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FOREWORD 

The emission of toxic gases, sulphur dioxide (SO2) and nitrogen oxide (NOx) into the 

atmosphere from coal and oil fired boilers in power plants and industrial installations has long 

been recognized as the main source of environmental pollution on a large geographical scale. 

Reactions in the atmosphere result in an “acid rain” effect with devastating consequences to 

the green covering of the earth. The situation is becoming more serious due to increasing use 

of low quality, high sulphur content coal for power production. 

There are conventional and emerging techniques to remove toxic components from the 

gas effluents, i.e. chemical and radiation techniques. Among conventional methods, a 

combined technology of selective catalytic reduction of NOx by ammonia and neutralization 

of SO2 by Ca(OH)2 is most frequently used. The potential of using radiation to initiate the 

process aimed at the removal of the toxic gases SO2 and NOx using accelerated electron 

beams (EB) was first investigated in 1971 in a joint research of the Japan Atomic Energy 

Research Institute (JAERI) and Ebara Corporation. The method has subsequently been 

developed — from laboratory scale to pilot and large demonstration scale — by research, 

development and implementation projects in Germany, Japan, Poland and the United States of 

America. 

Considering the important role of radiation technology in environmental cleanup — and 

in response to the increasing interest of Member States of the International Atomic Energy 

Agency (IAEA) for this technology — the IAEA has organized several scientific activities on 

the subject: 

— A Consultants Meeting on Electron Beam Processing of Combustion Flue Gases, held in 

Karlsruhe, Germany, 27–29 October 1986 (IAEA-TECDOC-428). 

— A Co-ordinated Research Project (CRP) on Radiation Processing of Combustion Flue 

Gases: 

�� Results of the first co-ordination meeting held in Warsaw, Poland, 29–31 March 

1991, were published as a special issue of the journal Radiation Physics and 

Chemistry 40 4 (1992). 

�� Results of the second research co-ordination meeting held in Zakopane, Poland, 

24–28 May 1993, were published as a special issue of the journal Radiation 

Physics and Chemistry 45 6 (1995). 

— An International Symposium on Radiation Technology for Conservation of the 

Environment, held in Zakopane, Poland, 8–12 September 1997. The proceedings were 

published as IAEA-TECDOC-1023. 

This publication is based on expert contributions by the participants of a consultants 

meeting held in Vienna from 28–30 October 1997. It is hoped that it will facilitate the 

implementation of feasibility studies for EB flue gas cleaning projects by providing guidelines 

and information on the state of the art. The IAEA gratefully acknowledges the work and 

efforts of all contributors and the preparation of the manuscript by H.R. Paur. The IAEA 

officer responsible for this publication was O. Güven of the Division of Physical and 

Chemical Sciences. 
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1. INTRODUCTION 

The emission of the toxic gases SO2 and NOx into the atmosphere from coal and oil 

fired power plants and industrial installations has long been recognized as the main source of 

environmental pollution on a large geographical scale. Reactions in the atmosphere result in 

the “acid rain” effect with devastating consequences to the environment. The situation has 

become more serious due to a further increase in the use of coal for power production and to 

increasing use of low quality, high sulphur containing coal. 

There are conventional and emerging techniques to remove toxic components from flue 

gas effluents, i.e. chemical and radiation techniques. Among conventional methods, a 

combined technology of selective catalytic reduction of NOx by ammonia, NH3, and 

neutralization of SO2 by lime/limestone is most frequently used. The potential of using 

radiation to initiate the process aimed at removal of the toxic gases SO2 and NOx using 

accelerated electron beams (EB) was first investigated by Japanese institutes in the 1970s. The 

method has subsequently been developed, from laboratory scale to pilot and large 

demonstration scale, by research and development projects in Germany, Japan, Poland and the 

United States of America. 

This flue gas treatment consists of adding small amounts of ammonia and irradiation by 

EB. Irradiation of the flue gas produces radicals which react with SO2 and NOx to form their 

respective acids. In the presence of ammonia, these acids are converted to ammonium 

sulphate ((NH4)2SO4) and ammonium nitrate (NH4NO3). These salts may be collected from 

the flue gas by conventional collectors like electrostatic precipitators. 

The process has numerous advantages over currently used conventional ones: 

— it simultaneously removes SO2 and NOx at high efficiency levels, 

— it is a dry process which is easily controlled and has excellent load-following capability, 

— the pollutants are converted into saleable agricultural fertilizers, 

— the process has low capital and operating cost requirements. 

 

The aim of this publication is to facilitate the performance of feasibility studies for EB 

flue gas cleaning projects by providing guidelines to conduct these studies and compiling 

information on the state of the art.  

The process consists of three main steps: (a) flue gas humidification and ammonia 

addition, (b) EB treatment of the flue gas, and (c) precipitation of the fertilizer product. The 

history of process development and the main R&D tasks are outlined. 

In the generalized study the design of an industrial scale EB process for a 350 MW(e) 

power plant treating a flue gas flow of 1 500 000 m
3
h
–1

 (NTP) is shown. The flow sheet of the 

process is described in some detail and the required utilities and amounts of by-product are 

calculated. The layout of such a plant and its space requirements are presented. An estimation 

of construction and operation costs of the EB process is compared with its nearest competitors 

such as wet limestone flue gas desulphurization (FGD), Wellmann Lord FGD and wet 

ammonia FGD. Significant savings in construction and operation are calculated for the 

EB process. The agricultural use of the fertilizer by-product and the market for nitrogenous 

fertilizers are discussed. 
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The contents of a feasibility study for the EB process are summarized comprehensively. 

The main items to be discussed in plant construction, measurement and control systems, 

radiation safety and building construction are compiled. The cost analysis lists the required 

economic data for international funded projects. The main considerations in implementation 

planning of an EB project are discussed. 

The final section outlines the economic and environmental benefits of the EB process 

according to actual feasibility studies which were conducted previously for specific conditions 

in Bulgaria and the USA. 

 

2. PROJECT BACKGROUND 

Pollutants emitted from industrial activities, such as power plants, production facilities 

and traffic are transformed by photo-chemical reactions in the atmosphere, yielding oxidized 

products species, which are gaseous or particulate matter. By irradiation with accelerated 

electrons high concentrations of hydroxyl radicals (OH) are formed in the emitted gases and 

atmospheric reactions may be applied already at the source for the removal of the pollutants. 

In recent years, flue gas cleaning by EB dry scrubbing was investigated by several research 

groups worldwide [1–3]. 

This section summarizes the history of process development since 1970. The present 

state of the art of EB process research and development is described. The process principles 

are outlined and the experimental and theoretical capabilities are discussed.  

Presently, the main areas of research are:  

— Improvement of energy efficiency by multiple irradiation 

— Computer modelling of gas-phase chemistry and aerosol formation 

— Decomposition of organic trace compounds (e.g. VOC, CHCs, PCDD/F). 

The main tasks of development are: 

— Demonstration of the technology in large scale installations 

— Application to high sulphur flue gas 

— Development of large accelerators. 

 

EB process removes SO
2
 and NO

x
 simultaneously from flue gas. By irradiation with 

accelerated electrons, SO
2
 and NO

x
 are oxidized to yield sulphuric acid (H

2
SO

4
) and nitric 

acid (HNO
3
). These acids are neutralized by ammonia, and a submicron aerosol consisting of 

ammonium sulphate and nitrate is formed. The product is collected by suitable filters and may 

be used for the production of agricultural fertilizers. 

The EB process consists of three steps: 

(1) Flue gas conditioning. Humidification and cooling of the flue gas is performed by 

spraying water into the hot flue gas. Eventually low enthalpy steam can be used 

additionally to enhance the humidification process and reduce spray cooler size. 

Ammonia is added to the flue gas in substoichiometric quantities. 
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(2) Irradiation by accelerated electrons. In this step oxidation of NO
x
 and of SO

2 is 

performed simultaneously. Aerosol formation occurs instantaneously due to the 

nucleation of sulphuric acid droplets, which are immediately neutralized by ammonia. In 

addition, ammonia and SO
2
 react rapidly on the freshly formed particle surface (thermal 

reaction) yielding ammonium sulphate. 

 

(3) Precipitation of aerosol. After leaving the reaction vessel the product is collected using 

electrostatic precipitators, bag filters or gravel bed filters. 

 

 

Filter
 

Dry 

Byproduct
 

FIG. 1. Simplified flow sheet of the EB process. 

 

The potential advantages of the process have triggered intensive R&D work on the EB 

process. Table I shows selected development steps of the EB processing of flue gases. 

In Phase 1 exploratory research was performed in Japan during the 1970s. In this phase 

work was performed by the Ebara Corporation, the Japan Atomic Energy Research Institute 

(JAERI) and the University of Tokyo. The development was mainly aimed at the purification 

of flue gas generated from an iron ore sintering plant [4]. Despite promising pilot plant results, 

further development was halted by the steel crisis in Japan at the end of the 1970s. 

In Phase 2 industrial scale pilot plants were built in the USA [5] and in Germany [7–9]. 

The goal of these tests was the development of a flue gas cleaning process for coal fired power 

plants. The main results of these studies showed that the process is viable, safe and provides 

high removal efficiencies for SO2 and NOx. Besides these favourable results, problems 

occurred regarding the energy consumption of the process and the filtration of the sticky 

aerosol. Therefore, a second optimization phase was started at the end of the 1980s which 

concentrated on the improvement of the energy efficiency of the process and the development 

of suitable aerosol filters [10]. 
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A pilot scale test for EB treatment of flue gas (12 000 m
3

 h
–1

) from a coal fired boiler 

was conducted by JAERI, Chubu Electric Power Company and Ebara Corporation at the site 

of Shin Nagoya Thermal Power Plant in Nagoya, Japan [11]. During 14 months of operation it 

was proven that the method is suitable for simultaneous removal of SO2 and NOx within a 

wide concentration range (SO2: 250–2000 ppm, Nox: 140–240 ppm). At appropriate operation 

conditions (dose, temperature) the efficiency was higher than that of conventional methods. 

The pilot plant was operated with good controllability and durability without serious 

problems. The by-products, ammonium sulphate and ammonium nitrate, proved to be 

fertilizers of excellent quality. 

A large pilot plant was built and has been in operation since 1990 by the Institute of 

Nuclear Chemistry and Technology (INCT) the Kaweczyn thermal power plant near Warsaw. 

This plant is equipped with two accelerators and treats a maximum flow of 20 000 m3 h–1. 

Two stages longitudinal gas irradiation was applied and different gas humidification methods 

were investigated (water recirculation, steam injection and high enthalpy water application). 

The by-products were collected using a bag filter and a wet gravel bed filter. The plant has 

been in operation since 1991 [12, 13] and has recently been furnished with an electrostatic 

precipitator (ESP). Several tonnes of by-products obtained were used for agricultural tests and 

nitrogen, phosphorous, potassium (NPK) fertilizer production. All reports from four 

independent agricultural research institutes and fertilizer manufacturers were positive. After 

several optimization steps the plant has reportedly produced satisfactory results and serves as 

model for the demonstration plant in Pomorzany, Poland. 

 

FIG. 2. Industrial scale EB process demonstration plant in Chengdu, China. 

In Phase 3, large scale demonstration of the process and its industrial use are in 

progress. The IAEA and its counterparts in Poland have started the construction of a 

demonstration plant. The Ebara Corporation has recently completed installation of the process 

at a 100 MW(e)-power plant in China which aims at demonstrating the desulphurization 

process (see Fig. 2) [14]. A 220 MW(e) power plant in Japan was recently equipped by this 

EB process. Large scale demonstration projects have been announced in Bulgaria, the 

Republic of Korea and the USA. 
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The advantages of the EB process are: 

— The process removes SO
2
 and NO

x
 simultaneously in one process step. 

— The process yields a usable and valuable product which is suitable for the production of 

agricultural fertilizer. The deposition of waste materials containing water soluble salts is 

avoided. 

— Economic studies show that the operation and investment costs of the process are very 

competitive. In addition, the profit from product sale may lower the costs for flue gas 

cleaning significantly when compared to conventional technology. 

— The process has low energy consumption for off gases with high SO
2  

concentrations. 

— The process operates depending on the required SO2 removal efficiency in a quite  broad 

temperature range (55–90°C), which is not possible in the case of wet gypsum process. 

Thus, in certain configurations, the energy consumption for re-heating of the flue gas is 

avoided or minimized. 

— The process may be used not only for small and medium size plants, which supply peak 

load electricity, but also for large plants. 

 

Besides these advantages several limitations of the process have been addressed 

previously by research groups worldwide: 

— The energy consumption of the process is relatively high, especially for application to 

flue gases with high NO
x
 and low SO

2
 concentrations. Further reduction of energy 

consumption by process improvement is required. 

— The filtration of the aerosol requires special attention, due to potential clogging of filters 

and its deposition in the flue gas ducts. This may be overcome by the use of electrostatic 

precipitators and mechanical scrapers. 

— Investment costs of accelerators are rather high. Further reduction of accelerator is 

required and expected. 

 

To solve these problems pilot plants were built as tools for experimental research; and 

computer codes were developed to analyse the gas phase chemistry of the process. The 

discussion of these results is beyond the scope of this publication. 

 

3. GENERALIZED STUDY TO ADOPT THE EB PROCESS 

In recent years, the output capacity of thermal power plants has steadily become larger, 

with 200 to 600 MW capacity now being the norm. This section outlines the application of 

EBs to the treatment of flue gases in power plants, using as a typical example a 350 MW coal 

fired thermal power plant outputting 1.5 million cubic meters of exhaust gas an hour (NTP), 

and examines such aspects as the economy of such an application and the use of the by-

product. 
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3.1.  DESIGN BASIS FOR A 350 MW PLANT 

3.1.1.  Flue gas conditions 

Table II shows the flue gas conditions for the 350 MW coal fired thermal power plant 

used in this plan. 

TABLE II. FLUE GAS CONDITIONS (INLET) 

Gas flow rate 1 500 000 m3h–1 (NTP) (Wet base) 

Temperature 140°C 

Pressure atmospheric 

Components  

N2 

O2 

CO2 

H2O 

balance (dry base) 

7.5 vol.% (dry base) 

12.0 vol.% (dry base) 

22.0 vol.% (wet base) 

Sox 

NOx 

Fly ash 

5 500 ppm (dry base) 

390 ppm (dry base) 

200 mgm–3 (NTP) (dry base)* 

*Less than 50 mg/Nm3 is normally accepted. 

 

3.1.2. Treated gas conditions 

Table III shows SOx, NOx and particulate concentrations, and SOx, NOx removal 

efficiencies. 

TABLE III. TREATED GAS CONDITIONS 

SOx 825 ppm (dry base) 

(SOx removal efficiency 85%) 

NOx 156 ppm (Dry base) 

(NOx removal efficiency 60%) 

Particulates 50 mg/m3 (NTP) (dry base) 
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3.2. FLOW SHEET 

This is a dry process (no wastewater treatment required) that simultaneously performs 

desulphurization and denitration on flue gases and produces nitrogenous fertilizers 

(ammonium sulphate and ammonium nitrate). Figure 3 shows the simplified process flow.  

 

 

FIG. 3. Process flow diagram. 

 

The principal stages of this process are the cooling of the exhaust gases, addition of 

ammonia, irradiation of gases by EB, and separation of by-products. 

After most of the fly ash is removed using a fly ash dust collector, a spray cooler is used 

to cool the 140oC flue gases to 5–10 K above the flue gas dewpoint by water cycling method. 

The extracted water from the spray cooler is atomized at the process vessel inlet and 

completely evaporated within the flue gases. 

Accordingly, waste liquids requiring treatment do not arise. The flue gases, to which a 

certain amount of ammonia has been added in accordance with the SOx and NOx 

concentrations, are fed into the process vessel and irradiated with an EB. The SOx and NOx in 

the flue gases are very rapidly oxidized by the EB into their respective intermediate products: 

H2SO4 and HNO3. A neutralizing reaction with the coexistent ammonia then turns these into 

powder (ammonium sulphate (NH4)2SO4 and ammonium nitrate NH4NO3 mixed powder). 

After these powders are separated and collected by a dry type electrostatic precipitator, the 

cleaned flue gas is dispersed from a stack into the atmosphere using a boost-up fan. 

3.3. UTILITIES AND BY-PRODUCTS 

Table IV shows the utilities required and quantities used by the process. 
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TABLE IV. UTILITIES 

Utility Quantity Used 

Electric power 

Anhydrous ammonia 

Process water 

Steam 

10 200 kW 

8 550 kg/h 

110 t/h 

9 t/h 

 

Table V shows the composition and amounts of the by-products (nitrogenous fertilizers) 

produced. About 32.9 tonnes of fertilizer containing 21% nitrogen is produced per hour. 

TABLE V. BY-PRODUCTS 

Composition Amount 

Ammonium sulphate 

Ammonium nitrate 

Fly ash 

32 200 kg/h 

450 kg/h 

230 kg/h 

Total 32 880 kg/h 

 

3.4. PLANT LAYOUT 

Figure 4 is a horizontal layout showing the equipment used. 

The total space is approximately 110 � 76 meters (87360 m2) and includes storage 

facilities for storing seven days' supply of liquid ammonia and seven days' production of by-

products. 

 

FIG. 4. Layout (by-product collector located above process vessel). 



10 

3.5. COST ESTIMATION AND COST COMPARISON WITH CONVENTIONAL FLUE 

GAS DESULPHURIZATION (FGD)/SELECTIVE CATALYTIC REDUCTION (SCR) 

TECHNOLOGY 

The construction and operating costs of the EB treatment of flue gases were compared 

with the construction and operating costs of desulphurization and denitration treatment in 

which the three desulphurization technologies below were combined SCR of NOx. 

(1) Wet limestone FGD  

 

A desulphurization technology using limestone as the desulphurization agent, producing 

gypsum as a by-product, and requiring wastewater treatment facilities. 

 

(2) Wellman Lord FGD 

 

A desulphurization technology using sodium carbonate as the desulphurization agent, 

producing SO2 gas as a by-product, and requiring wastewater treatment facilities. 

 

(3) Wet ammonia FGD 

 

A technology using ammonia as the desulphurization agent, producing ammonium 

sulphate as a by-product, and not requiring wastewater treatment facilities. 

3.5.1. Cost estimation conditions 

The cost estimation is based on the following conditions: 

(1) Location of plant: USA 

(2) Cost/value of utilities, raw materials and by-products 

 

a) Utilities and raw materials 

Anhydrous ammonia $150/t 

Limestone $15/t 

Electric power $0.06/kw·h 

Steam $6/t 

Sodium carbonate $80/t 

Fresh water $0.25/m3 

 

b) Marketable by-product yields 

SO2 tail gas (Wellman Lord) $15/t of contained SO2 

Gypsum $2/t 

Granulated ammonium sulphate $100/t 

 

3.5.2. Construction and operating costs 

Table VI compares the capital costs, operating costs, and annual costs. 
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Table VII shows comparisons for desulphurization only. The operating costs include 

costs required for utilities, operators, and maintenance as well as the profits from marketing 

the by-products. Negative operating costs refer to profits from the by-products exceeding plant 

operation costs. Tables VI and VII demonstrate that EB treatment is the most economic 

technology. 

TABLE VI. ECONOMIC COMPARISON (FOR SIMULTANEOUS REMOVAL OF SOX 

AND NOX) 

  Capital cost Operating cost Annual cost 

Wellman-Lord+SCR 

Wet ammonia+SCR 

Wet limestone+SCR 

EB treatment 

*151 M$ 

116 M$ 

*98 M$ 

71 M$ 

1 372 $/h 

– 911 $/h 

1 378 $/h 

–1 050 $/h 

34.9 M$ 

15.6 M$ 

25.4 M$ 

6.8 M$ 

*Wastewater treatment facilities not included. 

TABLE VII. ECONOMIC COMPARISON (SOX ONLY REMOVED) 

   Capital cost Operating cost Annual cost 

Wellman-Lord 

Wet ammonia 

Wet limestone 

EB treatment 

*123 M$ 

88 M$ 

*70 M$ 

71 M$ 

1 109 $/h 

–1 174 $/h 

1 115 $/h 

–1 050 $/h 

28.4 M$ 

9.1 M$ 

18.9 M$ 

6.8 M$ 

*Wastewater treatment facilities not included. 

3.6. USE OF BY-PRODUCT FERTILIZERS (MAINLY AMMONIUM SULPHATE) 

3.6.1. Characteristics of ammonium sulphate 

Sulphur, which is found in ammonium sulphate, the main component of the EB flue gas 

treatment by-products, is a major plant growth nutrient along with nitrogen, phosphorous and 

potassium. The main effects of sulphur on plants are: 

(1) Synthesizing the amino acids needed for protein formation 

(2) Forming chlorophyll 

(3) Creating the essential components of rape seed, mustard seed, and other vegetable oils 

(4) Improving the quality of plants 

(5) Improving the nutritional value of livestock feeds and feed grains. 

 

The Food and Agriculture Organization of the United Nations (FAO) regards sulphur in 

ammonium sulphate as the fourth most important plant nutrient. The FAO conducts tests on 

the effects of sulphur on plants all over the world. Improvement in yields by 8–16% as a result 

of using ammonium sulphate fertilizer has been reported by FAO. 

In addition, ammonium sulphate offers the following advantages, which exceed those of 

other nitrogenous fertilizers like urea: 
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(1) Low hygroscopicity, easy to store. As ammonium sulphate, characteristically, has a low 

hygroscopic molecular structure when mixed with other fertilizers or stored for a long 

period, it absorbs virtually no moisture. 

(2) Quick acting. Ammonium sulphate is 100% water soluble and, when applied as a 

fertilizer, immediately separates into ammonia and sulphuric acid ions, facilitating 

absorption by plants. 

(3) Long term storage of fertilizers. Ammonia nitrogen (NH4) is absorbed into the soil 

particles, does not flow into the ground water, and remains in the soil until absorbed by 

the plant's roots. 

 

Using only chemical fertilizers causes the soil to harden and acidify. These are attributes 

not only of ammonium sulphate but of chemical fertilizers in general. To prevent the soil from 

hardening and acidifying, chemical fertilizers such as ammonium sulphate should normally be 

used in conjunction with alkalis like lime and organic matter. 

3.6.2.  Nitrogenous fertilizer market 

Table VIII shows the world and regional nitrogen supply and demand balance. 

The worldwide consumption of nitrogenous fertilizers was around 79 million tonnes 

during the 1996–1997 period and has been predicted to increase at an average of 2% a year. 

The demand and supply balance varies according to region. Regions where consumption 

substantially exceeds production are East Asia, South Asia, western Europe, and South 

America and, in these regions, the EB treatment of flue gases is regarded as a more desirable 

technology. 

 

4. PROJECT ENGINEERING AND DESIGN 

This section summarizes the contents of a feasibility study for the EB flue gas cleaning 

process. 

4.1. PLANT CONSTRUCTION 

4.1.1. Process technology 

— Short technology description, comparison with conventional technologies, process 

history, process upscaling, feasibility studies for industrial units  

— General technological scheme, description of the units operation, dependence of NOx, 

SO2 removal efficiency on dose, humidity, temperature and ammonia stoichiometry  

— Mass and heat balances, energy consumption, raw materials consumption, by-product 

production, by-product physico-chemical parameters  

— Analyses of components location (new or retrofit installation)  

— Design offices selection. 
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4.1.2. Flue gas cooling humidification system 

— Process requirements concerning gas parameters (inlet and outlet temperatures, 

humidity, water or steam demand)  

— Flue gas composition and flow depending on boiler load  

— Influence of solid particulate on humidification process (dust removal in ESP, 

multicyclone or Venturi scrubbers)  

— Humidification and cooling system selection, water, water/air spray  

— Hot water, steam  

— Dry bottom or water recirculation  

— Co-current or counter current phases flow  

— Enthalpy graphs  

— Balances  

— Technical solutions, scheme with balances, drawings  

— Humidification-cooling tower: diameter, height, materials, anticorrosion protection  

— Nozzles: type (water or water/air), construction and manufacturer  

— Gas outlet system: solid separation, water droplets separators (demisters)  

— Data for detailed engineering  

— Data for building construction  

— Data for electrical system design  

— Data for control and monitoring systems  

— Control parameters (inlet and outlet gas temperature, gas humidity, water and/or steam, 

and air flows)  

— Feedbacks with other system components  

— Cost calculations. 

 

4.1.3. Ammonia storage and dosage system 

— Physico-chemical parameters of ammonia  

— Conditions for supply, handling and storage according to the country regulations  

— Reagent daily demand and size, and number of storage tanks  

— Ammonia delivery to the installation, pressure reductions, pipes and valves  

— Ammonia injection, gas distribution system  

— Ammonia mass dosage control  

— Analyses concerning possible ammonia water application  

— Scheme of ammonia installation, mass and heat balances  

— Blue prints of components of ammonia installation, dimensions of equipment, tanks, 

pipes, etc.  
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— Specification of special and commercial equipment, construction materials, 

anticorrosion protection  

— Drawings of special equipment  

— Data for building construction, electrical and safety system designs  

— Cost calculation. 

 

4.1.4. Process vessel 

— Process kinetics, dose requirements (pollutants reduction, gas flow and density)  

— Electrons penetration  

— Irradiation mode (single or multiple gas irradiation one, both sides irradiation)  

— Accelerators, power and energy requirements, dimensions, weights, cooling mode  

— Type, high voltage supply accelerating section connections, windows, control, 

maintenance, installation  

— Irradiation vessel: configuration and dimensions, materials and anticorrosion protection, 

window construction and its protection, deposits removal, additional water 

sprays,thermal compensators, blue prints  

— Ozone exhaust system: ventilation, SF6 storage and refilling system, cooling system, 

radiation protection  

— Special and commercial equipment: data for building construction, electrical systems, 

supply systems, control systems, monitoring systems  

— Cost calculation. 

 

4.1.5. Aerosol filtration 

— Physico-chemical characteristics of by-product aerosol  

— Filter selection (e.g. ESP)  

— ESP selection, ESP data  

— Scheme of the unit  

— Anticorrosion protection  

— Measures against clogging and deposits (e.g. scrappers)  

— Special equipment (e.g. conveyors) 

— Data for building construction, electrical and control systems  

— Cost calculation. 

 

4.1.6. By-product handling system 

— Physico-chemical characteristics of by-product  

— Agricultural by-product applications, local and export  

— By-product granulation and packing  

— Storage scheme, special and commercial equipment  
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— Materials and anticorrosion protection  

— Data for building construction, electrical and control systems  

— Cost calculation. 

 

4.1.7. Ducts and flue/clean gas discharge 

— Dimension of ducts, thermal compensators, deposits removal systems  

— I.D. fans  

— Stack analysis  

— Special and commercial equipment  

— Materials and anticorrosion protection  

— Building construction and electrical systems basic data  

— Emission data stack  

— Cost calculation. 

 

4.1.8.  Control and monitoring systems 

— Systems selection, data acquisition, measurement points localization, requirements for 

technological units  

— Functions and assumptions  

— System of calibration  

— Cost calculation. 

 

4.1.9.  Electricity supply system 

— System description, power requirements, scheme possibility of EPS technological 

(6 kV) net usage  

— Equipment specification  

— Data for building-construction, interfacing with technological units and monitoring-

control systems  

— Cost calculation. 

 

4.1.10. Complex documentation 

— External installations for supply of technological and energetic media  

— Land management plan  

— Connections between technological units, operation parameters (media, pressure, 

temperature etc.)  

— Pipe dimensions  

— Drawings of overall plant 

— Materials for piping 



  

17 

— Work co-ordination  

— Technical acceptance conditions. 

 

4.1.11. Balances 

— Basic data (from unit description), total costs. Balances for unsteady-state conditions 

— Electrical power demand (total)  

— Heat (steam, hot water) demand (total)  

— Annual data  

— Costs: plant realization, O and M costs, income from by-product sale, tax reduction due 

to emission reduction  

— Technical-economic plant parameters: media, parameters, data for environment 

protection, costs, manpower, by-product and wastes. 

 

4.2. MONITORING AND CONTROL SYSTEMS 

4.2.1. Process monitoring system 

The main process monitoring system consists of the following measurement points: 

INLET GASES OUTLET GASES 

— flow rate — temperature 

— temperature — SO2 concentration 

— pressure — NOx concentration 

— fly ash concentration — particulate concentration 

— SO2 concentration — ammonia concentration (slip) 

— NOx concentration  

— O2 concentration  

 

Installation components such as the humidification tower, ammonia storage and dosage 

system, process vessel with accelerators, electrostatic precipitators, by-product handling 

system are equipped with adequate measurement control systems. 

4.2.2. Process control system 

The structure of the process control system is based on algorithms describing functional 

parameters dependence. 

SO2, NOx removal efficiencies and ammonia slip are the main parameters. Water/steam, 

ammonia and power consumed by accelerators are the consumables to be optimized. 

Adequate forward and feedbacks have to be arranged in the system. 

4.3. RADIATION PROTECTION 

The radiation protection measures depend partly on local condition and specific country 

regulations. 
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Requirements concerning this issue consist of the following items: 

— radiation shielding 

— ventilation systems 

— electric supply systems 

— signals and safety locks 

— alarms. 

 

Each country has specific regulations and laws which, in many cases, are based on 

IAEA guidelines. 

The methodology and procedures concerning shielding calculation are published, e.g. 

— DIN Standard 6847, Part 2, 1990 

— NCPR Report No. 51 — Radiation Protection Design 

— Accelerator manufacturer information regarding requirements on radiation protection 

connected with specific machine construction. 

 

4.3.1. Assumption for shielding calculation 

(a) accelerator parameters and time of operation 

— accelerator power and beam energy 

— scan dimensions number of accelerators and their localization 

— operational time. 

 

(b) accelerator maintenance 

— operators of EB flue gas treatment plant have only access to accelerator rooms 

(when shut down) 

— employees of other departments of the power station can do maintenance works 

outside the accelerator rooms at any time. 

 

4.3.2. Calculation of shielding walls thickness 

In the feasibility study, calculations only for direct radiation (no scattering) should be 

performed. The exact calculations should be performed in the final phase. 

4.3.3. Types of materials used for shielding protection against ionizing radiation 

Depending on the kind of shielding used and the specifics of surface area and cubature 

requirements the following materials can be used: 

— solid brick with density ? = 1.8 g/cm
3
 

— concrete brick with density ? = 2.3 g/cm
3
 

— monolithic concrete walls with density ? = 2.35 g/cm
3
 

— monolithic dense concrete walls with density ? = 3.2 g/cm
3
 (admitting barite, hematite, 

magnetite) 

— walls made of lead bricks 
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— local shielding made of lead sheet 

— local shielding made of steel sheet. 

 

4.3.4.  Facilities to be supplied to ensure radiological safety 

To ensure radiological safety, the following installations will be provided: 

— mechanical supply 

— exhaust ventilation 

— mechanical ventilation to remove ozone 

— accelerator aerial window cooling system 

— reaction chamber window cooling water system 

— sound signalling system 

— visual signalling system 

— mechanical blocking system 

— electrical blocking system 

— access control system. 

 

(a) Ventilation of high voltage generators rooms. In a high voltage generators room, 

mechanical intake-exhaust ventilation providing six exchanges per hour should be 

applied. 

 

(b) Ventilation of accelerators rooms. Accelerators room must be equipped with mechanical 

intake-exhaust ventilation providing six exchanges per hour. 

 

(c) Shielded doors. Both accelerators and process vessel rooms should be equipped in 

shielded doors system. 

 

(d) Safety control system. Safety locks and signals have to fulfill country regulations. The 

system consists of: 

— automatics of opening and closing shielded doors 

— automatics to turn on and off ventilation systems 

— signal devices for accelerators (to turn on and off) 

— signal devices for interlocks. 

   

4.3.5.  Building construction 

Three components of installation should be located in the building, i.e. reaction vessel 

with accelerators and power supplies, control room for accelerators, and monitoring and 

control system. These units may be located in integrated or separate facilities, e.g. control 

room for monitoring and control system can be integrated with the main control system of a 

power plant. 

Building for reaction vessel and accelerators: 

(a) The main requirements concerning the facility construction due to radiological 

protection are given in Section 4.3. 
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(b) The additional ozone exhaust system should be applied. Local exhaust fans and 

ventilators for removal of ozone from the zone between the accelerator (primary) and 

process vessel (secondary) windows should be provided. Depending on the conditions, 

ozone will be discharged to the atmosphere (active coal reactor and stack) or directed to 

the flue gas duct. 

 

(c) Ventilation systems have to be provided for: 

— accelerator chamber 

— reaction vessel room 

— high voltage generator rooms. 

 

(d) The intake-exhaust ventilation systems have to be applied. For reaction vessel rooms 

10–20 and for others mentioned, six air exchanges per hour have to be secured. 

 

(e) The control rooms have to be equipped with air conditioning with air dust purification 

system. 

 

Commercially available accelerators consist of: 

— power supply 

— transformer 

— accelerating section 

— tube with the window 

— control panel 

— vacuum unit 

— vacuum pump 

— ozone removal unit. 

 

The auxiliary equipment consists of: 

— window cooling fans (or/and water cooling system) 

— water pumps for the primary and secondary circulation loops 

— heat exchangers. 

 

The accelerator cooling system consists of tanks for demineralized water, piping, heat 

exchanger and pumps. 

The heat exchangers can be located outside the building. 

 

5. COST ANALYSIS 

5.1. GENERAL 

Cost analysis in this section of a feasibility study is expected to answer the question 

whether the investment project, with all the necessary investment and operational 

expenditures and with the proper way of financing, will generate enough net profit that, 

expressed in financial terms, would justify its realization. Production investment projects are 

characterized by the fact that net profits obtained are mainly of material character and thus 
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easily expressed in financial categories and cause no trouble to prepare a reliable financial 

analysis. 

When it comes to pro-ecological investment projects, however, such as flue gas 

treatment installation for removal of sulphur dioxide and nitrogen oxides with an EB, the 

matter is not as simple as that, especially if they are considered separately. The net profit 

generated in pro-ecological investment projects are non-material in character. If it is expressed 

in financial terms, it seems difficult to obtain any reliable results indicating profitability of 

such a project, even if this matter is of major importance to a project financial manager.  

Thus, the implementation of a pro-ecological investment project would be decided upon 

taking into consideration the public interest represented by public institutions, and not only 

the net profit. State and municipal authorities, frequently inspired by international institutions, 

establish limits for pollutants discharged to the natural environment by various economic 

units, in the form of regulations in force. Such limits are often a condition of existence (to be 

or not to be) for a production investment project. 

If there arises a necessity to build a pro-ecological installation, the related financial 

analysis has to be performed for the entire facility to be provided with such an installation. 

This is valid for both existing facilities and new projects. In practice, during preparation of 

such analyses, there are discounting methods that can be used which are promoted by the 

United Nations Industrial Development Organization (UNIDO) and recommended by the 

World Bank and the International Monetary Fund [15]. These methods are accepted also by 

the national banks granting investment credits. The Computer Model for Feasibility Analysis 

and Reporting (COMFAR) prepared by UNIDO [16] is a great help in producing cost 

analysis. 

Calculations require a precise determination of components counted into revenues and 

expenses, followed by a forecast of their expected level over the subsequent years in the time 

span under consideration (calculation period). The basic condition for obtaining reliable 

results of such an economic calculation is to what extent such a forecast is reasonable. 

5.2. CALCULATED RATIOS OF ECONOMIC PROFITABILITY 

Economic calculations enable computation of economic profitability ratios as: 

— Net present value (NPV) 

— NPV for total investment expenditures 

— NPV of a net value (equity + accumulated profits) related to the net cash flow 

— NPV of equity in relation to the net profit 

— Internal rate of return (IRR) 

— IRR for total investment expenditures 

— IRR of a net value (equity + accumulated profits) related to the net cash flow 

— IRR of equity in relation to the net profit. 

 

and preparation of financial statements as: 

— Total initial investment expenditures 

— Total investment expenditures during the production period 
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— Total production costs 

— Net working capital 

— Cash flow 

— Balance sheet forecast 

— Net income statement (profit and loss account) 

— Sources of financing. 

 

5.3. COMPONENTS THAT HAVE TO BE DETERMINED IN ORDER TO PREPARE AN 

ECONOMIC CALCULATION 

5.3.1. Total investment expenditures 

5.3.1.1. Fixed investment costs 

��Total initial investment 

— Land, site preparation 

— Buildings, structures and civil works 

— Machinery and production facilities 

— Other incorporated fixed assets, such as acquired property rights (licenses, patents, 

trademarks, etc.). 

 

��Expenditures for reconstruction 

 

5.3.1.2. Pre-production capital expenditures 

— Cost of establishing share capital, registration fees, advertisements 

— Pre-investment studies 

— Pre-production service fees 

— Accompanying investment projects 

— Interests on credit during the construction period 

— Trial run, start-up 

— Travel costs. 

 

5.3.1.3. Expenditures for creation of a necessary working capital. 

5.3.2. Investment realization schedule  

See Section 6. 

5.3.3. Sources of financing for the project 

— Equity 

— Bank credits 

— Suppliers’ credits. 
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5.3.4. Conditions of servicing the foreign financing sources 

— Credit interest rate 

— Credit payment period 

— Method of credit payment. 

 

5.3.5. Total O&M costs 

5.3.5.1. Operating costs 

��Factory costs 

— Basic raw materials 

— Auxiliary raw materials 

— Environment protection costs (environmental protection costs) 

— Energy consumption 

— Direct labour 

— Repairs 

— Maintenance and spare parts 

— Factory overheads. 

��Administration costs (salaries, office material, communication, rent). 

��Sales costs (advertisements, travels). 

��Distribution costs (packing, commissions). 

 

5.3.5.2. Financial costs (interests) 

5.3.5.3. Depreciation 

5.3.6. Working capital — Demand (minimum days of coverage) 

5.3.6.1. Current assets 

��Accounts receivable 

��Inventories 

— Raw materials 

— Spare parts 

— Work in progress 

— Finished products 

— Cash in hand. 

 

��Current liabilities 

— Current accounts payable. 
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5.3.7. Revenues from sale of goods 

— Product sales amount 

— Product price per unit. 

 

5.3.8. Other expenses 

— Income tax 

— Income tax for the budget, calculated from the net profit in the case of a State enterprise 

or dividend in the case of a private enterprise. 

 

5.3.9. Other components 

— Discount rate 

— Depreciation rate 

— Depreciation period 

— Scrap value of the initial investment. 

 

5.3.10. Value of the existing fixed assets 

 

6. IMPLEMENTATION PLANNING 

The purpose of implementation planning is to determine technical and organizational 

circumstances of each phase of implementation from moment of making the decision about an 

investment until the operational phase. Such plan should include scope of all tasks, time 

necessary to perform them and their sequence while taking into account tasks that are either 

interdependent or simultaneous. 

Among several methods of preparation of the implementation plan, the best way to 

represent an implementation schedule for the purpose of a feasibility study is by a bar chart. It 

is a record of all tasks with their beginning and completion time marked on the time scale. An 

example of such a schedule is Project Milestone Schedule EPS Pomorzany Szczecin [17] and 

shown on Tables IX and X. 

An implementation schedule constitutes the basis for preparation of a cash flow forecast 

and for follow-up and supervision of implementation of a project. As earlier indicated, the 

installation for removal of sulphur dioxide and nitrogen oxides from flue gas with application 

of an EB is never a stand alone installation, but always appears in connection with a site 

producing this polluted flue gas. This is valid both for the existing sites to be supplemented 

with such a pro-ecological installation and the newly designed ones. Thus, during preparation 

of an implementation plan for such an investment project it is necessary to also take into 

account the conditions relating to the features of the site being provided for such a flue gas 

treatment installation. 
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7. ECONOMIC AND ENVIRONMENTAL BENEFITS 

In a comprehensive engineering and cost study on the large scale power plant 

application of the EB process, a representative wall fired, pulverized coal fired power plant 

was selected and defined [18]. This 300 MW(e) plant is similar in size and performance to 

base case units used in Electric Power Research Institute (EPRI) cost studies. An EB process 

was designed to consist of: 

(1) Irradiation facility (building, EB generators/power conditioning components, concrete 

shielding). 

(2) Flue gas handling (ductwork, dampers and expansion joints, fans, and appropriate 

ductwork shielding). 

(3) Flue gas conditioning (humidifier, water injection system, and NH3, transfer, storage 

and injection system). 

(4) By-product removal/handling/processing (gravel bed filter, by-product compaction 

system, by-product storage). 

 

 

FIG. 5. Calculated specific cost for SO2 removal [$/t]  

(hard coal/upper curve [18]; lignite/lower curve [19]. 

 

According to the cost study using the EPRI methodology, the 30 year levelled costs will 

effect $100–$200/t of SO2 and NOx removed (see Fig. 5). This is rather competitive compared 

to other SO2/NOx control technologies which have been evaluated by the same EPRI method 

[20]. 

In a second study, the EB process was evaluated for the SO2 removal at power plants 

fired with high sulphur lignite (5%) in Bulgaria [19]. The combustion of this fuel generates a 

flue gas which has high Sox concentrations (SO2 = 5600 ppmV and SO3 = 140 ppmV) and 

lower NOx concentrations (390 ppmV). In agreement with experimental data from Japanese 

groups it was found by theoretical calculations that the SO2 removals will be above 90%. NOx 
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removals of 60–80% are predicted at a dose of 5–10 kGy. In a preliminary economic 

evaluation of an industrial plant, it was found that the specific SO2 removal costs will be even 

lower for the Bulgarian condition than calculated previously for the US condition (Fig. 5). 

This is due to rather high by-product credits and favourable transport conditions to a nearby 

ammonia producer. Presently a large pilot plant (10 000 mN

3h–1) is under construction at the 

Maritsa East power plant in Bulgaria. 

An important parameter for the investment costs of the EB process is the specific price 

of the electron accelerators. Several market surveys have been conducted during the last 

20 years among the main producers of industrial accelerators in Japan, Russia and the USA. 

About 1000 accelerators are meanwhile used in industry worldwide for the production of 

cable and wire, surface curing, sterilization, tire production, polyethylene (PE) tubes, etc. 

Nevertheless, for the environmental applications, even higher beam power (e.g. 10 MW) is 

required at a moderate electron energy (800 keV). Figure 6 shows on the left axis the flow 

rates of EB plants, which have been constructed between 1970–2000, for off gas cleaning. A 

rather slow development with flow rates of 1000–10 000 mN

3.h–1 occurred in Japan, Germany 

and the USA. during the period from 1970 to 1990 experiencing several interruptions due to 

market problems and technological setbacks. In the period from 1995 to 2000, large scale 

demonstration plants with flow rates of 300 000–600 000 mN

3·h–1 have been under 

construction in China, Japan and Poland. For comparison, a 5% market share (in Germany, 

Japan, the USA) for the time after the year 2000 is included in the diagram. On the right axis 

the specific EB costs (DM/W) are plotted in Fig. 6. The economy of scale clearly works for 

the EB process. With increasing plant size the specific investment costs of beam power 

decreased from about 25 DM/W in the 1980s to 3.5 DM/W in 1995. It is expected that the 

specific costs of EB equipment will decrease to some extent after the year 2000 due to new 

acceleration technologies and to standardization of equipment for environmental applications. 

 

 

FIG. 6. EB plant flow rates and specific EB costs during the period from 1970 to 2000. 
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The economic and environmental benefits of the EB process as outlined above may be 

summarized as follows: 

— Large scale EB plants for flue gas cleaning have cost advantages over conventional 

technologies for flue gas cleaning.  

— These savings become more pronounced for the EB treatment of high sulphur flue gas, 

where high amounts of valuable fertilizer are produced.  

— EB process avoids the production of waste such as wastewater and contaminated 

gypsum; therefore, expensive water treatment facilities and disposal sites for solid 

wastes are not required. 

 

The simultaneous production of electrical energy and fertilizer in a power plant 

equipped with the EB process is a step towards sustainable development. 
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ABBREVIATIONS 

CHC chlorohydrocarbon 

COMFAR Computer Model for Feasibility Analysis and Reporting (UNIDO) 

EB electron beam 

EPS electrical power station 

ESP electrostatic precipitator 

FGD flue gas desulphurization 

IRR internal rate of return 

NPK nitrogen, phosphorous, potassium 

NPV net present value 

NTP normal temperature and pressure 

PCDD/F polychlorinated diphenyl 

PE polyethylene 

SCR selective catalytic reduction 

VOC volatile organic compound 
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