5.8 for given (1-a).
Proceed as in Method 5.17 to display the results graphically.
Basis

The basis is the same as for Method 5.17.

Examples

EXAMPLE 5.18 (a)

Suppose that for the mixed oxide fuel fabrication facility of example 5.17 (a),
b = -3.617 kg Pu. Then,

(MUF-ﬁ) = 4,212 + 3.617 = 7.829 kg Pu
For this facility, from example 5.16 (c),
V(MUF-D) = 21.035443 kg2Pu
From (eq. 5.2.20) and (eq. 5.2.21), for (1l-a) = 0.90,

L =7.829 - 1.645 V21.035443 = 0.284 kg Pu
U=7.829 + 1.645 V21.035443 = 15.374 kg Pu
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The horizontal 1line is drawn extending from 0 to 15.374 kg Pu, and O, L, U,
and M are indicated on this line.

L U
0 M
l L i } L [l 1 i l L L ) SR I 1
0 2 4 6 8 10 12 14
kg Pu

This is case 2. The true MUF is greater than zero but the uncertainty in
the estimate of the MUF is very large and precludes making a definitive statement
about the relationship of the true MUF to the goal amount.

EXAMPLE 5.18 (b)

In the low enriched uranium fuel fabrication facility of example 5.16 (b),
the goal amount is 75 kg U-235. Method 5.18 is adapted to apply to isotope rather
than element MUF.

Say that the value for MUF is 21.224 kg U-235 while D = -11.355 kg U-235,
Then,

(MUF-B) = 32.579 kg U-235
From example 5.16 (b),
V*(MUF-D) = 33.6843 kg U-235
Applying (eq. 5.2.20) and (eq. 5.2.21) for (1-a) = 0.95,
L = 32.579 - 1.960 V'33.6843 = 21.204 kg U-235
U= 32.579 + 1.960 V/33.6843 = 43,954 kg U-235

The horizontal Tine is drawn extending from 0 to 75 kg U-235, and O, L,
U, and M are indicated on this line.

L ~———e— U

0 J M
I ! 1 L I 1 L ul A N L 1 1 { o J
0 10 20 30 40 50 60 70

kg U-235

This is case 1. The true MUF is estimated quite precisely and is both
greater than zero and considerably less than the goal amount.
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