IAEA-TECDOC-1007

Directory of cyclotrons used for radionuclide production in Member States

IAEA

INTERNATIONAL ATOMIC ENERGY AGENCY

March 1998

The IAEA does not normally maintain stocks of reports in this series. However, microfiche copies of these reports can be obtained from

> INIS Clearinghouse International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria

Orders should be accompanied by prepayment of Austrian Schillings 100,in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the INIS Clearinghouse. The originating Section of this publication in the IAEA was

Industrial Applications and Chemistry Section International Atomic Energy Agency Wagramer Strasse 5 P O Box 100 A-1400 Vienna, Austria

DIRECTORY OF CYCLOTRONS USED FOR RADIONUCLIDE PRODUCTION IN MEMBER STATES IAEA, VIENNA, 1998 IAEA-TECDOC-1007 ISSN 1011-4289

© IAEA, 1998

Printed by the IAEA in Austria March 1998

FOREWORD

The directory of cyclotrons used for radionuclide production is an update of the database on cyclotrons that was compiled by the IAEA in 1983.

The need for the directory of cyclotrons was identified in November 1996 by a consultants group. A questionnaire was then prepared and distributed to all institutions in Member States known to the IAEA to have a cyclotron, or that were identified to be in the process of installing a cyclotron.

The directory was prepared from the information contained in the replies to the questionnaire. The data were compiled into a uniform format for individual entries. In some instances, institutions did not reply to all the questions contained in the questionnaire.

The directory includes most of the cyclotrons in the world that are used at least in part for radionuclide production, because most of the institutions responded. Replies were, in general, not received from institutions that have cyclotrons dedicated to physics and/or material science activities.

The directory was compiled by the IAEA's Industrial Applications and Chemistry Section, Division of Physical and Chemical Sciences. The IAEA is grateful to all persons that co-operated and responded to the questionnaire and to those persons who further assisted in this effort by identification of key contact persons at the institutions.

Information on existing facilities not included in this directory, and on new and planned cyclotron installations to be used for radionuclide production, may be forwarded to the Industrial Applications and Chemistry Section.

EDITORIAL NOTE

In preparing this publication for press, staff of the IAEA have made up the pages from the original manuscripts as submitted by the authors. The views expressed do not necessarily reflect those of the IAEA, the governments of the nominating Member States or the nominating organizations.

Throughout the text names of Member States are retained as they were when the text was compiled.

The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries.

The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.

CONTENTS

INTRODUCTION	7
ARGENTINA	21
AUSTRALIA	25
BELGIUM	31
BRAZIL	
CANADA	53
CHINA	67
CZECH REPUBLIC	
DENMARK	79
EGYPT	83
FINLAND	85
FRANCE	91
GERMANY	99
HUNGARY	139
INDIA	141
INDONESIA	143
IRAN, ISLAMIC REPUBLIC OF	145
ISRAEL	147
ITALY	149
JAPAN	161
KAZAKSTAN	227
KOREA, REPUBLIC OF	229
NETHERLANDS	235
NORWAY	249
POLAND	251
ROMANIA	
RUSSIAN FEDERATION	257
SAUDI ARABIA	265
SOUTH AFRICA	267
SPAIN	
SWEDEN	
SWITZERLAND	
SYRIAN ARAB REPUBLIC	
UNITED KINGDOM	
UNITED STATES OF AMERICA	301
SAMPLE OF QUESTIONNAIRE	433

INTRODUCTION

The directory of cyclotrons used for radionuclide production is an update of the data base on cyclotrons that was compiled in 1983 by the International Atomic Energy Agency. The directory contains technical, utilization and administrative information supplied to the IAEA as of October 1997.

The directory was prepared through information collected by questionnaires sent to institutions that either have a cyclotron, or that were identified to be in the process of installation of a cyclotron.

The directory is considered to include most of the cyclotrons of the world that are used at least in part for radionuclide production because most of the institutions responded. Replies were not received from two institutions that pioneered in the development of cyclotron radionuclides, certain commercial interests, and some of the new facilities that have recently purchased a cyclotron but have not begun the installation. The questionnaire was, in general, not completed by institutions that have cyclotrons dedicated to physics and/or material science activities. Certain of the institutions constructing superconducting cyclotrons for medical and nuclear physics applications responded even though not yet involved in radionuclide production initiatives.

The directory is organised by alphabetical listing of the Member States. There are individual entries for each cyclotron even for institutions having more than one cyclotron. The names, title/position of the persons listed in position [2] in the entries for individual countries were taken directly from the answers in the questionnaires.

The directory contains 206 entries for cyclotrons operating in 34 Member States. The largest concentration of cyclotrons for radionuclide production are located in the United States of America (66), Japan (33) and Germany (22). The largest number of cyclotrons for a single country is the United States of America. However, taken collectively there are the 48 cyclotrons located in the European Union countries that are used for medical radionuclide production. It is not surprising that the new cyclotron installations are distributed throughout the Member States. In general, newly developing countries opt for a cyclotron to supply both SPET (single photon emission tomography) and industrial radionuclides within the country, and PET (positron emission tomography) radionuclides for local needs.

There are a significant number of entries for commercial based cyclotrons. Some of the companies provided details on production statistics, whereas others indicated some of the requested information was propriety. One company having four or more cyclotrons declined to comment. It is noteworthy to mention that several institutions commit excess beam time for either solid target irradiations for companies, or act as a distribution center of radiochemicals or radiopharmaceuticals to customers in the region of the cyclotron facility.

The expansion in number of cyclotrons during the last decade has been driven by the advent of advances in medical imaging instrumentation (PET, SPET and more recently 511 KeV emission tomography); introduction of user friendly compact medical cyclotrons from several companies that manufacture cyclotrons; and recent decisions that ¹⁵O-oxygen PET studies in Japan, and ¹⁸F-FDG PET studies in Germany are eligible for reimbursement by government or insurance companies.

A emerging trend is to integrate a low energy cyclotron and emission tomography into medical imaging corporations formed by physicians in private practice. Another factor contributing to the sales of cyclotrons is the introduction of the PETNet concept of distribution of positron emitting radiopharmaceuticals from a central cyclotron to satellite hospitals that have the imaging technology and the patients. The satellite approach is cost-effective because it is not necessary for every medical imaging center to operate it own the cyclotron as a source of short-lived radiopharmaceuticals. ¹⁸F-FDG is gaining widespread clinical acceptance. Fluorine-18 has a 110 minute half life. Nitrogen-13 with a half life of 10 minutes in the radiopharmaceutical form as ¹³N-Ammonia is commercially available in a few major cities.

Figure 1 depicts the number of cyclotrons used for radionuclide production, and the year of installation. The projection for installations underway in 1998 is based upon information supplied by respondents and by companies that manufacturer cyclotrons.

FIG. 1. Number of cyclotrons installed or sold between 1972 and 1998.

Table I summarizes the characteristics of the cyclotrons that are presently manufactured by nine (9) different companies. It is interesting to note the trends in the number of particle, beam energy of the installed cyclotron, as well as the contemporary trend in characteristics of the cyclotrons.

The IAEA is aware of 36 cyclotron facilities that are in the process of installation during 1997-1999. Some of the new facilities are identified with individual entries. However, other of the institutions currently introducing the technology preferred not to be identified formally at this time. The types of cyclotrons chosen for new installations can be seen from Table I. The oldest operating cyclotron was commissioned in 1948 at the University of Birmingham, UK.

			Numbe	er of Cyclotrons
Company	Model	Description (Operational	Being installed
CTI, Inc.				
,	RDS 111	11 MeV H	5	10
	RDS 112	11 MeV H	22	1
EBCO TEC	CHNOLOGIES			
	TR 13	13 MeV H	2	
	TR 19	10-19 MeV H	1	
	TR19/9	10-19 MeV H, 5-9 MeV	D 0	
	TR 30	15-32 MeV H	1	
	TR 30	15-32 MeV H [°] , 15 MeV I	D ⁻ 1	
).V. EFREI	MOV INSTITUT	ĨE		
	MGC-20	18 MeV p, 10 MeV d	3	2
GENERAL	ELECTRIC (GE)		
	PETtrace	16.5 MeV H ⁻ , 8.4 MeV D	- 8	3
ION BEAM	APPLICATION	NS s.a. (IBA)		
СУ	CLONE 3	3.8 MeV d	0	4
CY	CLONE 10/5	10 MeV H, 5 MeV D 1	2	
	CLONE 18 / 9			
CY	CLONE 18+	18 MeV	4	6
CY	CLONE 30	15-30 MeV H ⁻ , 15 MeV I	D ⁻ 16	1
	CLONE 235		1	3
JAPAN STE	EL WORKS L	TD. (JSW)		
	BC168	16 MeV p, 8 MeV d	4	
	BC1710	17 MeV p, 10 MeV d	8	
	BC2010N	20 MeV H, 10 MeV D 1		
	BC2211	22 MeV p, 11 MeV d	1	
	BC3015	30 MeV p, 15 MeV d	1	
		ITD		
OXFORD II	NSTRUMENTS			
OXFORD II	NSTRUMENTS OSCAR	12 MeV H	7	3

TABLE I. STATISTICS CONCERNING CYCLOTRONS

			Number of C	
Company	Model	Description	Operational	Being installed
SCANDITR	ONIX MEDICA	LAB		
	MC17	17.2 MeV p, 8.3 MeV d 12 MeV ³ He, 16.5 MeV ⁴ He	16	
	MC30	30 MeV p, 15 MeV d	1	
	MC32NI	15-32 MeV H, 8-16 MeV D 11-23 MeV ³ He, 15-31 MeV ⁴ H	2 e	
	MC40	10-40 MeV H, 5-20 MeV D 13-53 MeV ³ He, 10-40 MeV ⁴ H	8 e	
	MC50	18-52 MeV H, 9-25 MeV D 24-67 MeV ³ He, 18-50 MeV ⁴ H	2 e	
	MC60	50 MeV p	1	
	K130	6-90 MeV H ⁻ , 10-65 MeV D 16-173 MeV ³ He, 20-130 MeV ⁴	1 He	
SUMITOM	O HEAVY INDU	STRIES LTD. (SHI)		
	CYPRIS 325	16 MeV p, 8 MeV d	2	
	CYPRIS 370	16 MeV p, 10 MeV d	6	1
	HM 18	18 MeV H, 10 MeV d	6	2
	HM 12	12 MeV p, 6 MeV d	0	1
	480 AVF	30 MeV p	1	
	480 AVF AVF 680	30 MeV p 40 MeV p	1 1	
		40 MeV p	1	
	AVF 680	40 MeV p 50 MeV p	1 1	
	AVF 680 AVF 715	40 MeV p 50 MeV p 70 MeV p	1 1 2	
	AVF 680 AVF 715 AVF 750	40 MeV p 50 MeV p 70 MeV p 90 MeV p, 35 MeV d (K = 110)	1 1 2	
	AVF 680 AVF 715 AVF 750 AVF 930 AVF 1000	40 MeV p 50 MeV p 70 MeV p	1 1 2 2	
	AVF 680 AVF 715 AVF 750 AVF 930 AVF 1000 Ring Cyclotroi 400	40 MeV p 50 MeV p 70 MeV p 90 MeV p, 35 MeV d (K = 110) 80 MeV p (K = 140)	1 1 2 2 1	

TABLE I. (CONT.) STATISTICS CONCERNING CYCLOTRONS

The directory does not specifically cite entries for cyclotrons that are used for proton therapy, although a few institutions indicated involvement in this application. Typically proton therapy requires 70 to 240 MeV protons at 2 to 4 nanoampere currents. Therefore, due to the very low beam currents therefore cyclotrons dedicated to proton therapy are not suitable for medical radioisotope production.

The questionnaires identified 39 radionuclides as being of clinical, commercial and research interest. This includes 5 generator systems. Table II provides a definition of the priorities for cyclotron produced radionuclides.

The driving force for new cyclotron installations is the production of positron emitting radiopharmaceuticals for PET. However, it is significant to note that there are four cyclotrons presently dedicated to production of ¹⁰³Pd, and that two additional cyclotrons have been ordered for production of the radionuclide which is used in brachotherapy for treatment of prostate cancer.

Application	1	Radionuclide
PET and 51	1 KeV SPET	
	Emphasis on: Emerging Research Interest	¹¹ C, ¹³ N, ¹⁵ O, ¹⁸ F ⁶⁴ Cu, ¹²⁴ I ³⁸ K, ⁴⁵ Ti, ⁶² Zn / ⁶² Cu, ⁷³ Se, ⁷⁵ Br, ⁷⁶ Br, ^{82m} Rb, ^{94m} Tc
SPET	Clinical	⁶⁷ Ga, ¹¹¹ In, ¹²³ I, ²⁰¹ Tl
Therapeutic		⁶⁴ Cu, ⁶⁷ Cu, ¹⁰³ Pd, ¹⁸⁶ Re, ²¹¹ At
Standards a	nd Sources	²² Na, ⁵⁷ Co, ¹³⁹ Ce
Commercia	l -Medical	¹⁸ F, ⁶⁷ Ga, ⁸¹ Rb / ^{81m} Kr, ¹⁰³ Pd, ¹²³ Xe / ¹²³ I, ²⁰¹ Pb / ²⁰¹ Tl
	Emerging Various	124 I 22 Na, 57 Co, 88 Y
Others		⁷ Be, ${}^{10}C$, ${}^{28}Mg$, ${}^{48}V$, ${}^{75}Se$, ${}^{87}Y / {}^{87m}Y$, ${}^{93}Mo$, ${}^{99}Mo$, ${}^{99m}Tc$, ${}^{147}Gd$, ${}^{195}Au$, ${}^{206}Bi$

TABLE II. PRIORITIES FOR PRODUCTION OF CYCLOTRON RADIONUCLIDES

Table III summarizes the expected production yield (mCi) of synthetic precursors of PET radiopharmaceuticals with the range of commonly used proton and deuteron energies and irradiation at 20μ to 35μ A as recommended by the manufacturer of the various cyclotrons.

Fluorine-18 (¹⁸FDG), Oxygen-15 (Water, Oxygen, Butanol and Carbon Monoxide), Carbon-11 (Acetate, Methionine), and Nitrogen-13 (Ammonia) are the most widely used positron emitting radiopharmaceuticals. Essentially all PET centers regularly produce ¹⁸FDG for clinical use. In addition a significant number of center also use specific ¹⁸F and ¹¹C labelled ligands for neuroreceptor studies. These include: ¹⁸F-DOPA, ¹⁸F-Altanserin ¹¹C-Raclopride, ¹¹C-Flumazenil, ¹¹C-WAY 100635, ¹¹C-SCH 23390, etc. Many research orientatied institutions have radiochemists developing a wide range of radiopharmaceuticals and labeled compounds for diagnosis and or monitoring treatments of various diseases.

TABLE III. EXPECTED PRODUCTION YIELD (mCi) OF SYNTHETIC PRECURSORS OF PET RADIOPHARMACEUTICALS WITH SELECTED PROTON AND DEUTERON ENERGIES AND IRRADIATION AT 20 μ to 35 μ A AS RECOMMENDED BY THE MANUFACTURER OF THE VARIOUS CYCLOTRONS

Precursor	16 - 18 MeV proton	9 - 10 MeV proton proton	12-13MeV
	8 - 9 MeV deuteron	4 - 5 MeV deuteron	
¹¹ CO ₂ ¹¹ CO ¹¹ CH ₃ I ¹¹ CNH	2800	1000	1500
	1400	350	1000
¹¹ CH ₃ I	700	350	1250
¹¹ CNH	1200	250	750
¹³ NH ₃	450	100	200
¹⁵ O ₂	1200	>150 per minute	1000
¹³ NH ₃ ¹⁵ O ₂ ¹⁵ OC ¹⁵ OC	700	> 75 per minute	500
¹⁵ OCO	700	>150 per minute	500
¹⁵ OH ₂ ¹⁸ F	1000	200	750
	800	> 500	700
¹⁸ FF	300		

*Note: There are cyclotron gas targets available the are routinely operated at 25 to 50 μ A for production of ¹¹C and ¹⁵O.

There are reports that:

- (1) A 2 hour irradiation at 65 μ A with 12 MeV protons on a single recirculating H₂¹⁸O (> 98%) target yields > 4 Ci of ¹⁸F- Fluoride;
- (2) The simultaneous irradiation of two targets of H₂¹⁸O (> 98%) with a 18 MeV cyclotron can produce > 5 Ci of ¹⁸F-Fluoride.

Nuclear Data

The questionnaire requested information concerning the user's requirements for nuclear data. Statistics are given in Table IV. Nineteen percent (19%) of the respondents indicated that they were engaged in nuclear reaction cross section measurements. Over 50% of respondents identified that they used reaction cross section data, thick target yields, and decay data.

TABLE IV. RESPONSE TO QUESTIONNAIRE ON THE USE OF AND THE DETERMINATION OF NUCLEAR DATA AT CYCLOTRON FACILITIES

Are you engaged in nuclear reaction cross section meas	surements?	
	Yes	19 %
	No	69 %
	No Response	12 %
Which type of nuclear data do you use?		
Reaction Cross Sections	Yes	51 %
	No	13 %
	No Response	36 %
Thick Target Yields	Yes	52 %
-	No	13 %
	No Response	36 %
Decay Data	Yes	57 %
·	No	8%
	No Response	35%

LIST OF CYCLOTRONS BY COUNTRY ENTRY, LOCATION AND MODEL OF CYCLOTRON AT EACH INSTITUTION

Entry	Location	Model
ARGENTIN	A	·
ARG-1	Comisión Nacional De Energía Atómica (CNEA)	CP-42
ARG-2	Fundacion Escuela de Medicina Nuclear	RDS 112
AUSTRALIA	X	
AUL-1	Peter MacCallum Cancer Institute	
AUL-2	Austin & Repatriation Medical Centre	Cyclone 10/5
AUL-3	Australian Nuclear Science & Technology Organization	Cyclone 30
BELGIUM		
BEL-1	Erasme Hospital	Cyclone 30
BEL-2	VRIJE Universiteit Brussel	CGR-560
BEL-3	MNS Nordion, S.A.	Cyclone 30
BEL-4	University of Gent	CGR-MeV 520
BEL-5	U. Z. Gasthuisberg	Cyclone 10/5
BEL-6	Université de Liège	CGR-MeV 520
BEL-7	Université Catholique de Louvain	Cyclone 30
BEL-8	Université Catholique de Louvain	Cyclone
BRAZIL		
BRA-1	Instituto de Engenharia Nuclear	CV-28
BRA-2	Instituto de Pesquisas Energéticas e Nucleares	CV-28
BRA-3	Instituto de Pesquisas Energéticas e Nucleares	Cyclone-30
CANADA		
CAN-1	TRIUMF	CP42
CAN-2	TRIUMF	TR30
CAN-3	TRIUMF	TRIUMF
CAN-4	TRIUMF PET Programme	TR13
CAN-5	McMaster University	
CAN-6	Clarke Institute of Psychiatry	MC-17
CAN-7	Montreal Neurological Institute	Cyclone 18/9
CHINA		
CPR-1	China Institute of Atomic Energy	Cyclone 30
CPR-2	Beijing Normal University	CS 30
CPR-3	Beijing Normal University	CS 22
CPR-4	Zibo Wanjie Hospital	PETTrace
CPR-5	Shanghai Institute of Nuclear Research	Cyclone 30
CZECH REI		
CZR-1	Nuclear Physics Institute	U-120M
DENMARK		
DEN-1	PET Centre	PETTrace
DEN-2	University Hospital of Copenhagen	MC 32-NI

EGYPT		
EGY-1	Nuclear Research Centre	MGC-20
FINLAND	TT from the off TT 1.1 1	Gardena 10/5
FIN-1	University of Helsinki	Cyclone 10/5
FIN-2	Turku PET Centre	MGC-20
FIN-3	Turku PET Centre	Cyclone 3
FRANCE		
FRA-1	Centre d'Exploration et de Recherche Medicales	Cypris 325
	par Emission de Positrons (CERMEP)	••
FRA-2	Centre Antoine Lacassagne	
FRA-3	Centre National de la Recherche Scientifique	
FRA-4	Service Hospitalier Frédéric Joliot	CGR-MeV 520
GERMANY		
GFR-1	Rheinisch-Westfalische Technische Hochschule	RDS 111
GFR-2	Zentralklinik Bad Berka GmbH	RDS 111
GFR-3	Universitätsklinik der Ruhr-Universität Bochum	Cyclone 18/9
GFR-4	Forschungszentrum Rossendorf	U-120
GFR-5	Forschungszentrum Rossendorf	Cyclone 18/9
GFR-6	Institute for Medical Radiation Physics	CV 28
GFR-7	J.W. Goethe University	Cyclone 18/9
GFR-8	Euro-PET GmbH	PETTrace
GFR-9	UKE-Cyclotron	140/IV
GFR-10	Medizinische Hochschule Hannover (MHH)	MC 35
GFR-11	German Cancer Research Centre (DFKZ)	MC 32NI
GFR-12	Forschungszentrum Jülich GmbH	BC 1710
GFR-13	Forschungszentrum Jülich GmbH	PETTrace
GFR-14	Forschungszentrum Jülich GmbH	CV 28
GFR-15	Forschungszentrum Karlsruhe (FZK)	CP42 H
GFR-16	Forschungszentrum Karlsruhe (FZK)	AEG
GFR-17	Max-Planck-Institut für Neurologische Forschung	MC 16
GFR-18	Technischen Universität München	RDS 112
GFR-19	Universitätsklinikum Tübingen (UKT)	PETTrace
GFR-20	University Hospital Ulm	Cyclone 18/9
01 K-20	Oniversity Hospital Oni	Cyclone 10/
HUNGARY		
HUN-1	Institute of Nuclear Research of the	MGC 20E
	Hungarian Academy of Sciences	
INDIA	W ishte De auto alatara Carta (MDCC)	MECO
IND-1	Variable Energy Cyclotron Centre (VECC)	VECC
INDONESIA		
INS-1	National Atomic Energy Agency, BATAN	CS 30
IRAN		
IRA-1	Nuclear Research Centre for Agriculture	Cyclone 30
	and Medicine (NRCAM)	
ISRAEL		~ • • • • •
ISR-1	Hadassah University Hospital	Cyclone 18/9

ITALY		
ITA-1	European Commission, ISPRA	MC-40
ITA-2	H. S. Raffaele Institute	RDS 112
ITA-3	Istituto Nazionale per lo Studio e la Cura dei Tumori (INT)	MC 17E
ITA-4	Consiglio Nazionale delle Ricerche	MC 17
ITA-5	Università di Padova	RDS 112
ITA-6	CNR Institute of Clinical Physiology	PETTrace
JAPAN		
JPN-1	National Institute for Longevity Sciences	HM-18
JPN-2	Research Institute for Brain and Blood Vessels Akita	BC-168
JPN-3	National Institute of Radiological Sciences	HM-18
JPN-4	National Institute of Radiological Sciences	AVF-930
JPN-5	Daiichi Radioisotope Laboratories, Ltd.	MC-40
JPN-6	Daiichi Radioisotope Laboratories, Ltd.	Cyclone 30
JPN-7	Nihon Medi-Physics Co. Ltd. Chiba Facility	480P
JPN-8	Nihon Medi-Physics Co. Ltd. Chiba Facility	750 PV
JPN-9	Kyushu University	BC 1710
JPN-10	Fukui Medical University	OSCAR 5
JPN-11	Japan Atomic Energy Research Institute	CGR-MeV 930
JPN-12	Gunma University School of Medicine	BC 1700
JPN-13	Nikko Memorial Hospital	RDS 111
JPN-14	Nihon Medi-Physics Co. Ltd. Hyogo Facility	Cyclone 30
JPN-15	Nihon Medi-Physics Co. Ltd. Hyogo Facility	Cyclone 30
JPN-16	Hyogo Institute for Aging Brain & Cognitive Disorders	OSCAR-2
JPN- 17	National Research Institute for Metals	BC 1710
JPN-18	Kanazawa Cardiovascular Hospital	BC 1710
JPN-19	Nishina Memorial Cyclotron Centre	MCY 1750
JPN-20	Nishijin Hospital	BC 1710
JPN-21	Kyoto University Hospital	Cypris 325
JPN-22	Nagoya City Rehabilitation Centre	Cypris 370
JPN-23	Nagoya University School of Medicine	BC 2211
JPN-24	Osaka City University Medical School Hospital	OSCAR SCC12P
JPN-25	Institute for Bifunctional Research	HM 18
JPN-26	National Cardiovascular Centre	Cypris 370
JPN-27	Hokkaido University Hospital	
JPN-28	Tohohu University, (CYRIC)	680 AVF
JPN-29	University of Tokyo	Cypris 370
JPN-30	Tokyo Metropolitian Institute of Gerontology	Cypris 370
JPN-31	National Centre of Neurology and Psychiatry	OSCAR, SCC12P
JPN-32	International Medical Centre of Japan	BC 2010N
JPN-33	HIMEDIC Imaging Centre at Lake Yamanaka	HM 18
	v	
KAZAKSTAN		11150
KAZ-1	Institute of Nuclear Physics	U 150
KOREA, REI	PURLICOF	
ROK-1	Seoul National University Hospital	TR-13
ROK-2	Korea Cancer Centre Hospital (KCCH)	MC 50
ROK-2 ROK-3	Samsung Medical Centre	PETTrace
1.012-J	Cantonic monitori Contro	
NETHERLAN	NDS	
NET-1	Vrije Universiteit	Cyclone 18/9
NET-2	Vrije Universiteit	AVF
NET-3	Eindhoven University of Technology (TUE)	AVF

NET-4 NET-5 NET-6 NET-7	Eindhoven University of Technology (TUE) Groningen University Hospital Mallinckrondt Medical B.V. Mallinckrondt Medical B.V.	ILEC MC 17F MC 17F Cyclone 30
NORWAY NOR-1	University of Oslo	MC 35
POLAND POL-1 POL-2	Henryk Niewodniczanski Institute of Physics Warsaw University	AIC-144 AVF
ROMANIA ROM-1	National Institute for Research & Development for Nuclear Physics & Engineering - Horia Hulubei	U-120
RUSSIAN FE	DERATION	
RUS-1	Bakoulev Scientific Centre for Cardiovascular Surgery	RDS-11
RUS-2	Cyclotron Co. Ltd.	U-150-1
RUS-3	Institute of the Human Brain	MC-17
RUS-4	V. G. Khlopin Radium Institute	MGC 20
SAUDI ARAB	REPUBLIC	
SAU-1	King Faisal Specialist Hospital and Research Center	CS 30
SOUTH AFRI	CA	
SAF-1	National Accelerator Centre (NAC)	NAC
SPAIN		
SPA-1	Centro PET Complutense	OSCAR
SPA-2	Clinica Universitaria de Navarra	Cyclone 18/9
51 A-2		Cyclone 10/9
SWEDEN		
SWE-1	Uppsala University	MC 17
SWITZERLA	ND	
SWI-1	University Hospital Geneva	Cyclone 18/9
SWI-2	Paul Scherrer Institute (PSI)	Phillips
SWI-3	University Hospital Zurich	PETTrace
SYRIAN ARA	B REPUBLIC	
SYR-1	Atomic Energy Commission of Syria (AECS)	Cyclone 30
UNITED KIN	GDOM	
UK-1	University of Aberdeen	CS-30
UK-2	University of Aberdeen	RDS 111
UK-3	The University of Birmingham	60" Nuffield
UK-4	The University of Birmingham	Radial Ridge
UK-5	Wolfson Brain Imaging Centre	PETTrace
UK-6	MRC Cyclotron Unit	MC 40 MARK II
UK-7	MRC Cyclotron Unit	3D
UK-8	St. Thomas Hospital	RDS 112
UK-9	Douglas Cyclotron Unit	MC-62

UNITED STATES OF AMERICA

UNITED STA	TES OF AMERICA	
USA-1	Good Samaritan Hospital	RDS 112
USA-2	Lawrence Berkeley National Labotratory	RDS 111
USA-3	Crocker Nuclear Laboratory	76"
USA-4	University of California-Irvine	MC 17
USA-5	University of California at Los Angeles	RDS 112
USA-6	University of California at Los Angeles	RDS 112
USA-7	University of Southern California	RDS 111
USA-8	PET-Net / VA Palo Alto	RDS 112
USA-9	Northern California PET Imaging Centre	RDS 112
USA-10	Yale University / VA PET Centre (115A)	RDS 112
USA-11	Mount Sinai Medical Centre	CS-30
USA-12	St. Joseph's Hospital	RDS 112
USA-13	Emory University PET Centre	RDS 112
USA-14	Theragenics Corporation	Cyclone 18+
USA-15	Theragenics Corporation	Cyclone 18+
USA-16	Theragenics Corporation	Cyclone 18+
USA-17	Theragenics Corporation	Cyclone 18+
USA-18	The Queens Medical Centre	RDS 111
USA-19	Medi-Physics, Inc.	MC-40
USA-20	Medi-Physics, Inc.	PV-750
USA-21	Medi-Physics, Inc.	MC-40
USA-22	PET-Net-Chicago	RDS 112
USA-22 USA-23	Methodist Medical Centre of Illinois	RDS 112
USA-24	Indiana University Cyclotron Facility	K200
USA-25	Indiana University Cyclotron Facility	K16
USA-26	Indiana University Hospital	RDS-112
USA-27	University of Iowa	MC-17 F
USA-28	Massachusetts General Hospital	MC-17 F
USA-29	Johns Hopkins Medical Institutions	RNP-16
USA-30	National Institute of Drug Abuse (NIDA)	RDS 111
USA-30	National Institute of Health	CS 30
USA-32	National Institute of Health	JSW-1710
USA-32 USA-33	University of Michingan	CS-30
USA-34	Gershenson Radiation Oncology Centre	K100-Harper
USA-35	Children's Hospital of Michigan	RDS-112
USA-35		
USA-30 USA-37	National Superconducting Cyclotron Laboratory	Superconducting
USA-37 USA-38	National Superconducting Cyclotron Laboratory William Beaumont Hospital	Superconducting RDS-112
USA-38 USA-39	VA Medical Centre (11P)	MC-40
USA-40		
USA-40 USA-41	Saint Louis University Hospital Creighton University	RDS 112 RDS 112
USA-41 USA-42	• •	CS-22
	Medi-Physics, Inc.	
USA-43	Medi-Physics, Inc.	Cyclone 30
USA-44	Columbia Presbyterian Medical Centre	RDS 112
USA-45	North Shore University Hospital	MC-17F
USA-46	State University of New York at Buffalo	Cyclone 30
USA-47	Memorial Sloan-Kettering Cancer Centre	CS-15
USA-48	Brookhaven National Laboratory	60"
USA-49	Brookhaven National Laboratory	JSW 1710
USA-50	Carolinas Medical Center	RDS 112
USA-51	Duke University Medical Centre	CS-30
USA-52	Bowman Gray School of Medicine	RDS 112
USA-53	The Christ Hospital	RDS 112

University Hospitals of ClevelandUSA-55Kettering Medical CentreRDS 112USA-56University of PennsylvaniaBC3015USA-57University of Pittsburg PET FacilityRDS 112
USA-56 University of Pennsylvania BC3015
• •
USA-57 University of Pittsburg PET Facility RDS 112
USA-58 University of Tennesse Medical Centre RDS 112
USA-59 Vanderbilt University RDS 112
USA-60 Oak Ridge National Laboratory K=100
USA-61 Texas A & M Cyclotron Institute K500
USA-62 University of Texas Health Centre at Houston MC-40
USA-63 University of Texas Research Imaging Centre MC 17F
USA-64 University of Washington Medical Centre MC-50
USA-65 West Virginia University PET Centre PETTrace
USA-66 University of Wisconsin RDS 112

ARGENTINA

[1]	Institute: Postal Address:	Comisión Nacional de Energía Atómica (CNEA) Avenida del Libertador 8250 1429 Buenos Aires
	Telephone: Fax/E-mail:	54-1-3798150 54-1-4800615
[2]	Person in-charge: (Tıtle/Position)	Lic. Carmelo Rocco Head of the Facility
	Other senior staff:	Roberto Strangis Eduardo Haro
[3]	Type of cyclotron: Manufacturer: Model:	Isochronous, Negative Ion The Cyclotron Corporation CP-42
	Year: (1) of installation: (11) of any major reconstruction:	1994

[4] Particle beams available:

	H	4 .	He	*He	Dual Beams
Beam energies/Range (MeV)	25 to 40		<u></u>		
Typical currents int (µA)					
Employed ext (µA)	100				

Hours per week machine is in operation (excluding maintenance):

The Cyclotron is not in routine operation yet

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Investigation

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
······································				
				·····
		·		

- [6] Radionuclides planned to be produced in the near future: ${}^{18}F, {}^{67}Ga, {}^{111}In, {}^{123}I, {}^{201}Tl$
- [7] Major radiopharmaceuticals produced: ²⁰¹Tl routine production planned from May 1997
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

[10] a. Are you engaged in nuclear reaction cross-section measurements? Yesb. Which type of nuclear data do you use?

- Reaction cross sections Yes
- Thick target yields
 - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

Yes

ARGENTINA

- Institute: [1] Fundacion Escuela de Medicina Nuclear Postal Address: Garibaldi 405 - Mendoza Telephone: 54-61-201615 Fax/E-mail: 54-61-203288 [2] Person in-charge: Eng. Enrique R. Noya (Title/Position) Other senior staff: Fernando Spigatini Norma Acosta Type of cyclotron: [3] Isochronous, Negative Ion Manufacturer: CTI Model: RDS 112 Year: (i) of installation: 1997 not finished (ii) of any major reconstruction:
- [4] Particle beams available:

Γ	¹ H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11			<u></u>	·
Typical currents int (µA)	50				
Employed ext (µA)					

Hours per week machine is in operation (excluding maintenance): Installation underway

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
. <u></u> .				
			·····	

- [6] Radionuclides planned to be produced in the near future: ${}^{II}C, {}^{I3}N, {}^{I5}O, {}^{I8}F$
- [7] Major radiopharmaceuticals produced:

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions?	No
	If yes, which ones and how often?	

[9]	Is medical research/diagnosis carried out on site/off site?		On site
	If on site, indicate imaging devices available r	number	
	* 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET)	Yes Yes	
	* Positron Emission Tomography (PET)	Yes	
[10]	a. Are you engaged in nuclear reaction crob. Which type of nuclear data do you use?		No
	- Reaction cross sections	No	
	- Thick target yields	No	
	- Decay data	No	
[11]	Does your institute accept IAEA research fell	ows for training/experience?	Yes

AUSTRALIA

[1]	Institute: Postal Address:	Peter MacCallum Cancer Institute 12 Cathedral Place East Melbourne, VIC 3002
	Telephone:	61-3-96561852
	Fax/E-mail:	61-3-96561826; rhicks@petermac.unimelb.edu.au
[2]	Person-in-charge:	Dr. Rodney Hicks
	(Title/Position)	Director of Nuclear Medicine & PET
	Other senior staff:	Peter Eu
		David Binns
[3]	Type of cyclotron:	In negotiation - planning & site development in progress
	Manufacturer:	1 0
	Model:	
	Year: (i) of installation: (ii) of any major reconstruction:	1998 planned

[4] Particle beams available:

	H	² H	ЗНе	⁴He	Dual Beams
Beam energies/Range (MeV)					
Typical currents int (µA)					
Employed ext (µA)					

Hours per week machine is in operation (excluding maintenance): Installation underway

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
· · · · · · · · · · · · · · · · · · ·				

- [6] Radionuclides planned to be produced in the near future: ${}^{II}C, {}^{I8}F, {}^{I24}I$
- [7] Major radiopharmaceuticals produced:
 ¹⁸F-FDG
 ¹⁸F-Fluoride
 ¹¹C-Acetate
 ¹¹C-Methionine
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
 If yes, which ones and how often? Planned for 3 other institutions

[9] Is medical research/diagnosis carried out on site/off site? Yes, on site

1

If on site, indicate imaging devices available number

* 511 KeV SPET

- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements? No
 b. Which type of nuclear data do you use?
 - Reaction cross sections
 - Thick target yields
 - Decay data

[11] Does your institute accept IAEA research fellows for training/experience? Yes

AUSTRALIA

[1]	Institute: Postal Address:	Austin & Repatriation Medical Centre Studley Road Heidelberg, VIC 3084
	Telephone:	61-3-94963995
	Fax/E-mail:	61-3-94576605; htd@austin.unimelb.edu.au
[2]	Person in-charge:	Dr. Henri Tochon-Danguy
	(Title/Position)	Senior Radiochemist
	Other senior staff:	Marcus Cook
		John Sachinidis
[3]	Type of cyclotron:	Negative Ion Accelerator
	Manufacturer:	IBA
	Model:	Cyclone 10/5
	Year: (i) of installation:	1992
	(ii) of any major reconstruction:	1996 (new ion-sources)

[4] Particle beams available:

		H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	10	5			
Typical currents int (µA)	50	20			
Employed ext (µA)					

Hours per week machine is in operation (excluding maintenance):	12
Hours per week employed in radionuclide production:	12
Hours per week machine maintenance:	4

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
<i>"C</i>	14 N	32	6 per week	$\begin{bmatrix} {}^{11}CO_2 \text{ or} \\ {}^{11}CH_4 \end{bmatrix}$
⁷³ N	⁷⁶ O	4	4 per week	¹³ NH₄OH
150	74 _N	4 GBq/min.	5 per week	$^{15}O_2$ and $^{15}CO_2$
⁷⁸ F	$H_2^{18}O(95)$	32	4 per week	enriched water recovery

- [6] Radionuclides planned to be produced in the near future:
- Major radiopharmaceuticals produced: ¹⁸F-FDG, ¹⁸F-FMISO ¹¹C-SCH 23390, ¹¹C-Flumazenil ¹³N-Ammonia ¹⁵O-O₂, ¹⁵O-CO₂, ¹⁵O-H₂O [7] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes [8] If yes, which ones and how often? ¹⁸F-FDG three time per we three time per week ¹⁸F-FMISO once a week [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) 6 * Positron Emission Tomography (PET) 1 Are you engaged in nuclear reaction cross-section measurements? No [10] a. Which type of nuclear data do you use? b. Reaction cross sections Yes -No Thick target yields _ Decay data Yes -[11] Does your institute accept IAEA research fellows for training/experience? Yes

AUSTRALIA

[1]	Institute: Postal Address:	Australian Nuclear Science & Technology Organization (ANSTO) Radiopharmaceuticals Division, Operations New Illawarra Rd, Lucas Heights Private Mail Bag 1 Menai, NSW 2234
	Telephone:	61-2-9565 7600
	Fax/E-mail:	61-2-9565 7676
[2]	Person in-charge:	C.R. Jamieson
	(Title/Position)	Operations Manager
	Other senior staff:	D. Arnott, D. Waters P. Barnes, P. Lam
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion IBA Cyclone 30
	Year: (i) of installation: (ii) of any major reconstruction:	1991 Commissioning of two new beam rooms, 1997

[4] Particle beams available:

	H	H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	15 - 30				yes
Typical currents int (µA)	400 / 50				
Employed ext (µA)	400 / 50 solid/PET targets				

100 +

8

Hours per week machine is in operation (excluding maintenance): 100 +

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: Investigative work into separation of Cu isotopes from Ga process effluent

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	14N2	40 (EOB)	3 per week	
¹³ N	H_2O^{16}	20 (EOB)	2 per month	
150	$H_2O^{16}(ppm)$	20 (EOB)	6 studies/year	
	$H_2^{18}O(96\%)$	65 (EOB)	6 per week	
⁶⁷ Ga	⁶⁸ Zn (97%)	90	1 per week	
123 _I	¹²⁴ Xe	40	l per week	Nordion
				process
²⁰¹ Tl	²⁰³ Tl (96%)	70	3 per week	

- [6] Radionuclides planned to be produced in the near future: III_{In} , IO3 Pd
- [7] Major radiopharmaceuticals produced: ⁶⁷Ga, ¹²³I, ²⁰¹Tl Bulk radiochemicals ¹⁸F-FDG, ¹³N-Ammonia, H₂¹⁵O Radiopharmaceuticals ¹¹CH₃I
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often? Radionuclides as for (7) supplied to Radiopharmaceuticals Division Operations for further processing to radiopharmaceutical and sale and distribution (one to two weekly batches of each) radiopharmaceutical to Royal Prince Alfred Hospital, Sydney PET facility (5 days per week), and to other local hospitals (¹⁸F-FDG) (one day per week). Expected increase this year to four times per week commercial for ¹⁸F-FDG within Sydney
- [9] Is medical research/diagnosis carried out on site/off site? Off site

If on site, indicate imaging devices available number

* 511 KeV SPET1* Gamma camera2* Single Photon Tomography (SPET)4* Positron Emission Tomography (PET)1

[10] a.Are you engaged in nuclear reaction cross-section measurements?Yesb.Which type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience?

BELGIUM

[1]	Institute: Postal Address:	Erasme Hospital PET Scan/Biomedical Cyclotron Unit Brussels Free University 808 Route de Lennik B-1070 Brussels
	Telephone: Fax/E-mail:	32-2-5554711 32-2-5554701;
[2]	Person in-charge: (Title/Position)	Dr. Serge Goldman
	Other senior staff:	Ph. Damhaut; M. Monclus J. Van Naemen; E. Mulleneers
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion IBA Cyclone 30
	Year: (i) of installation: (ii) of any major reconstruction:	1990

[4] Particle beams available:

	H (17)	² H	He	⁴ He	Dual Beams
Beam energies/Range (MeV)	15 - 30				
Typical currents int (µA)				<u>, , , , , , , , , , , , , , , , , , , </u>	
Employed ext (µA)	max: 50 (μA) 30 (μA) on target (typically employed)				

Hours per week machine is in operation (excluding maintenance):	15
Hours per week employed in radionuclide production:	15
Hours per week machine maintenance:	4

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
пс	N ₂ /0,5% O ₂	2	2 per week	
⁷³ N	H ₂ O/EtoH)	37	10 per week	¹³ NH ₄ ⁺ produced in target
150	$H_2^{16}O$	6.5	50 per year	H_2^{TSO} produced in target
⁷⁸ F	$H_2^{18}O$ (>95%)	25	4 per week	enriched water not recovered

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG, ¹⁸F-Altanrain, 6-¹⁸F-Fluoro-L-DOPA ¹¹C-Methionine, ¹³N-NH₄⁺, ¹⁵O-H₂O
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?			On site
	If on site, indi	cate imaging devices available	number	
	-		1	
[10]	a. Are you engaged in nuclear reaction cross-section measurements?b. Which type of nuclear data do you use?			No
	-	Reaction cross sections	No	
	-	Thick target yields	No	
	-	Decay data	No	
[11]	Does your ins	titute accept IAEA research fell	ows for training/experience?	Yes

BELGIUM

[1]	Institute: Postal Address:	VRIJE Universiteit Brussel Eenheid Cyclotron Laarbeeklaan 103 B-1090 Brussels
	Telephone: Fax/E-mail:	32-2-4774864 32-2-4774855;
[2]	Person in-charge: (Title/Position)	Prof. A. Hermanne; Prof. P. Van den Winkel
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	AVR CGR France 560
	Year: (i) of installation: (ii) of any major reconstruction:	1983
[4]	Particle beams available:	

		H	³ He	He	Dual Beams
Beam energies/Range (MeV)	5 - 42	10 - 21		20 - 43	
Typical currents int (µA)	300	300		45	
Employed ext (µA)	100	100		15	

3

Hours	per week	machine	is in	operation	(excluding	maintenance):	30
~~~~~	per veen			operanon	(		20

Hours per week employed in radionuclide production: 20

Hours per week machine maintenance:

Additional applications of the cyclotron: *Photonics* 

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
²⁸ Mg	Al	0.4 MBq	2 per month	
⁷⁷ Br	As	10 MBq	l per month	
²⁰¹ Pb/ ²⁰¹ Tl	²⁰³ Tl (97.5%)	3700/370	l per week	CEPE electrolysis for ²⁰³ Tl recovery

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ²⁰¹Tl in 9% NaCl
   ²⁸Mg in 9% NaCl

[8]	If ye ²⁸ Mg ²⁰¹ Ti	you supply radionuclides/radiopharmaceut es, which ones and how often? g in 9% NaCl (2 times per month) l in 9% NaCl (1 per week) in As-pellets (1 per month)	cicals to other institutions?	Yes
[9]	Is m	edical research/diagnosis carried out on si	te/off site?	On site
	If on	site, indicate imaging devices available r	umber	
	* 51	1 KeV SPET	1	
	* Ga	mma camera	3	
	* Sir	ngle Photon Tomography (SPET)	2	
		sitron Emission Tomography (PET)	1	
[10]	<ul><li>a. Are you engaged in nuclear reaction or</li><li>b. Which type of nuclear data do you use</li></ul>			Yes
		- Reaction cross sections	Yes	
		- Thick target yields	Yes	
		- Decay data	No	
[11]	Doe	s your institute accept IAEA research felle	ows for training/experience?	Yes

#### BELGIUM

[1]	Institute: Postal Address:	MDS Nordion S.A. Zone Industrielle B-6220 Fleurus
	Telephone: Fax/E-mail:	32-10-829211 32-10-829696
[2]	Person in-charge: (Title/Position) Other senior staff:	Dr. Claude Pirarat Manager, Radiochemical Production
[3]	Type of cyclotron: Manufacturer: Model: Year: (1) of installation: (11) of any major reconstruction:	Isochronous Cyclotron H IBA Cyclone 30 1992

[4] Particle beams available:

	H	<b>H</b>	³ He	He	Dual Beams
Beam energies/Range (MeV)	15-30				
Typical currents int (µA)	400				
Employed ext (µA)	400				

Hours per week machine is in operation (excluding maintenance):	160
Hours per week employed in radionuclide production:	160
Hours per week machine maintenance:	8

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{123}I$	¹²⁴ Xe (>99.9%)	100-250	4 per week	as needed
²⁰¹ Tl	²⁰³ Tl (>97%)	150-300	5 per week	as needed

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ²⁰¹ Tl, ¹²³I, ⁷²³I-MIBG, ¹²³I Hippuran Injectable
   ⁶⁷Ga (from bulk produced @ NDS Nordion Vancouver (BC Canada)

[8]	Do <u>:</u> Bull ¹²³ I,	you supply $k^{201}Tl - I$ 201Tl - E	radionuclides/radiopharmaceu Europe, North & South America urope (OEM manufacturing)	ticals to other institutions?	Yes
[9]	Is m	nedical reso	earch/diagnosis carried out on s	ite/off site?	Off site
	Ifor	n site, indi	cate imaging devices available r	umber	
	* Ga * Si	-			
[10]	а. b.	-	engaged in nuclear reaction cro ype of nuclear data do you use?		Yes
		- - -	Reaction cross sections Thick target yields Decay data	Yes Yes Yes	
[11]	Doe	s your inst	titute accept IAEA research fell	ows for training/experience?	Yes

#### **BELGIUM**

[1]	Institute: Postal Address:	Institute of Nuclear Sciences University of Gent Proeftuinstraat 86 B-9000 Gent
	Telephone:	32-9-2646616
	Fax/E-mail:	32-9-2646699; karelstrijckmans@rug.ac.be
[2]	Person in-charge:	Dr. Karel Strijckmans
	(Title/Position)	Research Director
	Other senior staff:	Patrick Goethals
[3]	Type of cyclotron:	Isochronous
	Manufacturer:	CGR-MeV (France)
	Model:	520
	Year: (i) of installation:	1977
	(ii) of any major reconstruction:	1982

[4] Particle beams available:

			³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	2.5 - 24	3 - 14.5	6 - 32	10 - 29	n d (14,5)+Be
Typical currents int (µA)					
Employed ext (µA)	20	20	1	1	

Hours per week machine is in operation (excluding maintenance):	66
Hours per week employed in radionuclide production:	11-17
Hours per week machine maintenance:	1
Additional applications of the cyclotron: Charged particle and fast neutron activation analysis (CPAA, FNAA) for trace element analysis; Production of customized calibration	

sources and tracers for the development of chemical preconcentration and separation procedures; Particle induced X-ray emission analysis (PIXE) for trace element analysis; Thin layer activation (TLA) for wear studies, Fast neutron beam dosimetry

Radiotherapy/Activation Analysis/Radiobiology/Physics:
Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
<i>"C</i>	$N_2$ (nat)	60	I-2 per week	
¹³ O	$N_2$ (nat)	4 GBq/min	1-2 per week	on-line
⁷⁸ F	$H_2O^{18}$ (97%)	10	1-2 per week	enriched water recovery
⁵⁵ Co	Fe (nat)	0.1	l per week	
$\frac{87}{Rb}$	Kr (nat)	0.4	2 per week	

- [6] Radionuclides planned to be produced in the near future:
- Major radiopharmaceuticals produced: [7] ¹⁵ $O_2$ ,  $C^{15}O_2$ ,  $C^{15}O_3$ ¹¹C-TdR, ¹¹C-methoxyprogabidic acid ¹⁸F-FDG, ¹⁸F-Fluoride⁵⁵ $Co^{2^+}$ , ⁸¹Rb/^{81m}KrDo you supply radionuclides/radiopharmaceuticals to other institutions?  $^{81}Rb/^{81m}Kr$  generator, 2 per week Yes [8] [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 1 [10] a. Are you engaged in nuclear reaction cross-section measurements? No Which type of nuclear data do you use? b. Reaction cross sections Yes _ Yes Thick target yields --Decay data Yes [11] Does your institute accept IAEA research fellows for training/experience? Yes

#### **BELGIUM**

[1]	Institute: Postal Address:	U.Z. Gasthuisberg Nuclear Medicine Herestraat 49 B-3000 Leuven	
	Telephone: Fax/E-mail:	32-16-343714 32-16-343759; guyborn	nans@UZ.kuleuven.ac.be
[2]	Person in-charge: (Title/Position)	Prof. Guy Bormans; PET Radiopharmacy;	
	Other senior staff:	J. Nuyts	
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion IBA Cyclone 10/5	
	Year: (i) of installation: (ii) of any major reconstruction:	1991	
[4]	Particle beams available:		

Γ	<b>H</b>	29	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	10	5			
Typical currents int (µA)	20	10			
Employed ext (µA)	20	10			

Hours per week machine is in operation (excluding maintenance): 15-2

Hours per week employed in radionuclide production: 15-20

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

l day per month

15-20

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
^{II} C	$^{nat}N_2$	20	5 per week	
¹³ N	$\overline{H_2^{16}O}$	1	3 per week	
¹⁵ 0	$naiN_2$	5	2 per week	
¹⁸ F	$H_2^{18}0$ (97%)	25	10 per week	enriched H ₂ ¹⁸ 0 recovery

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹³N-Ammonia
   ¹⁵O-Water
   ¹¹C-Acetate
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often? ¹⁸F-FDG to other centres in case of problems with their ¹⁸F-FDG production (~ 30/year) Is medical research/diagnosis carried out on site/off site? On site [9] If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera 4 * Single Photon Tomography (SPET) 5 1 (second camera end 1997) * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
  - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

#### **BELGIUM**

[1]	Institute: Postal Address:	Université de Liège Centre de Recherches du Cyclotron Sart Tilman B-4000 Liege
	Telephone: Fax/E-mail:	32-4-3663687 32-4-3662946; luxen@pet.crc.ulg.ac.be
[2]	Person in-charge: (Title/Position)	A. Luxen Director
	Other senior staff:	C. Brihaye; G. Del Fiore; C. Lemair; A. Plenevaux J. Aerts; E. Salmon; P. Maquet
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation:	CGR MeV 520 1972
	(ii) of any major reconstruction:	Will be replaced in 1998

[4] Particle beams available:

	H		³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	6 - 23	6 - 10			
Typical currents int (µA)					
Employed ext (µA)	15	15			

15

Hours per week machine is in operation (excluding maintenance):	45
Hours per week employed in radionuclide production:	30

Hours per week machine maintenance:

Additional applications of the cyclotron: *PIXE PET radioisotopes production* 

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹¹ C	N ₂	2000 mCı	4 per week	¹¹ CH ₃ I
¹⁵ O	N ₂	100 mCı	60 per week	$H_2^{I3}O$
¹³ N	H ₂ O	150 mCı	2 per week	$^{13}NH_4^{+}$
¹⁸ F	$H_2^{18}O(96\%)$	1500 mCı	6 per week	Enriched $H_2^{18}0$
			L	recovery

[6] Radionuclides planned to be produced in the near future.

[7]	Major radiopha ¹⁸ F-FDG, ¹⁸ F-L ¹¹ C-Methionine ¹³ N-Ammonia,	rmaceuticals produced: 20PA, ¹⁸ F-Tyrosine, ¹⁸ F-Altan ¹¹ C-Flumazenil, H ₂ ¹⁵ O	serine	
[8]	If yes, which or	radionuclides/radiopharmaceu les and how often? day, 120 mCi, to 1 hospital	ticals to other institutions?	Yes
[9]	Is medical resea	rch/diagnosis carried out on s	te/off site?	On site
	If on site, indica	ite imaging devices available i	umber	
		-	1	
[10]	•	engaged in nuclear reaction cro pe of nuclear data do you use?		No
	- -	Reaction cross sections Thick target yields Decay data	Yes Yes Yes	
[11]	Does your instit	ute accept IAEA research fell	ows for training/experience?	Yes

#### **BELGIUM**

[1]	Institute: Postal Address:	Université Catholique de Louvain Centre de Recherches du Cyclotron 2, Chemin du Cyclotron B-1348 Louvain-la-Neuve
	Telephone: Fax/E-mail:	32-10-472998 32-10-452183
[2]	Person in-charge: (Title/Position)	Dr. Michel Cogneau
	Other senior staff:	G. Ryckewaert M. Loiselet
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation:	Isochronous - Negative Ion (H) IBA Cyclone 30 (Prototype) 1987
	(ii) of any major reconstruction:	

[4] Particle beams available:

		H	He	⁴ He	Dual Beams
Beam energies/Range (MeV)	15 - 30				
Typical currents int (µA)	20 - 350				
Employed ext (µA)	20 - 250				

4

Hours per week machine is i	in operation	n (excluding maintenance):	50

Hours per week employed in radionuclide production: 50

Hours per week machine maintenance:

Additional applications of the cyclotron: Production of radioactive ion beams, post-accelerated with CYCLONE

Radiotherapy/Activation Analysis/Radiobiology/Physics: *Physics* 

Others: Nuclear Physics and Nuclear Astrophysics

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	naiN	40	2 per week	
⁷³ N	$H_2^{nat}O$	4	3 per week	
750	natO ₂	0.3 GBq x 10 batch	2 per week	
⁷⁸ F	$H_2^{-18}O(96\%)$	10	4-5 per week	enriched H ₂ ¹⁸ O recovery
86 Y	⁸⁶ Sr CO ₃ (92%)	1	1 per week	target recovered

[6] Radionuclides planned to be produced in the near future:

2 Hospitals

[7] Major radiopharmaceuticals produced:
¹⁸F-FDG
¹¹C-CO₂, ¹¹C-CO, ¹¹C-Accetate, ¹¹C-Palmitate, ¹¹C-Thymidine
¹³N-Ammonia
¹⁵O-Oxygen, ¹⁵O-Water, ¹⁵O-Carbon Monoxide, ¹⁵O-Carbon dioxide
[8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often?
¹⁸F-FDG 3 Hospitals occasionally

weekly

[9]	Is me	edical resea	rch/diagnosis carried out or	n site/off site?	Yes
	If on	site, indica	te imaging devices availab	le number	
	* Gai * Sin			1	
[10]	a. b	•	ngaged in nuclear reaction be of nuclear data do you us	cross-section measurements? se?	Yes
		- - -	Reaction cross sections Thick target yields Decay data	Yes Yes Yes	

[11] Does your institute accept IAEA research fellows for training/experience? Yes

#### **BELGIUM**

[1]	Institute: Postal Address:	Université Catholique de Louvain Centre de Recherches du Cyclotron 2, Chemin du Cyclotron B-1348 Louvain-la-Neuve
	Telephone: Fax/E-mail:	32-10-472998 32-10-452183
[2]	Person in-charge: (Title/Position)	Ir. G. Ryckewaert Director
	Other senior staff:	M. Loiselet Michel Cogneau
[3]	Type of cyclotron: Manufacturer: Model:	Isochronous Multiparticle Variable Energy Thomson - CSF Cyclone
	Year: (i) of installation: (ii) of any major reconstruction:	1969-1972

[4] Particle beams available:

	<b>B</b> .	<b>. 4</b> 1.	³ He	He.	Dual Beams
Beam energies/Range (MeV)	20 - 85	10 - 55	15 - 145	20 - 110	
Typical currents int (µA)	30	20	5	20	
Employed ext (µA)	20	10	5	10	

Hours per week machine is in operation (excluding maintenance):	av. 150
Hours per week employed in radionuclide production:	av. 8
Hours per week machine maintenance:	av. 4

Additional applications of the cyclotron: Nuclear Physics and Astrophysics, Neutron Therapy, Applied Physics

Radiotherapy/Activation Analysis/Radiobiology/Physics: Radiotherapy, Physics

Others: Nuclear Physics and Nuclear Astrophysics BEL-8

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
²⁸ Mg	Al (100%)	20 MBq	1 per month	
⁵² Fe	Mn (100%)	0,2 - 2	1 per week	
⁹⁴ 95 96 <i>Tc</i>	Mo (nat)	0,1 - 0,01	l per month	

- Radionuclides planned to be produced in the near future:  ${}^{\delta\delta}Sr$ [6]
- Major radiopharmaceuticals produced:  ${}^{52}FeCl_3$ [7]

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions?	Yes
	If yes, which ones and how often?	
	Sporadically - To 2 Centres	

[9]	Is medical research/diagnosis carried out on site/off site?	Yes
	If on site, indicate imaging devices available number	

ı٤ ε

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements? Yes Which type of nuclear data do you use? b.

1

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? Yes

#### BRAZIL

[1]	Institute: Postal Address:	Instituto de Engenharia Nuclear Caixa Postal 68550, 2, Chemin du Cyclotron Rio de Janeiro
	Telephone: Fax/E-mail:	55-21-5604113 ext. 2184 55-21-5902692
[2]	Person in-charge: (Title/Position)	Sergio Chaves Cabral Head of Physics Department
	Other senior staff:	Ana Maria Silveira Braghirolli; Jackson L. Queiroz de Britto; Miguel Angelo Valle Bastos; Luiz Claudio Martins Aleixo
[3]	Type of cyclotron: Manufacturer: Model:	Multiparticle, Variable Energy, Isochronous The Cyclotron Corporation CV-28
	Year: (1) of installation: (ii) of any major reconstruction:	1974 1985

[4] Particle beams available:

[	H.		³ He	He	Dual Beams
Beam energies/Range (MeV)	2 - 24	4 - 14	6 - 36	8 - 28	
Typical currents int (µA)					
Employed ext (µA)	20 - 30	20 - 40	2 - 10	3 - 40	

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Nuclear data measurements, Charge particle activation analysis, Studies of radiation damage in materials

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

- * The production was stopped October 1995, to rebuild every ancillary system (air conditioning and ventilation system, filters, power supplies etc.)
- ** The production will start October 1997. At this time the production of ¹²³I will be via ¹²⁴Xe target. The production will start with 37 GBq per week in 1997 increasing to 165 GBq per week in 2000.

24 hours */40 hours **

8 hours/30 hours**

8

Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹²⁴ Te (96%)	1 85	l per week	
	(enrichment)	(enrichment) per batch	(enrichment) per batch

- [6] Radionuclides planned to be produced in the near future  $^{123}I$  via  $^{124}Xe$  (37 GBq/week)**  $^{18}F$ -FDG via  $H_2^{-18}O$  (37 GBq/week)**  $^{67}Ga$  via  $^{68}Zn$  (12 GBq/week)**
- [7] Major radiopharmaceuticals produced

[8]	Do you supply radionuclides/radioph If yes, which ones and how often? Once a week to 3 hospitals in Rio de		Yes
[9]	Is medical research/diagnosis carried	out on site/off site?	Off site
	If on site, indicate imaging devices a	vailable number	
(10)	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET</li> <li>* Positron Emission Tomography (P)</li> </ul>	ET)	V
[10]	<ul><li>a Are you engaged in nuclear real</li><li>b Which type of nuclear data do</li></ul>	action cross-section measurements? you use?	Yes
	<ul> <li>Reaction cross sect</li> <li>Thick target yields</li> <li>Decay data</li> </ul>		
[11]	Does your institute accept IAEA rese	earch fellows for training/experience?	Yes

#### BRAZIL

[1]	Institute: Postal Address:	Instituto de Pesquisas Energéticas e Nucleares Caixa Postal 11049 Pinheiros, CEP 05422-970 São Paulo
	Telephone: Fax/E-mail:	55-11-8169000 55-11-8169275 55-11-2123546 55-11-8169186
[2]	Person in-charge: (Title/Position) Person in-charge: (Title/Position)	Wanderley de Lima Head, Industrial Applications Department C. Pagano Gonçalves da Silva Head, Radioisotope Department
	Other senior staff:	Sumair Gouveia de Araujo; Valdir Sciani Ana Lucia V. Pinheiro Lima; Wo Houi Ling Wang; Margarida Enoshita Otomo; Jair Mengatti; João Alberto Osso Jr.
[3]	Type of cyclotron: Manufacturer: Model:	Isochronous, Compact, variable Energy The cyclotron corporation CV-28
	Year: (i) of installation: (ii) of any major reconstruction:	1981

[4] Particle beams available:

	H ¹	. <b>H</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	2 - 14	4 - 14	6 - 36	8 - 28	
Typical currents int (µA)	200	300	135	90	
Employed ext (µA)	10 to 20				

8

5

Hours per week machine is in operation (excluding maintenance): 10

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Research on calibration sources, Excitation functions Activation Analysis, Nuclear Reactions

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
⁷⁸ F	$H_2^{18}O(96\%)$	tracer	not routinely	optimization for routine production
57Co	^{nat} Ni Metal	230	not routinely	
¹¹¹ In	^{nat} Cd electroplated.	tracer		optimization for routine production
123 _I	¹²⁴ TeO ₂	3700	1-2 per week	reirradiated

- Radionuclides planned to be produced in the near future:  ${}^{18}F$ ,  ${}^{111}In$ [6]
- [7] Major radiopharmaceuticals produced:  $^{18}F$ -FDG (planned)
- Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes [8] If yes, which ones and how often? Hospitals and medical centres: once a week
- [9] Is medical research/diagnosis carried out on site/off site? No

1

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera

- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements? Which type of nuclear data do you use? b.

-	Reaction cross sections	Yes
•	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? Yes

#### BRAZIL

Particle beams available: [4]

		H	Ele	. the	Dual Beams
Beam energies/Range (MeV)	15 - 30				
Typical currents int (µA)	up to 350				
Employed ext (µA)	± up to 350				

Hours per week machine is in operation (excluding maintenance):

40 Planned

30

8

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

BRA-3

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments

- [6] Radionuclides planned to be produced in the near future:  ${}^{18}F, {}^{123}I, {}^{67}Ga, {}^{111}In, {}^{201}Tl$
- [7] Major radiopharmaceuticals produced.
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9] Is medical research/diagnosis carried out on site/off site? No

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera

b

- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements?
  - Which type of nuclear data do you use?
    - Reaction cross sections
    - Thick target yields
    - Decay data

[11] Does your institute accept IAEA research fellows for training/experience? Yes

#### CANADA

[1]	Institute: Postal Address:	TRIUMF 4004 Wesbrook Mall Vancouver, BC Canada V6T 2A3
	Telephone: Fax/E-mail:	1-604-2221047 1-604-2221074
[2]	Person in-charge: (Title/Position)	Dr. Nigel R. Stevenson
	Other senior staff:	R. Van Den Elzen
[3]	Type of cyclotron: Manufacturer: Model:	H / Sector-focused The Cyclotron Corporation CP42
	Year: (i) of installation: (ii) of any major reconstruction:	1980 1991

[4] Particle beams available:

۰.

Γ	H	EF .	³ He	4He	Dual Beams
Beam energies/Range (MeV)	15 - 42				
Typical currents int (µA)	250				
Employed ext (µA)	250				

12

Hours per week machine is in operation (excluding maintenance): 156

Hours per week employed in radionuclide production: 156

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{I3}N$	$H_2O$		4 per week	for PET
$^{18}F$	nat Ne		4 per week	for PET
⁵⁷ Co	³⁸ Ni			
⁶⁷ Ga	⁶⁸ Zn		5 per week	
¹¹¹ In	¹¹² Cd		6 per week	
123 _I	⁷²⁴ Xe			
²⁰¹ Tl	²⁰³ Tl		3 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹²³I Based Radiopharmaceuticals
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often?
   TRIUMF produces radionuclides for MDS Nordion
   MDS Nordion is supplier of the radiochemicals
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

# [10] aAre you engaged in nuclear reaction cross-section measurements?NobWhich type of nuclear data do you use?

- Reaction cross sections
- Thick target yields
- Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

## CANADA

[1]	Institute: Postal Address:	TRIUMF 4004 Wesbrook Mall Vancouver, BC Canada V6T 2A3
	Telephone: Fax/E-mail:	1-604-2221047 1-604-2221074
[2]	Person in-charge: (Title/Position)	Dr. Nigel R. Stevenson
	Other senior staff:	R. Van Den Elzen
[3]	Type of cyclotron: Manufacturer: Model:	H / Sector-focused EBCO TR30
	Year: (i) of installation: (ii) of any major reconstruction:	1990 1995

## [4] Particle beams available:

Γ	H	2 <u>H</u>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	15 - 30				yes
Typical currents int (µA)	2 x 350				
Employed ext (µA)	2 x 350				

12

Hours per week machine is in operation (excluding maintenance):	156
Hours per week employed in radionuclide production:	156

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
⁵⁷ Co	⁵⁸ Ni			
⁶⁷ Ga	⁶⁸ Zn			
¹¹¹ In	112Cd			
¹²³ I	¹²⁴ Xe			
²⁰¹ Tl	203Tl	· · · · · · · · · · · · · · · · · · ·		

- [6] Radionuclides planned to be produced in the near future
- [7] Major radiopharmaceuticals produced ¹²³I Based Radiopharmaceuticals

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions?	Yes
	If yes, which ones and how often?	
	TRIUMF supplies MDS Nordion with irradiated target materials	
	MDS Nordion is supplier of radiochemicals	

#### [9] Is medical research/diagnosis carried out on site/off site? No If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] aAre you engaged in nuclear reaction cross-section measurements?NobWhich type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
  - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

## CANADA

[1]	Institute: Postal Address:	TRIUMF 4004 Wesbrook Mall Vancouver, BC Canada V6T 2A3
	Telephone: Fax/E-mail:	1-604-2221047 1-604-2221074
[2]	Person in-charge: (Title/Position)	Dr. Nigel R. Stevenson (for radionuclide production at 470 MeV)
	Other senior staff:	R. Van Den Elzen
[3]	Type of cyclotron: Manufacturer: Model:	520 MeV H / Sector-focused TRIUMF
	Year: (i) of installation: (ii) of any major reconstruction:	1962 1997

#### [4] Particle beams available:

	H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	70 - 520				
Typical currents int (µA)	150				
Employed ext (µA)	140 μA @ 470 MeV				

24

Hours per week machine is in operation (excluding maintenance):	130

Hours per week employed in radionuclide production: ~120

Hours per week machine maintenance:

Additional applications of the cyclotron: *Scientific Research* 

Radiotherapy/Activation Analysis/Radiobiology/Physics: Proton Therapy

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
⁸² Sr/ ⁸² Rb	^{nat} Mo		2-4 per month	470 MeV
⁸² Sr/ ⁸² Rb	^{nat} Rb		2-4 per month	70 MeV

- [6] Radionuclides planned to be produced in the near future:  $ZnO \ targets \ to \ produce^{67}Cu \ at \ 470 \ MeV$
- [7] Major radiopharmaceuticals produced:
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often?
   ⁸²Sr/⁸²Rb to MDS Nordion. MDS Nordion is supplier of radiochemicals
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

# [10] a. Are you engaged in nuclear reaction cross-section measurements? Yesb. Which type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience?

## CANADA

[1]	Institute: Postal Address:	TRIUMF PET Programme 4004 Wesbrook Mall Vancouver, BC Canada V6T 2A3
	Telephone: Fax/E-mail:	1-604-2221047 1-604-2221074
[2]	Person in-charge: (Title/Position)	Mr. Ken Buckley, Project Engineer
	Other senior staff:	Tom Ruth
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion, Sector-focused EBCO TR13
	Year: (i) of installation: (ii) of any major reconstruction:	1994

[4] Particle beams available:

	¹ H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	13 - 19	<u> </u>			yes
Typical currents int (µA)	100 μA circulating, 50 (μA) per side extracted				
Employed ext (µA)	20-30 µA typically used on target				

15

2.5

Hours per week machine is in operation (excluding maintenance): 35

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
Be	Li	37 MBq	l per week	
<i>"C</i>	$N_2 + 10\% H_2$	20	10 per week	as ¹¹ C-CH ₄
/8 _F	$H_2^{-18}O(>90\%)$	5	l per week	enriched H ₂ ¹⁸ O recovered
$^{18}F_2$	¹⁸ O ₂ (>98%)	10	3 per week	retrap ¹⁸ O ₂
48 _V	⁴⁸ Ti	100 MBq	4 times	

[6] Radionuclides planned to be produced in the near future:

[7]	Major radiopharmaceuticals produced: ¹⁸ F-FDG, ¹⁸ F-DOPA, ¹¹ C-Safoperse, ¹¹ C-Raclopride, ¹¹ C-Tetrabend ¹¹ C-Schering 23390, ¹¹ C-6-FMT	nzine, ¹¹ C-Methylphenidate,	
[8]	Do you supply radionuclides/radiopharmaceu If yes, which ones and how often? ¹⁸ F-FDG 1 per week	ticals to other institutions?	Yes
[9]	Is medical research/diagnosis carried out on s On campus 2.5 km from cyclotron	ite/off site?	On site
	If on site, indicate imaging devices available	number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	1	
[10]	<ul><li>a. Are you engaged in nuclear reaction crob.</li><li>b. Which type of nuclear data do you use?</li></ul>		No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	Yes Yes Yes	
[11]	Does your institute accept IAEA research fell	ows for training/experience?	Yes

## CANADA

[1]	Institute: Postal Address:	McMaster University Radiology and Nuclear Medicine 1200 Main St. West, Hamilton, ON Canada L8N 3Z5
	Telephone: Fax/E-mail:	1-905-5212100 ext. 5671 1-905-5461125
[2]	Person in-charge: (Title/Position)	Prof. Günter Firnau Radiochemist
	Other senior staff:	Raman Chirakal Jia Juen Chen
[3]	Type of cyclotron: Manufacturer: Model:	RDS-112 CTI
	Year: (i) of installation: (ii) of any major reconstruction:	1990 Implementation of $^{18}F$ -F ₂ Target
[4]	Particle beams available:	

	¹ H	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	11				
Typical currents int (µA)					
Employed ext (µA)	40				

Hours per week machine is in operation (excluding maintenance):	6
Hours per week employed in radionuclide production:	6
Hours per week machine maintenance:	2
Additional applications of the cyclotron: Production of positron emitting radionuclides to support	

Production of positron emitting radionuclides to support 3 PET-scanners for clinical PET and clinical research; and development of novel radiopharmaceuticals for PET

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}CCO_2$	$1^4 N_2 + 1\% O_2$	55	3 per week	for organic. Synthesis
$^{73}NNH_4^+$	$H_2^{16}O$	18	5 per week	for heart sudies
¹⁵ O O ₂	$^{15}N_2$ +2 5% $O_2$	5	6 per week	used as H ₂ ¹⁵ O in brain activation studies
$^{I8}F$	$H_2^{18}O(96\%)$	22	7 per week	enriched H ₂ ¹⁸ O recovery
$^{18}FF_2$	¹⁸ O-gas (98%)	13	2 per week	¹⁸ O ₂ -gas is recovered

- [6] Radionuclides planned to be produced in the near future:  $^{94m}Tc$ ,  $^{103}Pd$
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-Fluoromisoimidazol,¹⁸F-FDG, 6-¹⁸F-Fluorodopamine
   6-¹⁸F-Fluoro-L-DOPA, 6-¹⁸F-Fluoro-L-meta-tyrosine,¹⁸F-Fluoroprophyl-spiperome
   ¹³N-Ammonia
   ¹¹C-S-20098,¹¹C-Acetate
   ¹⁵O-Water
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often?  $2 per week 300 \pm 30 mCi of {}^{18}FDG transport by car to Ottawa$
- [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number
- * 511 KeV SPET * Gamma camera 3 * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 2 Are you engaged in nuclear reaction cross-section measurements? No [10] a Which type of nuclear data do you use? b Reaction cross sections Yes Yes Thick target yields _ Decay data Yes
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

# CANADA

[1]	Institute: Postal Address:	Clarke Institute of Psychiatry 250 College Street Toronto, ON Canada M5T 1R8
	Telephone: Fax/E-mail:	1-416-9794651 1-416-9794656
[2]	Person in-charge: (Title/Position)	Dr. Sylvain Houle Head, PET Centre
	Other senior staff:	Alan A. Wilson; Jean Da Silva
[3]	Type of cyclotron: Manufacturer: Model:	Fixed Energy Isochronous Scanditronix MC-17
	Year: (i) of installation: (ii) of any major reconstruction:	1991

[4] Particle beams available:

Γ	Η [′]	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	17	8.5			
Typical currents int (µA)	15 - 60	20 - 25			
Employed ext (µA)	10 - 40	10 - 12			

Hours per week machine maintenance:	2 - 3 additional one week maintenance per year
Hours per week employed in radionuclide production:	20 - 22
Hours per week machine is in operation (excluding mai	ntenance): 20 - 25

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics: Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	¹⁴ N	40	5 per week	
150	¹⁴ N	n/a*	10 per week	on line production*
¹⁸ F	$H_2^{18}O(50-97\%)$	4	4 per week	enriched water recovery

- * On line continuous production for activation studies
- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁵O-Water,
   ¹⁸F-FDG, ¹⁸F-Setoperone
   ¹¹C-Raclopride, ¹¹C-SCH 23390, ¹¹C-RTI 32
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera

_

- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET) 1
- [10] a.Are you engaged in nuclear reaction cross-section measurements?NobWhich type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
    - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

## CANADA

[1]	Institute: Postal Address:	Montreal Neurological Institute McGill University 3801 University Street Montreal , Quebec Canada H3A2BA
	Telephone: Fax/E-mail:	1-514-3988526 mirko@pet.mni.mcgill.ca
[2]	Person in-charge: (Title/Position)	Prof. Mirko Diksic
	Other senior staff:	Dean Jolly
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion IBA Cyclone 18/9
	Year: (i) of installation: (ii) of any major reconstruction:	1993
[4]	Particle beams available:	

	¹ H	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	18	9			yes
Typical currents int (µA)	100	60			
Employed ext (µA)	30 - 40	20			

2-3

Hours	per week	machine	is in o	operation	excluding	g maintenance)	: 20-30
i i vai o	per meen	maonino	10 111	operation	Conoracing	5 manneen anocy	. 20-30

Hours per week employed in radionuclide production: 20-30

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{11}CO_2$	14N2	22	10 per week	
15 ₀	$^{15}N_2$	07-2	40 per week	
¹⁸ F	$H_2^{18}O(96\%)$	7	2-3 per week	
$^{18}FF_2$	²⁰ Ne	11	2-3 per week	

[6] Radionuclides planned to be produced in the near future.

[7]	Major radiopharmaceuticals produced: ¹⁸ F-FDG, ¹⁸ F-DOPA, ¹¹ C-RO 15-1788, ¹¹ C-Deprenyl, ¹¹ C-α -methy ¹¹ C Bensotropine	l-L-trypotophan, ¹¹ C-PK-11195,	
[8]	Do you supply radionuclides/radiopharmaceu If yes, which ones and how often?	ticals to other institutions?	No
[9]	Is medical research/diagnosis carried out on s If on site, indicate imaging devices available		On site
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	2	
[10]	<ul><li>a Are you engaged in nuclear reaction cr</li><li>b Which type of nuclear data do you use'</li></ul>		No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	Yes Yes Yes	
[11]	Does your institute accept IAEA research fell	ows for training/experience?	Yes

## CHINA

[1]	Institute: Postal Address:	China Institute of Atomic Energy P.O. Box 275 (99) 102413 Beijing
	Telephone:	86-01-69358090
	Fax/E-mail:	86-01-69357195
[2]	Person in-charge: (Title/Position)	Li Da Kang
	Other senior staff:	Zhao Gui Zhi; Zhao Zhen Lu; Shen de Heng; Xu Shu He; Xie Xiang Gian
[3]	Type of cyclotron:	Negative Ion
.,	Manufacturer:	IBA
	Model:	Cyclone 30
	Year: (i) of installation: (ii) of any major reconstruction:	1995

[4] Particle beams available:

		He	He Dual Beam
Beam energies/Range (MeV)	15 ~ 30		
Typical currents int (µA)			
Employed ext (µA)	100 ~ 220		

Hours per week machine is in operation (excluding maintenance):	4 days per week
Hours per week employed in radionuclide production:	4 days per week
Hours per week machine maintenance:	1 day per week

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁸ F	$H_2^{18}O(96\%)$	14.8	2 per week	as ¹⁸ FDG
	⁻⁵⁸ Ni (>99%)	37	l per week	enriched ⁵⁰ Ni recovery
⁶⁷ Ga	^{nat} Zn	15	l per week	
⁶⁸ Ge	^{nat} Ga Alloy	1.85	few	
IIIIIn	^{nat} cd or ¹¹⁷ cd (>96%)	15	l per week	
$^{201}Tl$	natTl	3	l per week	

- [6] Radionuclides planned to be produced in the near future:  $^{123}I$ ,  $^{186}Re$
- [7] Major radiopharmaceuticals produced:  $^{201}Tl, {}^{67}Ga, {}^{18}F-FDG$

[8]	Do you supply radionuclides/radiopharmace If yes, which ones and how often? ⁵⁷ Co to USA 1 per month	uticals to other institutions?	Yes
[9]	Is medical research/diagnosis carried out on On campus 2 5 km from cyclotron	site/off site?	Off site
	If on site, indicate imaging devices available	e number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	2	
[10]	<ul><li>a Are you engaged in nuclear reaction of</li><li>b. Which type of nuclear data do you use</li></ul>		No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	Yes Yes Yes	
[11]	Does your institute accept IAEA research fe	llows for training/experience?	Yes

## CHINA

[1]	Institute: Postal Address:	Beijing Normal University Beijing Cyclotron Produced Radiopharmaceutical Laboratory Institute of Applied Chemistry 100875 Beijing
	Telephone: Fax/E-mail:	86-01-62207786, 62208396 86-01-62200567; Liuboli@bnu.edu.cn
[2]	Person in-charge: (Title/Position)	Bo Li Liu Professor of Radiochemistry, Dean
	Other senior staff:	Huang Zheng Xing; Prof. Liu Zheng Hao; Zhang Hui Xing; Chen Ru Yi; Tang Zhi Gang
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion TCC CS-30
	Year: (i) of installation: (ii) of any major reconstruction:	1986
[4]	Particle beams available:	

Г	¹ H	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	26	12	30	24	
Typical currents int (µA)	250				
Employed ext (µA)	100				

20

4

Hours per week machine is in operation (excluding maintenance): 2	Hour	rs per	week	machine	is in	operation	(excluding	maintenance):	25
-------------------------------------------------------------------	------	--------	------	---------	-------	-----------	------------	---------------	----

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
⁵⁷ Co	nat Zn	8	1 per week	
⁶⁷ Ga	nat Zn	74	1 per week	
^{III} In	nat Cd	37	1 per week	
			····	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ⁶⁷Ga-Citrate ¹¹¹In-Chloride
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? ⁵⁷Co to Institute of Atomic Energy in Beijing ⁶⁷Ga to Hospitals in Beijing

[9]	Is medical research/diagnosis carried out on site/off site?	No
-----	-------------------------------------------------------------	----

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? No

## CHINA

[1]	Institute: Postal Address:	Beijing Normal University Beijing Cyclotron Produced Radiopharmaceutical Laboratory Institute of Applied Chemistry 100875 Beijing
	Telephone: Fax/E-mail:	86-01-62207786, 62208396 86-01-62200567; Liuboli@bnu.edu.cn
[2]	Person in-charge: (Title/Position)	Bo Li Liu Professor of Radiochemistry, Dean
	Other senior staff:	Huang Zheng Xing; Prof. Liu Zheng Hao; Zhang Hui Xing; Chen Ru Yi; Tang Zhi Gang
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion TCC CS-22
	Year: (i) of installation: (ii) of any major reconstruction:	1997 Donated by UCLA
[4]	Particle beams available:	

[4] Particle beams available:

Г	¹ H	<u></u>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	22				
Typical currents int (µA)	100				
Employed ext (µA)	50				

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
			······································	

- [6] Radionuclides planned to be produced in the near future:  ${}^{II}C, {}^{I3}N, {}^{I5}O, {}^{I8}F$
- [7] Major radiopharmaceuticals produced:
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a.Are you engaged in nuclear reaction cross-section measurements?NobWhich type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? No

## CHINA

[1]	Institute: Postal Address:	Zibo Wanjie Hospital Boshan, Zibo Shandong
	Telephone: Fax/E-mail:	86-533-4650000 8730 86-533-4650830
[2]	Person in-charge: (Title/Position)	Sun Qiyin
	Other senior staff:	Wang Ming Fang; Zhao Jun;Wang Changqing; Li Jiamin; Song Shuqiang
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation:	Negative Ion GE PETTRACE 1995
	(ii) of any major reconstruction:	

[4] Particle beams available:

ſ	Η	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	16.5				
Typical currents int (µA)					
Employed ext (µA)	20~30				

Hours per week machine is in operation (excluding maintenance):	6
Hours per week employed in radionuclide production:	5
Hours per week machine maintenance:	7

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:
Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$-\frac{13}{N}$	$H_2^{16}O$	37~5.5	6 per week	
¹⁸ F	$H_2^{18}O(98\%)$	75	4 per week	$enriched H_2^{18}O$ recovery

- [6] Radionuclides planned to be produced in the near future:  ${}^{11}C, {}^{15}O, {}^{82}Rb$
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹³N-Ammonia
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site? Off site

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET) 1

# [10] a. Are you engaged in nuclear reaction cross-section measurements? Yes b. Which type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? Yes

#### **CHINA**

[1]	Institute: Postal Address:	Shanghai Institute of Nuclear Research P.O. Box 800-204 201800 Shanghai
	Telephone: Fax/E-mail:	86-21-59553634 86-21-59552509; yxwang@fudan.ihep.ac.cn
[2]	Person in-charge: (Title/Position)	Prof. Wang Yongxian Director
	Other senior staff:	Fang Fasheng; Li Jiamin; Song Shuqiang
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion IBA Cyclone 30
	Year: (i) of installation: (ii) of any major reconstruction:	1996

[4] Particle beams available:

Γ	· H ¹	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	15 - 30	9 (v K) 9			
Typical currents int (µA)	>2mA				
Employed ext (µA)	400				

60

Hours per week machine is in operation (excluding maintenance):	60
-----------------------------------------------------------------	----

Hours per week employed in radionuclide production:

Hours per week machine maintenance: 24

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: *Neutron therapy* 

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
⁶⁷ Ga	Zn (natural)	31	2 per week	
123 _I	¹²⁴ Te (92%)	21	2 per week	enriched ¹²⁴ Te recovery
²⁰¹ Tl	Tl (natural)	13	2 per week	

- [6] Radionuclides planned to be produced in the near future:  $III_{In}$ ,  $S^{57}Co$ ,  $I^{09}Cd$ ,  $S^{68}Ge$
- Major radiopharmaceuticals produced [7] ⁶⁷Ga-citrate injection ²⁰¹Tl- chloride injection ¹²³I-Sodium iodide injection [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often? To hospitals in Shanghai and its vicinity, 2 per week Off site [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) Are you engaged in nuclear reaction cross-section measurements? No [10] a b Which type of nuclear data do you use? Yes _ Reaction cross sections Thick target yields Yes --Decay data Yes
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

#### **CZECH REPUBLIC**

Řež near Prague 25068 Řež

420-2-66173613

Ing. Jan Štursa

Nuclear Physics Institute

420-2-6857003; stursa@ujf.cas.cz

Head of the Cyclotron Division

[1] Institute: Postal Address:

> Telephone: Fax/E-mail:

[2] Person in-charge: (Title/Position)

Other senior staff:

[3] Type of cyclotron: Manufacturer: Model:

Isochronous Cyclotron JINR Dubna, Russia

1977 First beam Year: (i) of installation: (11) of any major reconstruction: 1992 Axial injection

#### [4] Particle beams available:

	<b>H</b>		÷He	He	Dual Beams
Beam energies/Range (MeV)	13 - 37	12 - 20	23 - 54	24 - 40	
Typical currents int (µA)	20 H 90 H ⁺	90	40	40	
Employed ext (µA)	5 20	5	5	5	

U-120M

Hours per week machine is in operation (excluding maintenance):	22
Hours per week employed in radionuclide production:	14
Hours per week machine maintenance:	8
Additional applications of the cyclotron: Nuclear Spectroscopy Nuclear Reactions Radiobiology	

Radiobiology Solid State Physics

Radiotherapy/Activation Analysis/Radiobiology/Physics:

#### CZR-J

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
⁶⁷ Ga	⁶⁸ Zn (99%)	9	l per week	
¹¹¹ In	$^{112}Cd~(98\%)$	9	l per month	
²⁰¹ Tl	²⁰³ Tl (98%)	8	1 per week	

- [6] Radionuclides planned to be produced in the near future: ¹⁸F ⁸¹Rb - ^{81m}Kr generator
- [7] Major radiopharmaceuticals produced:

[8]	Do you supply radionuclides/radiopharmace If yes, which ones and how often? Nuclear Research Institute Řež plc, Czech I irradiated targets for production ⁶⁷ Ga 1 per week ²⁰¹ Tl 1 per week ¹¹¹ In 1 per month (not regularly)		Yes
[9]	Is medical research/diagnosis carried out on	site/off site?	Off site
	If on site, indicate imaging devices available	e number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>		
[10]	<ul><li>a Are you engaged in nuclear reaction of</li><li>b. Which type of nuclear data do you use</li></ul>		No
	- Reaction cross sections - Thick target yields	No No	

- Decay data No
- [11] Does your institute accept IAEA research fellows for training/experience? No

#### DENMARK

[1]	Institute: Postal Address:	PET Centre Århus University Hospital Norrebrogade 44 DK-8000 Århus
	Telephone:	45-89-493033
	Fax/E-mail:	45-89-493020; tony@tiger.pet.akh.arhusamt.dk
[2]	Person in-charge: (Tıtle/Position)	Prof. Albert Gjedde
	Other senior staff:	Antony Gee, Soren Hansen
[3]	Type of cyclotron:	Negative Ion, Self shielding
	Manufacturer:	GE
	Model:	PETTrace
	Year: (1) of installation: (ii) of any major reconstruction:	1993

[4] Particle beams available:

		al a	³ He.	⁴ He	<b>Dual Beams</b>
Beam energies/Range (MeV)	16.5	8.4			yes
Typical currents int (μA)					
Employed ext (µA)	40	40			40

20

5

Hours per week machine is in operation (excluding maintenance): 55

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Short-lived radionuclides ¹¹C, ¹³N, ¹⁵O, ¹⁸F for production of PET tracers

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}C$	$^{14}N_2 + 100 \text{ ppm } O_2$	>85	10 per week	
$^{I3}N$	$H_2^{76}O$	>18	10 per week	
¹⁵ O	14 N2	>74	20 per week	
¹⁸ F	H ₂ ¹⁸ O (20-95%)	>59	3 per week	enriched water recovery
⁷⁸ F	$Ne + (0.2\% F_2)$	>13	l per week	

[6] Radionuclides planned to be produced in the near future.

[7]	Major radiopharmaceuticals produced: ¹⁸ F-DOPA, ¹⁸ F-FDG, ¹⁸ F, ¹⁸ F-β-Fluorophenylalanine,
	¹⁵ O-Butanol ¹¹ C-Methamphetamine, ¹¹ C-Venlafaxine, ¹¹ C-Raclopride, ¹¹ C-Methionine, ¹¹ C-NS2214 many other traces

[8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is n	nedical research/diagnosis carried out on site/off site	? On site
	Ifo	n site, indicate imaging devices available number	
	* 5	11 KeV SPET	
	* G	amma camera	
	* Si	ingle Photon Tomography (SPET)	
	* P	ositron Emission Tomography (PET) 1	
[10]	а	Are you engaged in nuclear reaction cross-section	n measurements? No
	b	Which type of nuclear data do you use?	
		- Reaction cross sections	
		- Thick target yields	
		- Decay data Yes	

[11] Does your institute accept IAEA research fellows for training/experience? Yes

#### DENMARK

[1]	Institute: Postal Address:	University Hospital of Copenhagen Cyclotron and PET Unit, KF 3982 Blegdamsvej 9 DK-2100 Copenhagen
	Telephone: Fax/E-mail:	45-35-453896 45-35-453898; mikaelj@pet.rh.dk
[2]	Person in-charge: (Title/Position)	Mikael Jensen Physicist in Chief
	Other senior staff:	Peter Larsen
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion, Sector-focused Scanditronix MC 32-NI
	Year: (i) of installation: (ii) of any major reconstruction:	1992

[4] Particle beams available:

Г	<b>H</b>	H.	³ He	· ⁴ He	Dual Beams
Beam energies/Range (MeV)	16 - 33	8 - 16		16 - 32	yes
Typical currents int (µA)				80	
Employed ext (µA)	1 - 100	1 - 00			

Hours per week machine is in operation (excluding maintenance):	30
Hours per week employed in radionuclide production:	30
Hours per week machine maintenance:	2
Additional applications of the cyclotron:	

Testing of radiation resistance of space programme components for various sattelites

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

.

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹¹ C	$N_2$	80	1-2 per week	
¹³ N	$H_2^{76}O$	4	5-10 per week	
¹⁵ O	$natN_2$	1-2 GBq on-line	1-2 per week	
$^{87}Rb$	^{nat} Kr	5-10	3 per week	
$^{IIIm}Cd$	⁷⁰⁸ Pd	400 MBq	2 per month	

- [6] Radionuclides planned to be produced in the near future:  ${}^{10}C$
- [7] Major radiopharmaceuticals produced:
   ⁸¹Rb ^{81m}Kr generators for ventilations scintigraphy
   ¹⁸F-FDG
   ¹⁸F-Dihydrotestosterone
   ¹³N-Ammonia
   ¹⁵O-Water, ¹⁵O-Oxygen, ¹⁵C-Carbon monoxide
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often? Hospitals and research institutions in the major Copenhagen area
- [9] Is medical research/diagnosis carried out on site/off site? Medical research is carried out both on site and off site

If on site, indicate imaging devices available number

	* Ga	1 KeV SPI	era	Yes	
			n Tomography (SPET) ssion Tomography (PET)	2	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>		No		
		-	Reaction cross sections	Yes	
		-	Thick target yields	Yes	
		-	Decay data	Yes	
[11]	Doe	s your inst	itute accept IAEA research fell	ows for training/experience?	Yes

#### EGYPT

[1]	Institute: Postal Address:	Nuclear Research Centre Atomic Energy Authority Postal Code 13759 Cairo
	Telephone: Fax/E-mail:	202-4690840
[2]	Person in-charge: (Title/Position)	Prof. M.N.H. Comsan Chairman
	Other senior staff:	Z.A. Saleh; M.S. Adbel-Azim; M.A. Aly; A.H. Azzam; M.A. Moustafa
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation: (ii) of any major reconstruction:	AVF NIIEFA MGC-20 1997

[4] Particle beams available:

	H	<b>H</b>	- ³ He	- ⁴ He	Dual Beams
Beam energies/Range (MeV)	5 - 18	3 - 10	8 - 24	6 - 20	
Typical currents int (µA)	200	200	50	50	
Employed ext (µA)	50	50	25	25	

Hours per week machine is in operation (excluding maintenance):

The machine is under installation

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Fast Neutron Research Materials Analysis Nuclear Analytical Techniques

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Nuclear Data Bank

[5] Radionuclides produced (as planned)

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
⁶⁷ Ga	⁶⁷ Zn (95%)		2 per week	
^{TTI} In	¹¹¹ Cd (95%)		l per week	
¹²³ I	¹²³ TeO ₂ (95%)		3 per week	

- [6] Radionuclides planned to be produced in the near future
- [7] Major radiopharmaceuticals produced
   ⁶⁷Ga Gallium Citrate
   ¹¹¹In Indium Chloride
   ¹²³I Sodium Iodide
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often? Hopefully yes Two hospitals and other research institutions
- [9] Is medical research/diagnosis carried out on site/off site? Medical research is carried out both on site and off site

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

## [10] aAre you engaged in nuclear reaction cross-section measurements?YesbWhich type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? Yes

#### FINLAND

- [1] Institute: University of Helsinki Postal Address. Laboratory of Radiochemicals, PL55 FIN-00014 Helsinka Telephone. 358-919140133 Fax/E-mail 358-91911; esko karttunen@helsinki fi [2] Person in-charge. Esko Karttunen (Title/Position) Other senior staff [3] Type of cyclotron Manufacturer: IBA Model: Cyclone 10/5 Year (1) of installation. 1997 (planned for October) (11) of any major reconstruction:
- [4] Particle beams available

		E A	*, <b>3He</b> .	He	Dual Beams
Beam energies/Range (MeV)	10	5			
Typical currents int (µA)	80	40			
Employed ext (µA)					

Hours per week machine is in operation (excluding maintenance) Installation underway

Hours per week employed in radionuclide production

Hours per week machine maintenance:

Additional applications of the cyclotron

Radiotherapy/Activation Analysis/Radiobiology/Physics

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera

-

- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements?b. Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
    - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

#### **FINLAND**

[1]	Institute: Postal Address:	Turku PET Centre Accelerator Laboratory Åbo Akademi, Porthansgatan 3 FIN-20500 Turku
	Telephone: Fax/E-mail:	358-2-2654 608 358-2-2654912; sheselius@abo.fi
[2]	Person in-charge: (Title/Position)	Dr. Sven-Johan Heselius Director
	Other senior staff:	Olof Solin; Jörgen Bergman; Jan-Olof Lill; Ulf Hällsten; Stefen Johansson; Erkki Stenvall; Per Olof Eriksson
[3]	Type of cyclotron: Manufacturer: Model:	AVF D.V. Efremov Institute MGC-20
	Year: (i) of installation: (ii) of any major reconstruction:	1974

[4] Particle beams available:

ſ	¹ H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	3 - 20	6 - 10.5	9 - 28	12 - 21	
Typical currents int (µA)	300	300	80	80	
Employed ext (µA)	30	30	20	20	

Hours per week machine is in operation (excluding maintenance): 42

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

8

32

Additional applications of the cyclotron: Atomic physics research Particle Induced X-ray Emission (PIXE) analysis Particle Induced Gamma Emission (PIGE) analysis Nuclear Reaction Analysis (NRA) Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	$N_2 + 0.1\% O_2$	37	10-15 batches/week	_
$^{18}F$	$H_2^{I8}O$ (>94%)	37	3-6 batches/week	
⁴³ K	Ar (99 998%)	20 MBq	4 batches/year	

- [6] Radionuclides planned to be produced in the near future:  $^{I3}N$ ,  $^{76}Br$
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG, ¹⁸F-6-Fluoro-L-Dopa ¹⁸F-FTHA ¹⁸F-CFT ¹⁸F-Fluoride ¹¹C-CFT, ¹¹C-MHED, ¹¹C-FLB457, ¹¹C-NMSP, ¹¹C-Flumazenil ¹¹C-NNC756, ¹¹C-Methionine, ¹¹C-Raclopride
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often?
   ⁴³K, 4 batches/year
   ¹⁸F-FDG, 2 batches/month

[9]	Is m	edical resea	rch/diagnosis carried out on s	ite/off site?	On site
	If on	i site, indica	te imaging devices available i	number	
	* 51	1 KeV SPE	Г	2	
	* Ga	imma camer	a	4	
	* Su	ngle Photon	Tomography (SPET)	4	
			sion Tomography (PET)	2	
[10]	a. b.	-	ngaged in nuclear reaction cro be of nuclear data do you use?		Yes
		-	Reaction cross sections	Yes	
		-	Thick target yields	Yes	
		-	Decay data	Yes	

[11] Does your institute accept IAEA research fellows for training/experience? Yes

#### FINLAND

[1]	Institute: Postal Address:	Turku PET Centre Kiinamyllynkatu 4-8 FIN-20520 Turku
	Telephone: Fax/E-mail:	358-2-2611860 358-2-2318191; hannu.sipila@tyks.fi
[2]	Person in-charge: (Title/Position)	Hannu Sipilä
	Other senior staff:	Mika Teräs; Kalevi Eklund Kari Lindberg
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation: (ii) of any major reconstruction:	Positive Ion ² H IBA sa Cyclone 3 1992

[4] Particle beams available:

	H ^r	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)		3.8			
Typical currents int (µA)		80 - 100			
Employed ext (µA)		50 - 60			

Hours per week machine is in operation (excluding maintenance): 10

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: Blood flow in human tissue 8 hours/month

10

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹³ O	1 ⁴ N ₂	0.3-5 GBq/min	4 per week	

[6] Radionuclides planned to be produced in the near future:

[7]	Major radiopha ¹⁵ O- Water ¹⁵ O-Carbon Mo ¹⁵ O-Oxygen	rmaceuticals produced [.] moxide		
[8]	• • • •	radionuclides/radiopharmaceu nes and how often?	ticals to other institutions?	No
[9]	Is medical resea	arch/diagnosis carried out on s	ite/off site?	On site
	If on site, indica	ate imaging devices available	number	
	* 511 KeV SPE	T	2	
	* Gamma came	ra	4	
	* Single Photor	n Tomography (SPET)	4	
	* Positron Emis	ssion Tomography (PET)	2	
[10]	-	engaged in nuclear reaction cro pe of nuclear data do you use?		No
	-	Reaction cross sections	No	
	-	Thick target yields	Yes	
	-	Decay data	Yes	
[11]	Does your insti	tute accept IAEA research fell	ows for training/experience?	Yes

#### FRANCE

[1]	Institute:	Centre d'Exploration et de Recherche Medicales
		par Emission de Positrons (CERMEP)
	Postal Address:	Cyclotron Biomedical de Lyon
		59 Boulevard Pinel
		F-69003 Lyon
	Telephone:	33-4-72688600
	Fax/E-mail:	33-4-72688610
[2]	Person in-charge:	Dr. D. Le Bars
[~]	(Title/Position)	Head of Radiochemistry
	(The Shon)	Head of Radiochemistry
	Other senior staff:	G. Galy; P. Landais
		D. Comar
[3]	Type of cyclotron:	Positive Ion
[-]	Manufacturer:	CGR-MeV
	Model:	Cypris 325
		<i></i>
	Year: (i) of installation:	1987
	(ii) of any major reconstruction:	
[4]	Denti-1. harman and itable.	

#### [4] Particle beams available:

	H	<b>4</b>	He	⁴ He	Dual Beams
Beam energies/Range (MeV)	16	8			
Typical currents int (µA)	>50	>50			
Employed ext (µA)	30	20			

4

Hours per week machine is in operation (excluding maintenance): >15

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	14 _N	75	5 per week	
$^{I3}N$	<i>16</i>	2.8	l per month	
<i>ISO</i>	¹⁴ N	continuous	4 per week	33 MBq per injection
⁷⁸ F	$H_2^{18}O(95\%)$	20	4 per week	enriched H ₂ ¹⁸ O <u>recovery</u>

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced.
   ¹⁵O-Water and clinical gases
   ¹¹C-Methionine, ¹¹C-Acetate, ¹¹C-Flumazenil, ¹¹C-Raclopride, ¹¹C-MHED
   ¹³N-Ammonia
   ¹⁸F-FDG, ¹⁸F-Fluoro-L-DOPA
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often?
   ¹⁸F-FDG one per/month to one per week

# [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number * 511 KeV SPET

- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET) 2
- [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
  - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

#### FRANCE

[1]	Institute: Postal Address:	Centre Antoine Lacassagne Laboratoire du Cyclotron 227 Avenue de la Lanterne F-06200 Nice
	Telephone: Fax/E-mail:	33-4-92031070 33-4-92031095
[2]	Person in-charge: (Title/Position)	Dr. Pierre Mandrillon Head of Cyclotron Laboratory
	Other senior staff:	N. Fietier
[3]	Type of cyclotron: Manufacturer: Model:	Compact Isochronous - Negative Ions Cente antoine Lacassagne
	Year: (i) of installation: (ii) of any major reconstruction:	1990

[4] Particle beams available:

Γ	Ш.	<b>H</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	50 - 65	25 - 32	<u></u>		
Typical currents int (µA)	40	20			
Employed ext (µA)	40	20			

Hours per week machine is in operation (excluding maintenance):	8
Hours per week employed in radionuclide production:	not yet started
Hours per week machine maintenance:	2
Additional applications of the cyclotron:	
Radiotherapy/Activation Analysis/Radiobiology/Physics:	Radiotherapy

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments

- [6] Radionuclides planned to be produced in the near future  ${}^{18}F$  by  ${}^{18}O(p, n)$  for  ${}^{18}F$ -FDG
- [7] Major radiopharmaceuticals produced *Plan to begin in 1998*
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number
  - * 511 KeV SPET
  - * Gamma camera

_

- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a Are you engaged in nuclear reaction cross-section measurements?b Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
    - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

#### FRANCE

[1]	Institute: Postal Address:	Centre National de la Recherche Scientifique Centre d'Etudes et de Recherches Par Irradiation (CNRS-CERI) 3a rue de la Férolerie F-45071 Orléans Cedex 2
	Telephone: Fax/E-mail:	33-2-38255410 33-2-38630271; blondiau@cnrs-orleans.fr
[2]	Person in-charge: (Title/Position)	G. Blondiaux Director of the CERI
	Other senior staff:	G. Goin
[3]	Type of cyclotron: Manufacturer: Model:	Isochronous CGR MeV
	Year: (i) of installation: (ii) of any major reconstruction:	1974

[4] Particle beams available:

ſ	H'	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	5 - 35	5 - 25	10 - 60	10 - 50	
Typical currents int (µA)	70		40	40	
Employed ext (µA)	40	40			

8

Hours per week machine is in operation (excluding maintenance): 64

Hours per week employed in radionuclide production: 10 - 12

Hours per week machine maintenance:

Additional applications of the cyclotron: Charged particle and fast neutron activation analysis Production of defects in semi-conductors

Radiotherapy/Activation Analysis/Radiobiology/Physics:Neutron therapy25% of the hoursMaterial characterizationIrradiation of electronic deviceswith neutrons (10¹²/cm²/s)Analytical applications17% of the hoursActinide irradiations25% of the hours

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{81m}Kr$	⁸³ Kr	0,2	2 per week	2 x 30 min
-230U	232 <i>Th</i>		2 per week	5 hr
²³⁶ Pu	$^{235}U$		2 per week	5 hr

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:

[8]	-		radionuclides/radiopharmaceu ies and how often?	ticals to other institutions?	No
[9]	Is me	dical resea	arch/diagnosis carried out on s	ite/off site?	On site
	If on	site, indic	ate imaging devices available i	number	
	* Gai * Sin	•		1	
[10]	a. b	-	engaged in nuclear reaction cro pe of nuclear data do you use?		No
		- - -	Reaction cross sections Thick target yields Decay data	Yes Yes Yes	
[11]	Does	your insti	tute accept IAEA research fell	ows for training/experience?	Yes

#### FRANCE

[1]	Institute: Postal Address:	Service Hospitalier Frédéric Joliot C.E.A. Direction des Sciences du Vivant 4, Place du General Leclerc F-91406 Orsay
	Telephone:	33-1-69867704
	Fax/E-mail:	33-1-69807768; crouzel@dsvidf.cea.fr
[2]	Person in-charge: (Title/Position)	C. Crouzel
	Other senior staff:	F. Dollé; D. Roeda
		M. Ponchant; C. Loch
[3]	Type of cyclotron:	Compact Cyclotron (variable energy)
	Manufacturer:	CGR-MeV
	Model:	520
	Year: (i) of installation:	1975
	(ii) of any major reconstruction:	1 <b>996 &amp;</b> 1997

#### [4] Particle beams available:

	'H	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	20	14.5	30	29	
Typical currents int (µA)					
Employed ext (µA)	30	30	15 - 20	15 - 20	

6

Hours per week machine is in operation (excluding maintenance):	25-30
Hours per week employed in radionuclide production:	25-30

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}C$	14N	40	5-10 per week	
130			5-8 per week	
¹⁸ F	^{nat} Ne	10	2 per week	
/8F	⁷⁶ O	3 - 4	2-4 per week	
¹⁸ F	H ₂ ¹⁸ O	30	3-5 per week	enriched H2 ¹⁸ O recovery
⁷⁶ Br	nai As	400 MBq	2 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG, ¹⁸F-DOPA, ¹⁸F-Oligonuclides, ¹⁸F-Spiperone
   ¹¹C-Flumazenyl, ¹¹C-MQNB, ¹¹C-CGP
   ¹⁵O-Water
   ⁷⁶Br-FLB, ⁷⁶Br-β-CIT

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? We shall supply ¹⁸ F-FDG to hospitals by the end of this year with the help of Cis-Bio (ORIS-Industry)	Yes
[9]	Is medical research/diagnosis carried out on site/off site?	On site
	If on site, indicate imaging devices available number	
	* 511 KeV SPET	
	* Gamma camera	
	* Single Photon Tomography (SPET) 3	
	* Positron Emission Tomography (PET) 3	
[10]	a. Are you engaged in nuclear reaction cross-section measurements?	No
	b. Which type of nuclear data do you use?	
	- Reaction cross sections	
	- Thick target yields	
	- Decay data	
[11]	Does your institute accept IAEA research fellows for training/experience?	Yes

#### **GERMANY**

[1]	Institute: Postal Address:	Rheinisch-Westfalische Technische Hochschule Klinik fuer Nuklearmedizin Universitaetsklinikum D-52057 Aachen
	Telephone: Fax/E-mail:	<b>49-241-</b> 8088740/1 <b>49-</b> 241-8888520
[2]	Person in-charge: (Title/Position)	Univ. Prof. Dr.med. U. Bull
	Other senior staff:	B. Mueller
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation: (ii) of any major reconstruction:	Negative Ion CTI RDS 111 1997 /1998

[4] Particle beams available:

	E,	Ή	-3 <mark>He</mark>	⁴ He	Dual Beams
Beam energies/Range (MeV)	11				yes
Typical currents int (µA)					
Employed ext (µA)					

Hours per week machine is in operation (excluding maintenance): Installation underway

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
150	$^{15}N + 1\% O_2$ (purity 99.999%)	74		
			······	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: (planned)

¹⁵O-Water

- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number

*	511	KeV	SPET	
۰	0			

* Gamma camera2* Single Photon Tomography (SPET)3* Positron Emission Tomography (PET)1

### [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?

- Reaction cross sections
- Thick target yields
- Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

#### GERMANY

[1]	Institute: Postal Address:	Zentralklinik Bad Berka GmbH PET Centre Robert Koch Allee 9 D-99437 Bad Berka
	Telephone: Fax/E-mail:	49-364-5850 49-364-5842180; baum@em.uni-frankfurt.de
[2]	Person in-charge: (Title/Position)	Prof. Richard P. Baum
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 111
	Year: (i) of installation: (ii) of any major reconstruction:	1997
[4]	Particle beams available:	

	H	2 <b>H</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11	<u></u>			yes
Typical currents int (µA)					
Employed ext (µA)					

Hours per week machine is in operation (excluding maintenance): Ins

Installation underway

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
			····	
	<u></u>		<u></u>	
	<u> </u>			+
				1

[6] Radionuclides planned to be produced in the near future:  ${}^{II}C, {}^{I3}N, {}^{I5}O, {}^{I8}F$ 

[7]	Major radiopharmaceuticals produced: (planned)
	¹⁸ F-FDG, ¹³ N-Ammonium, ¹¹ C-Acetate
	¹⁵ O-Water / gas. ¹¹ C-Methionine

 [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
 If yes, which ones and how often? This is planned for 1998

#### [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number

1

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a.Are you engaged in nuclear reaction cross-section measurements?Nob.Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
  - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

#### GERMANY

[1]	Institute: Postal Address:	Universitätsklinik der Ruhr-Universität Bochum Herz und Diabeteszentrum NRW Georgstrasse 11 D-32545 Bad Oeynhausen
	Telephone: Fax/E-mail:	49-5731-971865 49-5731-971862
[2]	Person in-charge: (Title/Position)	Prof. Gunawan Notohamiprodjo Director, Institut für Biophysik, Radiopharmazie und Nuklearmedizin
	Other senior staff:	Petra Gerken; Sytse Zijlstra
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion IBA Cyclone 18/9
	Year: (i) of installation: (ii) of any major reconstruction:	1994
[4]	Particle beams available:	

	H ^I	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	18	9			yes
Typical currents int (µA)	20	25			
Employed ext (µA)	20	20			

Hours per week machine is in operation (excluding maintenance): 20

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

2 days per month

20

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{13}N$	$H_2O+E$ thanol	4	36 per week	
	$N_2 + O_2$	7	5 per week	
150	N ₂	37	l per week	
¹⁸ F	$H_2^{18}O(>98\%)$	15 - 45	5 per week	

[6] Radionuclides planned to be produced in the near future:

[7]	Major radiopharmaceuticals produced: ¹⁸ F-FDG, ¹⁸ FTHA ¹³ N-Ammonia ¹¹ C-Acetate, ¹¹ C-Methionine, ¹¹ C-Carazolol ¹⁵ O-Water, ¹⁵ O-Butanol		
[8]	Do you supply radionuclides/radiopharmaceutic If yes, which ones and how often? ¹⁸ FDG, ¹⁸ Fluoride every day	als to other institutions?	Yes
[9]	Is medical research/diagnosis carried out on site		On site
	If on site, indicate imaging devices available nu	mber	
	* 511 KeV SPET	1	
	* Gamma camera	2 2	
	* Single Photon Tomography (SPET)	2	
	* Positron Emission Tomography (PET)	1	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross</li><li>b. Which type of nuclear data do you use?</li></ul>	-section measurements?	No
	- Reaction cross sections		
	- Thick target yields	Yes	
	- Decay data	Yes	
[11]	Does your institute accept IAEA research fellow	rs for training/experience?	Yes

#### GERMANY

[1]	Institute: Postal Address:	Forschungszentrum Rossendorf Central Department New Accelerators P.O. Box 510119 D-01314 Dresden
	Telephone: Fax/E-mail:	49-351 2603283 49-351-2603690
[2]	Person in-charge: (Title/Position)	Dr. Hartmut Guratzch Head of Department
	Other senior staff:	Hartmut Buttig Rudolf Bruckner
[3]	Type of cyclotron: Manufacturer: Model:	U-120 NIIEFA St. Petersburg
	Year: (i) of installation: (ii) of any major reconstruction:	1958 1989

[4] Particle beams available:

Γ	н	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	$H_2^+$ 7	14		28	
Typical currents int (µA)					
Employed ext (µA)	50	50		20	

Hours per week machine is in operation (excluding maintenance):	50
Hours per week employed in radionuclide production:	10
Hours per week machine maintenance:	5
Additional applications of the cyclotron: Radiochemistry	

Thin Layer Activation

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
45 Ti	^{nat} Sc			
⁸⁷ Y/ ^{87m} Sr	natRb			1
93 Mo	^{nat} Zr			
211At	^{nat} Bi			

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:

[8]	If yes	s, which o	radionuclides/radiopharmaceut nes and how often? cation of radionuclides general.		Yes
[9]			arch/diagnosis carried out on si ate imaging devices available r		No
	* Gan * Sin				
[10]	a. b.	-	engaged in nuclear reaction cro vpe of nuclear data do you use?		No
		-	Reaction cross sections	Yes	
		-	Thick target yields	Yes	
		-	Decay data	Yes	
[11]	Does	your inst	itute accept IAEA research fello	ows for training/experience?	Yes

#### **GERMANY**

[1]	Institute: Postal Address:	Forschungszentrum Rossendorf Institut für Bioanorganische und Radiopharmazische Chemie P.O. Box 510119
		D-01314 Dresden
	Telephone:	49-351 2603170
	Fax/E-mail:	49-351-2603232; johannsen@fz-rossendorf.de
[2]	Person in-charge: (Title/Position)	Prof. Habil B. Johannsen Director of the Institute
	Other senior staff:	J. Steinbach; St. Preusche
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion IBA Cyclone 18/9
	Year: (i) of installation: (ii) of any major reconstruction:	1994/96

[4] Particle beams available:

Γ	H	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	18	9			yes
Typical currents int (µA)	50	30			
Employed ext (µA)	25	15		20	

Hours per week machine is in operation (excluding maintenance):	15
Hours per week employed in radionuclide production:	15
Hours per week machine maintenance:	2 - 3

Additional applications of the cyclotron: *For education purposes* 

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: Only for PET For education purposes scientific research is concentrated to development of radiotracer labelling and radiotracer development. Targetry development for high current water target is in progress

Radionuclides produced: [5]

-

_

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
- ⁷⁷ C	$N_2 + 0.5\%O_2$	0.5-80		
¹⁸ F	$H_2^{18}O(97\%)$	20-90	3-5 per week	activity depends on request
⁷⁸ F	$^{20}Ne + 0,2\% F_2$	4-12	2 per week	mainly for research

Yes

Yes

No

- Radionuclides planned to be produced in the near future:  ${}^{I5}O$ ,  ${}^{I3}N$  depending on medical requirements [6]
- Major radiopharmaceuticals produced: ¹⁸F-FDG, ¹⁸F-Altanserin ¹⁸F-DOPA, ¹⁸F-16-Fluorestradiol [7] ¹¹C-McNeil 5652-Z Do you supply radionuclides/radiopharmaceuticals to other institutions? [8] If yes, which ones and how often?  $^{18}F$ -FDG 3 per week [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 1 [10] a. Are you engaged in nuclear reaction cross-section measurements? Which type of nuclear data do you use? b. _ Reaction cross sections Yes Yes Thick target yields
- Decay data Yes
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

#### GERMANY

[1]	Institute: Postal Address:	Institute for Medical Radiation Physics Hufelandstrasse 55 D-45147 Essen
	Telephone: Fax/E-mail:	49-201-7234170 49-201-7235965
[2]	Person in-charge: (Title/Position)	Prof. J. Rassow
	Other senior staff:	G. Hudepohl St. Preusche
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion, Sector-focused The Cyclotron Corporation CV 28
	Year: (i) of installation: (ii) of any major reconstruction:	1975

[4] Particle beams available:

Γ	H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	24	14	36	28	
Typical currents int (µA)	120	120	80	≈ 80	
Employed ext (µA)	≤ 90 (30)	≤ 80	≤ 30	≤ 30	

Hours per week machine is in operation (excluding maintenance):	40
Hours per week employed in radionuclide production:	24
Hours per week machine maintenance:	4
Additional applications of the cyclotron:	

Additional applications of the cyclotron: Neutron therapy Dosimetry Radiobiology

Radiotherapy/Activation Analysis/Radiobiology/Physics: Others:
Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	14N	≤10	4 per week	
150	14N	$\leq 1.5 \; GBq/min$	2 per week	
¹⁸ F	180	< 20	2 per week	enriched water recovery
123 _I	¹²⁴ Te	< 55	2 per week	enriched Te
124 _I	¹²⁴ Te	< 0.37 Bq	2 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁵O- Water
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often?
   ¹⁸F-FDG 3 per week
- [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number

* 511 KeV SPET	
* Gamma camera	Yes
* Single Photon Tomography (SPET)	Yes
* Positron Emission Tomography (PET)	Yes

- [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
  - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience? No

[1]	Institute: Postal Address:	J.W. Goethe University Clinic of Nuclear Medicine Theodor-Stern-Kal 7 D-60590 Frankfurt
	Telephone: Fax/E-mail:	49-69-63015459 u.w.scherer@em.uni-frankfurt.de
[2]	Person in-charge: (Title/Position)	Prof. G. Hör Director
	Other senior staff:	U.W. Scherer
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion H ⁻ / D ⁻ IBA Cyclone 18/9
	Year: (i) of installation: (ii) of any major reconstruction:	1998

[4] Particle beams available:

ſ	, , , , , , , , , , , , , , , , , , ,	<u>и</u>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	18	9			
Typical currents int (µA)					
Employed ext (µA)					

Hours per week machine is in operation (excluding maintenance): Installation underway

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
			······	
······				

- [6] Radionuclides planned to be produced in the near future:  ${}^{18}F, {}^{11}C, {}^{15}O, {}^{13}N, {}^{99m}Tc, {}^{68}Ga$
- [7] Major radiopharmaceuticals produced:
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

* 511 KeV SPET	1
* Gamma camera	2
* Single Photon Tomography (SPET)	1
* Positron Emission Tomography (PET)	1

[10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?

-	Reaction cross sections	No
-	Thick target yields	No
-	Decay data	No

[11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	Euro-PET GmbH Hugstetlerstrasse 55 D-79106 Freiburg
	Telephone: Fax/E-mail:	49-761-2709201 49-761-2709200
[2]	Person in-charge: (Title/Position)	Prof. Dr. med. Peter Reuland
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion GE PETTrace
	Year: (i) of installation: (ii) of any major reconstruction:	1996

Particle beams available: [4]

Γ	<b>H</b>	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	16.4	8.2			yes
Typical currents int (µA)					
Employed ext (µA)					

Hours per week machine is in operation (excluding maintenance):	25
Hours per week employed in radionuclide production:	20
Hours per week machine maintenance:	2

Hours per week machine maintenance:

Additional applications of the cyclotron: Only production of radiopharmaceuticals

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹³ N		10-20	8 per week	
¹⁸ F	$H_2^{18}O(98\%)$	50-70	10 per week	

- [6] Radionuclides planned to be produced in the near future: ¹¹C-Carbon Monoxide, ¹¹C-Carbon Dioxide ¹⁵O-Water, ¹⁵O-Carbon Monoxide, C¹⁵-Oxygen
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG 10 per week ¹³N-Ammonia 8 per week ¹⁸F-Fluoride 5 per week
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Planned If yes, which ones and how often? Not at the moment, but in future
- [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number
  - * 511 KeV SPET
  - * Gamma camera

-

- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET) 1
- [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
    - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	UKE-Cyclotron Luruper Chaussee 149 D-22761 Hamburg
	Telephone: Fax/E-mail:	49-40-89982968 49-40-89982960
[2]	Person in-charge: (Title/Position)	Dr. Bruno Nebeling
	Other senior staff:	Uve Kirchner
[3]	Type of cyclotron: Manufacturer: Model:	Isochronous Philips 140/IV
	Year: (i) of installation: (ii) of any major reconstruction:	1968

[4] Particle beams available:

ſ	¹ H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	4 - 30	2 - 16	6 - 42	6 - 36	
Typical currents int (µA)	120				
Employed ext (µA)	15 - 25				

Hours per week machine is in operation (excluding maintenance):	10 - 20
Hours per week employed in radionuclide production:	10 - 20
Hours per week machine maintenance:	10 - 20

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	$N_2 + 5\% O_2$	50 GBq	I-4 per week	
¹⁸ F				

- [6] Radionuclides planned to be produced in the near future:  $^{211}At$ ,  $^{68}Ge$
- [7] Major radiopharmaceuticals produced:  ${}^{18}F$ -FDG

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? ¹⁸ F-Fluoride ¹⁸ F-FDG Daily from Tuesday to Friday	Yes
	1-120 Dully from Tuesday to Triady	
[9]	Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number	On site
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	

[11] Does your institute accept IAEA research fellows for training/experience? Yes

- Institute: [1] Medizinische Hochschule Hannover (MHH) Postal Address: Abteilung Nuklearmedizin and Spezielle Biophysik D-30623 Hannover Telephone: 49-511-5325606, 3085 Fax/E-mail: 49-511-5322315 Person in-charge: Dr. Helmeke [2] (Title/Position) Head of the Cyclotron Group Other senior staff: G.-J. Meyer Type of cyclotron: [3] Isochronous, Variable energy Manufacturer: Scanditronix Model: MC 35
  - Year: (i) of installation: (ii) of any major reconstruction:
- Particle beams available: [4]

ſ	¹ H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	7.5 - 35	3.8 - 18	5.6 - 47	7.5 - 35	
Typical currents int (µA)					
Employed ext (µA)	65	65	30	30	

1976/77

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

20 including stand-by

8 including stand-by

3 including stand-by

**GFR-10** 

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
"C	$N_2 + 5\% O_2$	26	40 per year	
$^{13}N$	$H_2O + 5mmol$ ethanol	4	190 per year	
⁷⁵ 0	$N_2 + 1\% O_2$	4	170 per year	
¹⁸ F	$H_2^{18}O(>96\%)$	17.5	350 per year	
¹⁸ F	Ne+0.1% F ₂	4.5	350 per year	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹¹C-Methionine, ¹¹C-Acetate ¹⁵O-Water ¹³N-Ammonia ¹⁸F-FDG, ¹⁸F-Fluorouracil
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number	On site

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET) 2
- [10] a. Are you engaged in nuclear reaction cross-section measurements? Yesb. Which type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? No

[1]	Institute: Postal Address:	German Cancer Research Centre (DKFZ) Im Neuenheimer Feld 280 D-69120 Heidelberg
	Telephone: Fax/E-mail:	49-6221-422550-3 49-6221 422572
[2]	Person in-charge: (Title/Position)	Gerd Wolber Head of the Cyclotron Group
	Other senior staff:	Wolfgang Maier-Borst Franz Oberdorfer
[3]	Type of cyclotron: Manufacturer: Model:	Isochronous, Negative Ion Scanditronix MC 32NI

- Year: (i) of installation: (ii) of any major reconstruction:
- [4] Particle beams available:

	¹ H	<b>2H</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	16 - 32	8.5-16	_		
Typical currents int (µA)	100	100			
Employed ext (µA)	20 - 30	20		_	

5

1992

Hours per week machine	e is in operation	(excluding maintenance):	50

Hours per week employed in radionuclide production: 40

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics: Radiobiology, Physics

Others: The Department is a long-standing WHO Reference Institute for Nuclear Medicine GFR-11

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}C$	I ⁴ N	37	5-6 per week	
	¹⁴ N	0.7 per 0.5 h	2-3 per day 4 day per week	
⁷⁸ F	$H_2^{18}O(98\%)$	12	5 per week	enriched H ₂ ¹⁸ O recovery
$^{18}F-F_2$	²⁰ Ne	0,7	3 per week	
⁸¹ Rb	⁸² Kr	2.2	2 per week	enriched ⁸² Kr recovery

- [6] Radionuclides planned to be produced in the near future:  ${}^{64}Cu, {}^{45}Ti, {}^{68}Ge, {}^{75}Br,$
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG, ¹⁸F-6-F-DOPA, ¹⁸F-5-Fluorouracil
   ¹⁵O-Water
   ¹¹C: ¹¹C-Carbon Monooxidem ¹¹C-C.arbon dioxide, ¹¹C-AIB, ¹¹C -Acetate, ¹¹C-Ethanol
   ¹¹C-DTIC, ¹¹C-Sch 23390
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often?
   ⁸¹Rb-^{81m}Kr- Generator: 2times per week to 1 Centre,
   ¹⁸F-DOPA: 2 times per week to 2 centres
   Capacity of the system has been designed to supply extra mural regional PET centres

[9]	Is medical research/diagnosis carried out on s	ite/off site?	On site
	If on site, indicate imaging devices available	number	
	* 511 KeV SPET	1	
	* Gamma camera		
	* Single Photon Tomography (SPET)	1	
	* Positron Emission Tomography (PET)	2	
[10]	<ul><li>a. Are you engaged in nuclear reaction cr</li><li>b. Which type of nuclear data do you use?</li></ul>		No
	- Reaction cross sections	Yes	
	- Thick target yields	Yes	
	- Decay data	Yes	
[11]	Does your institute accept IAEA research fell	ows for training/experience?	Yes

[1]	Institute: Postal Address:	Forschungszentrum Jülich GmbH Institut für Nuklearchemie D-52425 Jülich
	Telephone: Fax/E-mail:	49-2461-614141 49-2461-612535
[2]	Person in-charge: (Title/Position)	Prof. H.H. Coenen
	Other senior staff:	S.M. Qaim; R. Gail K. Hamacher
[3]	Type of cyclotron: Manufacturer: Model:	Baby Cyclotron Japan Steel Works BC 1710
	Year: (i) of installation: (ii) of any major reconstruction:	1987

[4] Particle beams available:

Γ	¹ H	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	17	10			
Typical currents int (µA)					
Employed ext (µA)	30	20			

Hours per week machine is in operation (excluding maintenance):	35
Hours per week employed in radionuclide production:	35
Hours per week machine maintenance:	5
A disional conditions of the conditions	

Additional applications of the cyclotron: Radiopharmaceutical development

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$\overline{}$	$N_2$ gas	60	4 per week	
13 _N	H ₂ O	15	2 per week	
⁷⁸ F	$H_2^{18}O(96\%)$	50	5 per week	enriched H ₂ ¹⁸ O recovery

- [6] Radionuclides planned to be produced in the near future:
- Major radiopharmaceuticals produced: [7] ¹⁸F-FDG, ¹⁸F-Fatty acids ¹¹C-Acetate, ¹¹C-Methionine ¹³N-Ammonia Yes [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? ¹⁸FDG daily to several clinics [9] Is medical research/diagnosis carried out on site/off site? Both If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) 1 2 * Positron Emission Tomography (PET) [10] **a**. Are you engaged in nuclear reaction cross-section measurements? No Which type of nuclear data do you use? b. Reaction cross sections Yes _ Thick target yields No -Decay data Yes -
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	Forschungszentrum Jülich GmbH Institut für Nuklearchemie D-52425 Jülich
	Telephone: Fax/E-mail:	49-2461-614141 49-2461-612535
[2]	Person in-charge: (Title/Position)	Prof. H.H. Coenen
	Other senior staff:	M. Holschbach
[3]	Type of cyclotron: Manufacturer: Model:	Fixed energy, two particle GE PETTrace
	Year: (i) of installation: (ii) of any major reconstruction:	1997

[4] Particle beams available:

Γ	H	211	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)		8.4		[	
Typical currents int (µA)					
Employed ext (µA)		30			

Hours per week machine is in operation (excluding maintenance):

Cyclotron operation is just beginning

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁵ O	$N_2 gas$	60	daily	

No

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁵O-n butanol, ¹⁵O-Water
  [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? The machine will be extensively used for patient studies with ¹⁵O-labelled compounds
- Is medical research/diagnosis carried out on site/off site? On site [9] If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) 1 * Positron Emission Tomography (PET) 2 [10] a. Are you engaged in nuclear reaction cross-section measurements? No Which type of nuclear data do you use? b. Reaction cross sections Yes Thick target yields Yes -Yes Decay data -[11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	Forschungszentrum Jülich GmbH Institut für Nuklearchemie D-52425 Jülich
	Telephone: Fax/E-mail:	49-2461-614141 49-2461-612535
[2]	Person in-charge: (Title/Position)	Dr. F. Dworschak
	Other senior staff:	H.H. Coenen S.M. Qaim
[3]	Type of cyclotron: Manufacturer: Model:	Variable Energy Compact The Cyclotron Corporation CV 28
	Year: (i) of installation: (ii) of any major reconstruction:	1976 1986, 1991, 1997

[4] Particle beams available:

Γ	¹ H	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	6 - 24	3 - 14	15 - 36	10 - 28	<u>.</u>
Typical currents int (µA)	100	100	100	100	
Employed ext (µA)	30	20	15	20	

Hours per week machine is in operation (excluding maintenance):	56
Hours per week employed in radionuclide production:	28
Hours per week machine maintenance:	7
Additional applications of the cyclotron: Materials research	

Activation analysis Neutron induced reactions

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	$N_2$ (gas)	60	2 per week	
¹⁸ F	Ne	15	1 per week	$^{18}FF_2$
³⁸ K	KC1	400	on demand	
⁷⁵ Se	Cu ₃ As	150	on demand	
^{82m} Rb	⁸² Kr gas (90%)	400	on demand	
⁸⁶ Y	⁸⁶ SrCo ₃ (95%)	400	on demand	target recovery
^{94m} Tc	⁹⁴ MoO ₃ (97%)	1	on demand	target recovery
¹²⁴ I	$^{124}TeO_2 (> 96\%)$	150	l per fortnight	dry distillation
¹⁴⁷ Gd	¹⁴⁴ Sm ₂ O ₃ (95%)	400	on demand	target recovery

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:  $^{15}O - n butanol$

[8]	If yes, which	ply radionuclides/radiopharmaceu ch ones and how often? rative basis to several institutions	ticals to other institutions?	Yes
[9]		research/diagnosis carried out on s ndicate imaging devices available r		Both
	* 511 KeV	SPET		
	* Gamma o			
	-	oton Tomography (SPET)	1	
	* Positron	Emission Tomography (PET)	2	
[10]		you engaged in nuclear reaction cro ch type of nuclear data do you use?		Yes
	-	Reaction cross sections	Yes	
	-	Thick target yields	No	
	-	Decay data	Yes	
[11]	Does your	institute accept IAEA research fell	ows for training/experience?	Yes

[1]	Institute: Postal Address:	Forschungszentrum Karlsruhe (FZK) Cyclotron Laboratory P.O. Box 3640 D-76021 Karlsruhe
	Telephone: Fax/E-mail:	49-7247-822433 49-7247-823156
[2]	Person in-charge: (Title/Position)	Dr. H. Schweickert Director, Cyclotron Laboratory
	Other senior staff:	V. Bechtold P. Fehsenfeld
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI CP42H
	Year: (i) of installation: (ii) of any major reconstruction:	1984

[4] Particle beams available:

ſ	¹ H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	15 - 42				
Typical currents int (µA)	200				
Employed ext (µA)	200				

Hours per week machine is in operation (excluding maintenance): 70

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Activation of machine parts for wear studies

Radiotherapy/Activation Analysis/Radiobiology/Physics: Others:

Routine maintenance over Christmas only

50

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
⁸¹ Rb	⁸¹ Kr (99%)	20	5 per week	
¹²³ I	¹²⁴ Xe (99%)	40	5 per week	ultra pure ¹²³ I

- [6] Radionuclides planned to be produced in the near future:  $^{225}Ac via ^{226}Ra (p, 2n)$
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG, ¹²³I-Iodide

[8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
 If yes, which ones and how often?
 3 Pharmaceutical companies
 12 Hospitals

[9] Is medical research/diagnosis carried out on site/off site? NoIf on site, indicate imaging devices available number

* 511 KeV SPET

- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

# [10] a. Are you engaged in nuclear reaction cross-section measurements?b. Which type of nuclear data do you use?

-	Reaction cross sections	Seldom
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	Forschungszentrum Karlsruhe (FZK) Cyclotron Laboratory P.O. Box 3640 D-76021 Karlsruhe
	Telephone: Fax/E-mail:	49-7247-822433 49-7247-823156
[2]	Person in-charge: (Tıtle/Position)	Dr. H. Schweickert Director, Cyclotron Laboratory
	Other senior staff:	V. Bechtold; P. Fehsenfeld
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion AEG
	Year: (i) of installation: (ii) of any major reconstruction:	1964

[4] Particle beams available:

	'H	• . : <b>2</b> 11	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)		52		104	
Typical currents int (µA)		40		50	
Employed ext (µA)		20		25	

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Christmas only

Routine maintenance over

Additional applications of the cyclotron: Activation of machine parts for wear studies

Radiotherapy/Activation Analysis/Radiobiology/Physics:

-

Decay data

•

Radionuc Produce	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	 		·····	

[6] Radionuclides planned to be produced in the near future:

[7]	Major ra ¹⁸ F-FDC	adiopha 3	rmaceuticals produced:		
[8]	If yes, w	which on naceution	radionuclides/radiopharmaceut nes and how often? cal companies	ticals to other institutions?	Yes
[9]			arch/diagnosis carried out on state imaging devices available r		No
	-	na came Photor			
[10]		-	engaged in nuclear reaction cro pe of nuclear data do you use?		
		-	Reaction cross sections Thick target yields	Seldom Yes	

- [11] Does your institute accept IAEA research fellows for training/experience? Yes

Yes

Max-Planck-Institut für Neurologische Forschung

4

- Year: (i) of installation: (ii) of any major reconstruction:
- [4] Particle beams available:

[1]

Institute:

Γ	¹ H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	17	8.5			
Typical currents int (µA)	50				
Employed ext (µA)	25				

1987

Hours per week machine is in operation (excluding maintenance):	15
Hours per week employed in radionuclide production:	15

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
- C	14 _N	55	8 per week	
¹⁵ 0	14N	10	50 per week	
	²⁰ Ne	11	6 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG, ¹⁸F-DOPA ¹⁵O-H₂O, ¹⁵O-Carbon Monoxide, ¹⁵O-Carbon Dioxide, ¹⁵O-Butanol ¹¹C-Methionine, ¹¹C-Raclopride, ¹¹C-Flumazenil
  [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]		ite/off site? number	On site		
	* Gai * Sin			1	
[10]	a. b.	-	engaged in nuclear reaction cro pe of nuclear data do you use?		No
		- - -	Reaction cross sections Thick target yields Decay data	No No Yes	

[11] Does your institute accept IAEA research fellows for training/experience?

[1]	Institute: Postal Address:	Technischen Universität München Nuklearmedizinische Klinik und Poliklinik Ismaningerstr. 22 D-81675 München
	Telephone: Fax/E-mail:	49-89-41404586 2970 49-89-4140 4841
[2]	Person in-charge: (Title/Position)	Prof. M. Schwaiger
	Other senior staff:	G. Stöcklin; M. Herz; G. Reidel H.J. Wester, P. Watzlowik, I Wolf
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion Compact CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction:	1993

[4] Particle beams available:

	¹ H	211	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11				yes
Typical currents int (µA)					
Employed ext (µA)	20 - 40				

2

Hours per week machine is in operation (excluding maintenance):	9
Hours per week employed in radionuclide production:	9

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
^{II} C	$^{nat}N_2$	52	5 per week	
¹³ N	$^{nat}H_2O$	5.2	10 per week	
150	$^{15}N_2$ (99%)	18.5	36 per week	
⁷⁸ F	H ₂ ¹⁸ O (96%)	37	5 per week	enriched water recovered

[6] Radionuclides planned to be produced in the near future:

[7]	Major radiopharmaceuticals produced: ¹⁸ F-FDG				
	¹¹ C-Flumazenil, ¹¹ C-Methionine, ¹¹ C-Hydro. ¹³ N-Ammonia ¹⁵ O-Water	xyephedrin, ¹¹ C-Acetate			
[8]	Do you supply radionuclides/radiopharmaceu If yes, which ones and how often? ¹⁸ F-FDG Monday - Friday	ticals to other institutions?	Yes		
[9]	Is medical research/diagnosis carried out on s	On site, Research, Diagnosis			
	If on site, indicate imaging devices available				
	* 511 KeV SPET	1			
	* Gamma camera	4			
	* Single Photon Tomography (SPET)	3			
	* Positron Emission Tomography (PET)	2			
[10]	<ul><li>a. Are you engaged in nuclear reaction crob.</li><li>b. Which type of nuclear data do you use?</li></ul>		No		
	- Reaction cross sections	Yes			
	- Thick target yields	Yes			
	- Decay data	No			
[11]	Does your institute accept IAEA research fell	ows for training/experience?	Yes		

[1]	Institute: Postal Address:	Universitätsklinikum Tübingen (UKT) Interdisciplinary PET Centre Department of Nuclear Medicine Röntgenweg 15 D-72076 Tübingen	
	Telephone: Fax/E-mail:	49-7071-2987443 49-7071-296554	
[2]	Person in-charge: (Title/Position)	Prof. HJürgen Machulla; Section of Radiopharmazie;	Prof. R. Bares Director of Nuclear Medicine
	Other senior staff:		
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion GE PETTrace	
	Year: (i) of installation: (ii) of any major reconstruction:	1995	

[4] Particle beams available:

	H	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	$16.5 \pm 0.1$	$8.2 \pm 0.2$			
Typical currents int (µA)	40	40			
Employed ext (µA)	35	35			

0.5

Hours per week machine is in operation (excluding maintenance): 20

Hours per week employed in radionuclide production: 20

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics: Others:

GFR-19

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹¹ C	N ₂ +0.5% O ₂	40	3 per week	
"С	N ₂ +0.5% O ₂	6	10 per week	
N	$H_2^{16}O$	2	2 per week	
130	$N_2 + 1\% O_2$	6	4 per week	
¹⁸ F	$H_2^{-18}O$	20	5 per week	
$^{-18}F$	$H_2^{T8}O$	5	5 per week	

- [6] Radionuclides planned to be produced in the near future:  $I^{24}I, {}^{86}Y$
- [7] Major radiopharmaceuticals produced: 2-¹⁸F-FDG, 3-¹⁸F-FDG, ¹⁸F-Fluoromisonidazole, ¹⁸F-Fluoroacetate
   ¹¹C-labelled Amphetamine derivates, ¹¹C-Ritalin, ¹¹C-Methionine, ¹¹C-Raclopride, ¹¹C-Thymidine, ¹¹C-O-Me-Glucose
   ¹⁵O-Water
   ¹³N-Ammonia
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often?
   ¹⁸F-FDG once in two weeks

#### [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number

* 511 KeV SPET	
* Gamma camera	5
* Single Photon Tomography (SPET)	3
* Positron Emission Tomography (PET)	1

[10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?

-	Reaction cross sections	No
-	Thick target yields	No
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience?

[1]	Institute: Postal Address:	University Hospital Ulm Department of Nuclear Medicine Robert-Koch-Strasse 8 D-89081 Ulm
	Telephone: Fax/E-mail:	49-731-5024981 49-731-5024512
[2]	Person in-charge: (Title/Position)	Prof. S.N. Reske
	Other senior staff:	K. Grillenberger
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion IBA Cyclone 18/9
	Year: (i) of installation: (ii) of any major reconstruction:	1995

[4] Particle beams available:

Γ	H	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	18	9		<u> </u>	yes
Typical currents int (µA)					
Employed ext (µA)					

Hours per week machine is in operation (excluding maintenance):	~ 15 (4 days)
Hours per week employed in radionuclide production:	~ 15 (4 days)
Hours per week machine maintenance:	~ 5

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	14 N ₂	~ 50	1-2 per week	
13 _N	$H_2^{I_0}O$	~ 8	1-2 per week	
150	14N2	~ 10	~ 1 per week	
$^{18}F_2$	$^{20}Ne+0.2\% F_2$	~ 10	~ 1 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG, ¹⁸F-Fluoride ¹¹C-Methionine ¹³N-Cisplatin
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number

* 511 KeV SPET	
* Gamma camera	2
* Single Photon Tomography (SPET)	3
* Positron Emission Tomography (PET)	2

- [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
    - Decay data

-

[11] Does your institute accept IAEA research fellows for training/experience?

#### HUNGARY

[1]	Institute: Postal Address:	Institute of Nuclear Research of the Hungarian Academy of Sciences P.O. Box 51 H-4001 Debrecen
	Telephone: Fax/E-mail:	36-52-417266 36-52-416181
[2]	Person in-charge: (Title/Position)	F. Tárkányi; L. Trón Head of Cyclotron Department; Head of PET Centre
	Other senior staff:	Z. Kormàny; P. Kovàcs; Z. Szücs L. Andó; F. Szelecsényi, T. Marian; G. Horvàth
[3]	Type of cyclotron: Manufacturer: Model:	Compact Isochronous Cyclotron NIIEFA Russia MGC 20E
	Year: (i) of installation: (11) of any major reconstruction:	1985 1997

[4] Particle beams available:

		H.	He	He	Dual Beams
Beam energies/Range (MeV)	20	10	26	20	
Typical currents int (µA)	200	300	50	50	
Employed ext (µA)	50	50	25	25	

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Neutron source (radiobiology, radiation hardness test, neutron activation, Thin Layer Activation (TLA), wear measurements, activation analysis (charged particle) Basic nuclear physics (in beam nuclear spectroscopy, astrophysical nuclear reactions)

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

28 (56 every second week)

5

94

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	14N	12	4 per week	
150	14 _N	10	20 per week	
¹⁸ F	H ₂ O (97%)	25	4 per week	enriched H ₂ ¹⁸ O recovery
67Ga	⁶⁷ Zn (99%)	10	l per week	enriched ⁶⁸ Zn recovery
¹²³ I	¹²³ Te (95%)	6	l per week	enriched ¹²³ Te recovery

[6] Radionuclides planned to be produced in the near future:

¹³N-Ammonia ¹⁵O-Water ¹¹C-Flumezinil ¹¹¹In-DTPA ¹²³I-mIBG, ¹²³I-Iomazine

- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹⁵O-Butanol
   ¹¹C-Methionine, ¹¹C-Chlorostyryl caffeine,
   ⁶⁷Ga-citric acid Na¹²³I
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often? Na¹²³I - every 2 weeks
   ⁶⁷Ga - citric acid - every 2 weeks
- [9] Is medical research/diagnosis carried out on site/off site? Both If on site, indicate imaging devices available number

		1 KeV SPET	1	
		ngle Photon Tomography (SPET)	1	
		sitron Emission Tomography (PET)	1	
[10]	a. b.	Are you engaged in nuclear reaction cro Which type of nuclear data do you use?		Yes
		- Reaction cross sections	Yes	
		- Thick target yields	Yes	
		- Decay data	Yes	
	5			17

[11] Does your institute accept IAEA research fellows for training/experience? Yes

# INDIA

[1]	Institute: Postal Address:	Variable Energy Cyclotron Centre (VECC) 1/AF, Bidhan Nagar Calcutta 700 064
	Telephone: Fax/E-mail:	91-33-3371230 91-33-3346871
[2]	Person in-charge: (Title/Position)	Dr. B.C. Sinha Director
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	Sector-focused Cyclotron (pole diameter 224 cm) VEC Centre Individual design
	Year: (i) of installation: (ii) of any major reconstruction:	1997 1997

[4] Particle beams available:

	THE CONTRACT	A	• 3 <b>He</b>	He	Dual Beams
Beam energies/Range (MeV)	6.30	12.30		25.80	
Typical currents int (µA)	200	200		200	
Employed ext (µA)	20	20		20	

Hours per week machine is in operation (excluding maintenance):	160
Hours per week employed in radionuclide production:	24
Hours per week machine maintenance:	8

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics: Activation Analysis/Radiobiology/Physics

Others: Nuclear Chemistry

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{18}F$	$H_2^{\ B}O$	5	no fixed schedule	recovered enriched water
⁶⁷ Ga	^{nai} Cu	8	once a week	for R&D work at present
¹¹¹ In		8	no fixed schedule	

- [6] Radionuclides planned to be produced in the near future:  $\frac{20I}{Tl}$
- [7] Major radiopharmaceuticals produced: ¹⁶⁷Ga-Gallium citrate ¹¹¹In-Indium chloride ¹⁸F-FDG
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often?
   Regional Radiation Medicine Centre, Thakurpukur, Calcutta weekly
   Radiation Medicine Centre, Mumbai monthly

#### [9] Is medical research/diagnosis carried out on site/off site? Off site

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements?b. Which type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? No

#### **INDONESIA**

[1]	Institute: Postal Address:	National Atomic Energy Agency, BATAN PPR-Batan Kawasan Puspiptek Serpong 15310 Indonesia
	Telephone: Fax/E-mail:	21-7563141 21-7560928
	Fax/E-man.	21-7300928
[2]	Person in-charge:	Silakhuddin
	(Title/Position)	Head of Cyclotron Division
	Other senior staff:	Tonny Heryanto; Budi Tarigan
[3]	Type of cyclotron:	Positive Ion Cyclotron
	Manufacturer:	CTI
	Model:	CS 30
	Year: (i) of installation:	1990
	(ii) of any major reconstruction:	1995, modified to negative ion by IBA

[4] Particle beams available:

	<b>H</b>	³ He	He	Dual Beams
Beam energies/Range (MeV)	24 - 27			
Typical currents int (µA)	100			
Employed ext (µA)	65			

Hours per week machine is in operation (excluding maintenance):	10
Hours per week employed in radionuclide production:	6
Hours per week machine maintenance:	2
Additional applications of the cyclotron: We have a plan to use the cyclotron for charged particle	

activation analysis

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
²⁰⁷ Tl	203 <i>Tl</i>	13	sometimes	

- [6] Radionuclides planned to be produced in the near future: We would like to produce ¹²³I. Unfortunately we have no experts and facility
- [7] Major radiopharmaceuticals produced: ²⁰¹*Tl chloride*

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? Sometimes depends on demand. The problem is on marketing, because we have no duty for the marketing. This is the duty of another division.	Yes
[9]	Is medical research/diagnosis carried out on site/off site?	No
	If on site, indicate imaging devices available number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	
[11]	Does your institute accept IAEA research fellows for training/experience?	No

# IRAN, ISLAMIC REPUBLIC OF

[1]	Institute: Postal Address:	Nuclear Research Centre for Agriculture and Medicine (NRCAM) P.O. Box 31585-4395 Karaj
	Telephone: Fax/E-mail:	98-21-545747 98-261-411105
[2]	Person in-charge: (Title/Position)	Prof. S.M. Haji-Saeid Vice President of AEOI & Director of Cyclotron Accelerator Department
	Other senior staff:	H. Afarideh; Satari; Partovi; Rafii;Akbari, Shafiei
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion IBA, Belgium Cyclone 30
	Year: (i) of installation: (ii) of any major reconstruction:	1995

[4] Particle beams available:

		² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	15-30	7-15			yes
Typical currents int (µA)					
Employed ext (µA)	500	150			175

5

Hours per week machine is in operation	n (excluding maintenance):	20 - 25
----------------------------------------	----------------------------	---------

Hours per week employed in radionuclide production: 12 - 17

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:
Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
⁶⁷ Ga	⁶⁸ ZnO (98%)	0.1	1 per two week	enriched ⁶⁸ Zn recovery
In	nat Cd	0.5	1 per two week	
²⁰¹ Tl	²⁰³ Tl (98%)	0.037	l per week	enriched ²⁰³ Tl recovery

- [6] Radionuclides planned to be produced in the near future: ^{81m}Kr - Rb generator ¹⁸F-FDG. ¹²³I
- Major radiopharmaceuticals produced: [7] ²⁰¹Tl-Thallous Chloride ⁶⁷Ga-Gallium Chloride ¹¹¹In-Indium Chloride [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often? To all nuclear medicine centre in the country once a week Is medical research/diagnosis carried out on site/off site? Off site [9] Presently off site, but in the near future will be on site If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) * Dual head gamma camera with coincidence possibly [10] a. Are you engaged in nuclear reaction cross-section measurements? Yes Which type of nuclear data do you use? b. Reaction cross sections Yes . Yes Thick target yields _ -Decay data Yes [11] Does your institute accept IAEA research fellows for training/experience? Yes

#### ISRAEL

[1]	Institute: Postal Address:	Hadassah University Hospital Kiryat Hadassah P.O.B. 12000 N-91 120 Jerusalem
	Telephone: Fax/E-mail:	972-2-6777931 972-2-6421203; mishani@md2.huji.ac.il
[2]	Person in-charge: (Title/Position)	Dr. Eyal Mishani
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion IBA Cyclone 18/9
	Year: (i) of installation: (ii) of any major reconstruction:	1997
٢٨٦	Partiala haama availahla:	

[4] Particle beams available:

		B	He	He	Dual Beams
Beam energies/Range (MeV)	18	9			yes
Typical currents int (µA)					
Employed ext (µA)					

10

4-5

Hours per week machine is in operation (excluding maintenance): approx. 10

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

7

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
		[ [		

- [6] Radionuclides planned to be produced in the near future:  ${}^{II}C, {}^{I5}O$
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹³N-Ammonia
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Planned If yes, which ones and how often? We plan to supply radionuclides in the near future
- [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number
  - * 511 KeV SPET
  - * Gamma camera
  - * Single Photon Tomography (SPET)
  - * Positron Emission Tomography (PET) Yes
- [10] a. Are you engaged in nuclear reaction cross-section measurements?b. Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
  - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

## ITALY

[1]Institute:European CommissionPostal Address:I-21020 Ispra (VA)Telephone:39 332 784385

 Telephone:
 39 332 784385

 Fax/E-mail:
 39 332 785281; Rien.strpusmjder@jrc.it

M. F. Strousnjder

Section Head

[2] Person in-charge: (Title/Position)

Other senior staff:

C. Bruenoni, V. A. C. Haanappel, J. D. Sunderloetter

[3] Type of cyclotron: Manufacturer: Model: Variable Energy Positive Ion Scanditronix MC-40

Year: (i) of installation: 1980 (ii) of any major reconstruction:

[4] Particle beams available:

	B		He	Dual Beams
Beam energies/Range (MeV)	10 - 39	5 - 19	10 - 39	
Typical currents int (µA)	120	100	60	
Employed ext (µA)	60	60	30	

Hours per week machine is in operation (excluding maintenance):25Hours per week employed in radionuclide production:8Hours per week machine maintenance:4Additional applications of the cyclotron:5

Materials Research

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: Significant investments are underway to support new activities

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
123 <u>I</u>	¹²⁴ Xe	up to 80	2 - 3 per week	

- [6] Radionuclides planned to be produced in the near future:  ${}^{18}F$  and other PET radionuclides
- [7] Major radiopharmaceuticals produced:

[8]			radionuclides/radiopharmaceu nes and how often? nes per week	ticals to other institutions?	Yes
[9]			arch/diagnosis carried out on s ate imaging devices available r		Off site
	* Gai * Sin				
[10]	a. b.	•	engaged in nuclear reaction cro ype of nuclear data do you use?		Yes
		-	Reaction cross sections Thick target yields Decay data	Yes Yes Yes	
[11]	Does	s your inst	itute accept IAEA research fell	ows for training/experience?	Yes

[1]	Institute: Postal Address:	H.S. Raffaele Institute Centro Cyclotron/PET Via Olgettina, 60 I-20132 Milano
	Telephone: Fax/E-mail:	39-2-2153056 or 26432716 39-2-2640390; fazio@mednuc.hsr.it
[2]	Person in-charge: (Title/Position)	Prof. Ferruccio Fazio
	Other senior staff:	Francesco Perugini; Sergio Todde Mario Matarrese; Assunta Carpinelli
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation: (ii) of any major reconstruction:	Negative Ion CTI RDS 112 1988

[4] Particle beams available:

	'H	<b>***</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11				
Typical currents int (µA)	100				
Employed ext (µA)	20 - 40				

8

Hours per week machine is in operation (excluding maintenance):	31
Hours per week employed in radionuclide production:	21

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹¹ C	$^{14}N_2 + 1\% O_2$	18	10 per week	research tests
$^{13}N$	$\begin{array}{c} H_2^{16}O + ethanol\\ (<1\%) \end{array}$	1.5	l per week	
⁷⁵ O	$^{15}N_2(99+\%)$	0.8	48 per week	activation studies
	$H_2^{18}O(96+\%)$	14	4 per week	yes

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG, ¹⁸F-FESP ¹⁵O-Butanol, ¹⁵O-H₂O ¹¹C-Flumazenil, m-Hydroxy-¹¹C-efedrine ¹³N-Ammonia
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?		On site	
	If on site, indicate imaging devices available	number		
	* 511 KeV SPET	1		
	* Gamma camera	3		
	* Single Photon Tomography (SPET) 3			
	* Positron Emission Tomography (PET)	1		
[10]	a. Are you engaged in nuclear reaction c	ross-section measurements?	Yes	
	b. Which type of nuclear data do you use	?		
	- Reaction cross sections	No		
	- Thick target yields	Yes		
	- Decay data	Yes		
[11]	Does your institute accept IAEA research fe	llows for training/experience?	No	

## ITALY

[1]	Institute: Postal Address:	Istituto Nazionale per lo Studio e la Cura dei Tumori (INT) Via Venezian 1 I-20133 Milano
	Telephone: Fax/E-mail:	39-2-2390220791 39-2-2367874
[2]	Person in-charge: (Title/Position)	Dr. E. Bombardieri Director of Nuclear Medicine Department
	Other senior staff:	F. Crippa; C. Pascali; D. Decise A. Bogni; V. De Sanctis; C. Chiesa
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion Scanditronix MC 17E
	Year: (i) of installation: (ii) of any major reconstruction:	1995 1995

[4] Particle beams available:

Γ	H	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	17.2	8.6			
Typical currents int (µA)	50	50			
Employed ext (µA)					

5

Hours per week machine is in operation (excluding maintenance):		
Hours per week employed in radionuclide production:	5	

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Our PET/Cyclotron facility is totally devoted to clinical research and diagnostic activity in the field of oncology

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
/8_F	$H_2^{18}O(96\%)$	17	4 per week	enriched water recovered

- [6] Radionuclides planned to be produced in the near future:  ${}^{11}C$
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹⁸F-Fluoride
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?	On site
	If on site, indicate imaging devices available number	
	* 511 KeV SPET* Gamma camera* Single Photon Tomography (SPET)4* Positron Emission Tomography (PET)1	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	
[11]	Does your institute accept IAEA research fellows for training/experience?	Yes

# ITALY

Institute: Postal Address:	Consiglio Nazionale delle Ricerche Institute Pascale (CNR) Via M. Semmola I-80131 Napoli
Telephone: Fax/E-mail:	39-81-5903528/527 39-81-5465797
Person in-charge: (Title/Position)	Prof. Marco Salvatore
Other senior staff:	Mariarosaria Panico; Gian Franco Antonello Green
Type of cyclotron: Manufacturer: Model: Year: (1) of installation: (1i) of any major reconstruction:	Positive Ion Scanditronix MC 17 1991
	Postal Address: Telephone: Fax/E-mail: Person in-charge: (Title/Position) Other senior staff: Type of cyclotron: Manufacturer: Model: Year: (1) of installation:

[4] Particle beams available:

	μ. 	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	17	8.5			
Typical currents int (µA)	75	50			
Employed ext (µA)	50				

25

Hours per week machine is in operation (excluding maintenance):	: 40
-----------------------------------------------------------------	------

Hours per week employed in radionuclide production: 15

Hours per week machine maintenance:

Additional applications of the cyclotron: *Diagnostic* 

Radiotherapy/Activation Analysis/Radiobiology/Physics: Activation Analysis/Radiobiology

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	N ₂ (99.9999%)	18	8 per week	
$^{13}N$	$H_2^{Ib}O$	3	2 per week	
⁷⁸ F	$H_2^{18}O(96\%)$	50	4 per week	enriched water recovered
$^{I8}F$	Neon + $0.3\% F_2$			¹⁸ F-F ₂

- [6] Radionuclides planned to be produced in the near future:  ${}^{IS}O for H_2{}^{IS}O$  ${}^{II}C for {}^{II}CH_3I$
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-Fluoride
   ¹⁸F-FDG
   ¹³N-Ammonia
   ¹¹C-Acetate

.

[8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?			On site		
	If on site, indicate imaging devices available number					
	* Gai * Sin	•		1		
[10]	a. b.	•	ngaged in nuclear reaction cr e of nuclear data do you use			
		- - -	Reaction cross sections Thick target yields Decay data	Yes Yes Yes		

[11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	Università di Padova Medicina Nucleare - Centro PET Ospedaliero Castelfranco Veneto Via Ospedale No. 18 I-31033 Padova
	Telephone: Fax/E-mail:	39-42-3732435 39-42-3732426
[2]	Person in-charge: (Title/Position)	Prof. Giorgio Ferlin
	Other senior staff:	Alberto Fim
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction:	1994
[4]	Portiala haama availahla	

[4] Particle beams available:

Γ	<b>H</b>	<b>2H</b>	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	8.5 - 10				
Typical currents int (µA)	100				
Employed ext (µA)	20-30				

3

Hours per week machine is in operation (excluding maintenance):  $\approx 15$ 

Hours per week employed in radionuclide production:  $\approx 7$ 

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity Frequency (GBq) per batch		Comments
$^{-n}C$	$^{14}N+O_2$		1 per month	
¹³ N	$H_2^{I_0}O + ethanol$	~ 1	8-10 per week	
¹⁵ O	^{IS} N	~1 per run	10 run per month	
	$H_2^{18}O > 96\%$	~ 22	5 x week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹³N-Ammonia
   ¹¹C-Acetate
   ¹⁵O Water
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?			On site
	If on site, in	dicate imaging devices available 1	number	
[10]	* Positron E a. Are y			No
	- -	Thick target yields Decay data	Yes	

[11] Does your institute accept IAEA research fellows for training/experience?

## ITALY

[1]	Institute: Postal Address:	CNR Insitute of Clinical Physiology Consiglio Nazionale delle Ricerche (CNR) Via Savi n. 8 I-56126 Pisa
	Telephone: Fax/E-mail:	39-50-583254 39-50-553461; salvador@po.ifc.pi.cnr.it
[2]	Person in-charge: (Title/Position)	Piero A. Salvadori Head of Cyclotron and Radiopharmaceutical Chemistry Department
	Other senior staff:	L. Di Luca; D. Petroni; A. Riva S. Antongiovanni; A. Cantini; M. Poli
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion GE PETTrace
	Year: (i) of installation: (ii) of any major reconstruction:	1996

[4] Particle beams available:

		² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	16.4	8.5			
Typical currents int (µA)	75 max	60 max			
Employed ext (µA)	35	40			

30

5

Hours per week machine is in operation (excluding maintenance): 40

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Targetry (new targets for radionuclide production)

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: Dosimetry (irradiation of new dosimetric material)

Radionuclides produced: [5]

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
"C	$^{14}N_2 + 0.5\% O_2$	10	5 per week	radiopharmaceutical development
¹³ N	$H_2^{16}O$	3.7	8-12 per week	
¹⁵ O	$^{74}N_2 + ^{76}O_2$	3.7	8 per week	4 administrations per patient

Radionuclides planned to be produced in the near future:  $I^{124}I$   $I^{123}I$ [6]

- ⁶⁴Cu
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹³N-Ammonia ¹⁵O-Water
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often? 3 Centres upon request or monthly starting fall 1997
- Is medical research/diagnosis carried out on site/off site? On site [9] If on site, indicate imaging devices available number

	* 51	1 KeV SPE	Т		
	* Ga	mma came	ra	2	
	* Sin	ngle Photon	Tomography (SPET)	1	
			sion Tomography (PET)	1	
[10]	a. b.	•	engaged in nuclear reaction cr pe of nuclear data do you use		No
		-	Reaction cross sections	Yes	
		-	Thick target yields	Yes	
		-	Decay data	Yes	

[11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	National Institute for Longevity Sciences Gengo, Morioka, Obu Aichi 474
	Telephone: Fax/E-mail:	81-562-462311 81-562-445651; hatanok@nils.go.jp
[2]	Person in-charge: (Title/Position)	Dr. Kengo Ito
	Other senior staff:	Kentaro Hatano; Takashi Kato
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion Acceleration AVF Cyclotron Sumitomo Heavy Industries HM-18
	Year: (i) of installation: (ii) of any major reconstruction:	1995

[4] Particle beams available:

		<b>H</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	18	9			
Typical currents int (µA)		50			
Employed ext (µA)	~ 15	~ 25			

Hours per week machine is in operation (excluding maintenance):	5~6
Hours per week employed in radionuclide production:	5~6
Hours per week machine maintenance:	I

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}C$	N2	53	3 per week	
<i>ISO</i>	N ₂ +23% Co	0.3 GBq/min x 5~10 min	2 per week	
¹⁸ F	$H_2^{18}O(98\%)$	9	l per week	enriched water recovery
¹⁸ F	$Ne + 0.3\% F_2$	12	l per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹⁸F-FDOPA
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- 1 * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 1 [10] a. Are you engaged in nuclear reaction cross-section measurements? No b. Which type of nuclear data do you use? Reaction cross sections _ Thick target yields -Decay data _
- [11] Does your institute accept IAEA research fellows for training/experience? No

- Institute: Research Institute for Brain and Blood Vessels Akita [1] Postal Address: 6-10 Senshu-Kubota-machi Akita City Telephone: 81-188-330115 Fax/E-mail: 81-188-332104 Person in-charge: Kazuhiro Takahashi; kazu@akita.nokenigo.jp [2] (Title/Position) Other senior staff: Type of cyclotron: Baby Cyclotron [3] Manufacturer: Japan Steel Works Model: BC-168 1983
  - Year: (i) of installation: (ii) of any major reconstruction:
- [4] Particle beams available:

	<b>н</b>	2 <b>H</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	16	8			
Typical currents int (µA)	40	30			
Employed ext (µA)					

2

Hours per week machine is	in operation (	(excluding maintenance):	16
---------------------------	----------------	--------------------------	----

Hours per week employed in radionuclide production: 10

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$\Pi C$	14N2		2 per week	
¹⁵ O	14N2		20 per week	
18 _F	20 Ne		l per week	

- [6] Radionuclides planned to be produced in the near future:  ${}^{18}O(p, n) {}^{18}F$
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹¹C-Methionine, ¹¹C-NMSP, ¹¹C-3NMPB

[8]	Do you supply radionuclides/radio If yes, which ones and how often?	pharmaceuticals to other institutions?	No
[9]	Is medical research/diagnosis carri	ed out on site/off site?	On site
	If on site, indicate imaging devices	s available number	
	* 511 KeV SPET		
	* Gamma camera	1	
	* Single Photon Tomography (SPI	ET) 1	
	* Positron Emission Tomography	(PET) <i>1</i>	
[10]	<ul><li>a. Are you engaged in nuclear</li><li>b. Which type of nuclear data</li></ul>	reaction cross-section measurements? do you use?	No
	- Reaction cross s	ections No	
	- Thick target yiel	ds Yes	
	- Decay data	Yes	
[11]	Does your institute accept IAEA re	esearch fellows for training/experience?	No

[1]	Institute: Postal Address:	National Institute of Radiological Sciences Division of Advanced Technology for Medical Imaging Anagawa 4-9-1, Inage-ku Chiba-shi 263
	Telephone:	81-43-2512111
	Fax/E-mail:	81-43-2876146
[2]	Person in-charge:	Kazutoshi Suzuki
	(Title/Position)	Head
	Other senior staff:	Toshiaki Irie; Kiyoshi Fukushi Terushi Haradahira
[3]	Type of cyclotron:	Negative Ion
["]	Manufacturer:	Sumitomo Heavy Industries
	Model:	НМ-18
	Year: (i) of installation: (ii) of any major reconstruction:	1994
[4]	Particle beams available:	

	¹ H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	18	10			
Typical currents int (µA)	10	10			
Employed ext (µA)	20				

20

6

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$T_{C}$	N ₂	10~40	~ 20 per week	receptor ligand
$^{I3}N$	H ₂ O	3~10	10 ~ 12 per week	¹³ NH ₃ , labelling
¹⁵ O	$N_2(+O_2 0.01\%)$	3~10	l per week	$H_2^{ID}O$
¹⁸ F	$H_2^{18}O(20\%, 5\%)$	1~10	2 per week	enriched water recovery

- [6] Radionuclides planned to be produced in the near future:  $^{18}O(p, n)$   $^{18}F$
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹¹C-Methionine^{, 11}C-NMSP, ¹¹C-SCH23390, ¹¹C-15Ro-1788
   ¹³N-Ammonia
   ¹⁵O-Water
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) 3 * Positron Emission Tomography (PET) 3 Are you engaged in nuclear reaction cross-section measurements? Yes [10] a. Which type of nuclear data do you use? b. Yes Reaction cross sections Thick target yields Yes _ Decay data Yes

[11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	National Institute of Radiological Sciences Division of Advanced Technology for Medical Imaging Anagawa 4-9-1, Inage-ku Chiba-shi 263
	Telephone: Fax/E-mail:	81-43-2512111 81-43-2876146
[2]	Person in-charge: (Title/Position)	Kazutoshi Suzuki Head
	Other senior staff:	Toshiaki Irie; Kiyoshi Fukushi Terushi Haradahira
[3]	Type of cyclotron: Manufacturer: Model:	AVF multi-particle Thomson CSF AVF-930
	Year: (i) of installation: (ii) of any major reconstruction:	1973
[ <b>/</b> ]	Partiala haama availahlar	

[4] Particle beams available:

Γ	, H,		³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	90	55	145	110	
Typical currents int (µA)					
Employed ext (µA)	5	20	2	10	

10

8

Hours per week machine is in operation (excluding maintenance): 35

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

- Radionuclide **Target Material** Activity (GBq) Frequency Comments Produced (enrichment) per batch  $^{\prime\prime}C$ 10~40  $\sim 20$  per week receptor ligand  $N_2$  $\overline{^{T3}N}$  $H_2O$ ¹³NH₃, labelling 3~10  $10 \sim 12$  per week 750  $H_2^{I5}O$  $N_{2}(+O_{2} 0.01\%)$ 3~10 1 per week ⁷⁸F enriched H₂¹⁸O H₂¹⁸O (20%, 5%) 1~10 2 per week recovery nat Ar (p. 3n) ³⁸K nai Ar 0.5~1 2-3 per week ³⁵Mn ⁵²Fe ⁵⁵Mn (p.4n)  $0.1 \sim 0.2$ 123_I  $\frac{127}{I(p,5n)}$ ¹²³Xe NaI, ~ 5  $(NaI+I_2+H_2O)$
- [5] Radionuclides produced:

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹¹C-Methionine, ¹¹C-NMSP, ¹¹C-15Ro-1788, ¹¹C-SCH23390
   ¹⁵O-Water
   ⁵²Fe-citrate
   ¹²³I-Hippuric acid, ¹²³I-Adsterol
   ¹⁸F-FDG
   ¹³N-Ammonia
   ³⁸K⁺
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera

_

- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements?
  - b. Which type of nuclear data do you use?
    - Reaction cross sections
      - Thick target yields
    - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

[1]	Institute: Postal Address:	Daiichi Radioisotope Laboratories, Ltd. 453-1 Shimookura Matsuo-machi Sanbu-gun Chiba 289-15
	Telephone: Fax/E-mail:	81-479-864721 81-479-863642
[2]	Person in-charge: (Title/Position)	Mr. Takehiro Okuda Manager, Cyclotron Engineering Section
	Other senior staff:	Yasuharu Sato
[3]	Type of cyclotron: Manufacturer: Model:	FFAG Scanditronix MC-40
	Year: (i) of installation: (ii) of any major reconstruction:	1984

[4] Particle beams available:

Γ	н	2H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	30				
Typical currents int (µA)	180				
Employed ext (µA)					

8

Hours per week machine is in operation (excluding maintenance): 1.
--------------------------------------------------------------------

Hours per week employed in radionuclide production: 120

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
²⁰¹ Pb	²⁰³ Tl (100%)	~ 1000	10 per week	enriched ²⁰³ Tl recovery

[6] Radionuclides planned to be produced in the near future:

۱.

- [7] Major radiopharmaceuticals produced: ²⁰¹Tl Thallium Chloride
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements? No
   b. Which type of nuclear data do you use?
   Reaction cross sections Yes

1

- Thick target yields Yes
  Decay data Yes
- [11] Does your institute accept IAEA research fellows for training/experience? No

[1]	Institute: Postal Address:	Daiichi Radioisotope Laboratories, Ltd. 453-1 Shimookura Matsuo-machi Sanbu-gun Chiba 289-15
	Telephone:	81-479-864721
	Fax/E-mail:	81-479-863642
[2]	Person in-charge:	Mr. Takehiro Okuda
	(Title/Position)	Manager, Cyclotron Engineering Section
	Other senior staff:	Yasuharu Sato
[3]	Type of cyclotron:	AVF
	Manufacturer:	IBA
	Model:	Cyclone 30
	Year: (i) of installation: (ii) of any major reconstruction:	1991

[4] Particle beams available:

Γ	H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	30				yes
Typical currents int (µA)	200				350
Employed ext (µA)					

120

8

Hours per week machine is in operatio	(excluding maintenance): 120
---------------------------------------	------------------------------

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
⁶⁷ Ga	⁶⁸ Zn (100%)	~ 1000	2 per week	enriched ⁶⁸ Zn recovery
¹²³ I	¹²⁴ Xe (100%)	~ 100	5 per week	enriched ¹²⁴ Xe recovery

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ⁶⁷Ga - Gallium citrate ¹²³I - MYO MIBG
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number
  - * 511 KeV SPET
  - * Gamma camera
  - * Single Photon Tomography (SPET)
  - * Positron Emission Tomography (PET)

# [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?

1

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? No

[1]	Institute: Postal Address:	Nihon Medi-Physics Co. Ltd. Chiba Facility 3-1 Kitasode, Sodegaura City Chiba Pref., 299-02
	Telephone: Fax/E-mail:	81-438-634771 81-438-633306
[2]	Person in-charge: (Title/Position)	Toshio Iguti Manager of Technical Section 1
	Other senior staff:	Yasuharu Sato
[3]	Type of cyclotron: Manufacturer: Model:	AVF Sumitomo Heavy Industries, Ltd. 480P
	Year: (i) of installation: (ii) of any major reconstruction:	1985

[4] Particle beams available:

Γ	H ¹	H .	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	30				
Typical currents int (µA)	200				
Employed ext (µA)	80				

30

Hours per week machine is	in operation (	(excluding maintenance):	110
Thom's per week machine is	in operation v	(chemanice).	110

Hours per week employed in radionuclide production: 105

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

#### JPN-7

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
18 _F	$H_2^{18}O(97\%)$	150 (EOB)	1 per week	
⁶⁷ Ga	⁶⁸ Zn (97%)	500 (EOB)	2-3 per week	
⁸¹ Rb	⁸² Kr (99%)	40 (EOB)	1 per week	
¹²³ I	¹²⁴ Xe (99%)	15 (EOS)	1-2 per week	

[6] Radionuclides planned to be produced in the near future:

[7]	Major radiopharmaceuticals produced: ⁶⁷ Ga-citrate		
[8]	Do you supply radionuclides/radiopharmace If yes, which ones and how often? Hospitals in Japan, everyday	euticals to other institutions?	Yes
[9]	Is medical research/diagnosis carried out or	n site/off site?	
	If on site, indicate imaging devices available	e number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	I	
[10]	<ul><li>a. Are you engaged in nuclear reaction</li><li>b. Which type of nuclear data do you us</li></ul>		No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	Yes Yes Yes	
[11]	Does your institute accept IAEA research for	ellows for training/experience?	No

[1]	Institute: Postal Address:	Nihon Medi-Physics Co. Ltd. Chiba Facility 3-1 Kitasode , Sodegaura City Chiba Pref., 299-02
	Telephone: Fax/E-mail:	81-438-634771 81-438-633306
[2]	Person in-charge: (Title/Position)	Toshio Iguti Manager of Technical Section 1
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	AVF Sumitomo Heavy Industries, Ltd. 750 PV
	Year: (i) of installation:	1986

Year: (i) of installation: (ii) of any major reconstruction:

[4] Particle beams available:

	H ¹	<b>2</b> H	³ He	fHe	Dual Beams
Beam energies/Range (MeV)	25 - 70				
Typical currents int (µA)	200				
Employed ext (µA)	100 at 25 MeV 50 at 70 MeV				

30

Hours per week machine is in operation (excluding maintenance):	110

Hours per week employed in radionuclide production: 105

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁸ F	$H_2^{18}O(97\%)$	150 (EOB)	l per week	
⁸⁷ Rb	⁸² Kr (99%)	40 (EOB)	l per week	
123 _I	¹²⁴ Xe (99%)	15 (EOS)	1-2 per week	
²⁰¹ Tl	²⁰³ Tl (96%)	300 (EOS)	2 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions?	Yes
	If yes, which ones and how often?	
	Hospitals in Japan, everyday	

[9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

* 511 KeV SPET * Gamma camera 1 * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) [10] a. Are you engaged in nuclear reaction cross-section measurements? No Which type of nuclear data do you use? b. Yes Reaction cross sections -Thick target yields Yes _ _ Decay data Yes [11] Does your institute accept IAEA research fellows for training/experience? No

[1]	Institute: Postal Address:	Kyushu University Department of Radiology Faculty of Medicine Maidashi 3-1-1 Fukuoka 812-82
	Telephone: Fax/E-mail:	81-92-6425788 81-92-6425833
[2]	Person in-charge: (Title/Position)	Yasuo Kuwabara Chief in Nuclear Medicine Section
	Other senior staff:	Masayuki Sasaki; Isuyoshi Yoshida Toshimitsu Fukumura
[3]	Type of cyclotron: Manufacturer: Model:	AVF JSW BC 1710
	Year: (i) of installation: (ii) of any major reconstruction:	1983

[4] Particle beams available:

	¹ H	21	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	17	10			
Typical currents int (µA)	20-30	30			
Employed ext (µA)					

5

2

Hours per week machine is in operation (excluding maintenance): 11

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
^{<i>n</i>} C	14N	87	2 per week	
¹⁵ O	14 _N	60	l per week	
<i>18</i> F	²⁰ Ne	25	l per week	
/8F	$H_2^{18}O(96.9)$	37	1 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁵O-Water, ¹⁵O-Oxygen, ¹⁵O-Carbon Monoxide, ¹⁵O-Carbon Dioxide
   ¹¹C-Methionine, ¹¹C-Raclopride, ¹¹C-NMPB
   ¹⁸F-FDG, ¹⁸F-DOPA
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number
  - * 511 KeV SPET
  - * Gamma camera

-

- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET) Yes
- [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
    - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

[1]	Institute: Postal Address:	Fukui Medical University Biomedical Imaging Research Centre 23 Shimoaizuki, Matsuoka-cho Fukui 910-11
	Telephone: Fax/E-mail:	81-776-613111 81-776-618137; Yonekura@fmsrsa.fukui-ac.jp
[2]	Person in-charge: (Title/Position)	Prof. Yoshiharu Yonekura
	Other senior staff:	Norihiro Sadato; Akira Yokoyama Yasuhisa Fujibayashi
[3]	Type of cyclotron: Manufacturer: Model:	Superconducting, Negative Ion Oxford OSCAR 5
	Year: (i) of installation: (ii) of any major reconstruction:	1994

[4] Particle beams available:

Γ	H	² H ³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	12			
Typical currents int (µA)				
Employed ext (µA)	50			

15

3

Hours per week machine is in operation (excluding m	naintenance): 20
-----------------------------------------------------	------------------

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$-n_C$	$^{14}N_2$ (95%)	15	l per month	
¹³ N	$H_2^{16}O(100\%)$	6	l per week	
	$^{15}N_2$ (95%)	2.6	1 per week	
⁷⁸ F	$H_2^{18}O(50\%)$	37	2 per week	enriched water recovery

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:  ${}^{18}F$ -FDG

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions?	No
	If yes, which ones and how often?	

[9]	Is medical research/diagnosis carried out on site/off site?		te/off site?	On site
	If on	site, indicate imaging devices available n	umber	
	* 511	1 KeV SPET		
	* Ga	mma camera	2	
	* Sin	gle Photon Tomography (SPET)	Ι	
	* Pos	sitron Emission Tomography (PET)	1	
[10]	a.	Are you engaged in nuclear reaction cro	ss-section measurements?	No
	b.	Which type of nuclear data do you use?		
		- Reaction cross sections		
		- Thick target yields		
		- Decay data		

111 Does your montule decept in the research fenows for dumme, experience.	h fellows for training/experie	Does your institute accept IAEA research	Does your institute accept IAEA resea	[11] I	Į
----------------------------------------------------------------------------	--------------------------------	------------------------------------------	---------------------------------------	--------	---

.

[1]	Institute: Postal Address:	Japan Atomic Energy Research Institute (JAERI) 1233 Watanuki, Takasaki Gunma 370-12
	Telephone:	81-273-46-9677
	Fax/E-mail:	81-273-469690
[2]	Person in-charge:	Dr. T.Sekine
	(Title/Position)	Principal Scientist
	Other senior staff:	Noriko Ishikoka
		S. Watanabe
[3]	Type of cyclotron:	AVF Cyclotron, K-110
	Manufacturer:	Sumitomo Heavy Industries
	Model:	CGR-MeV 930
	Year: (i) of installation: (ii) of any major reconstruction:	1990

[4] Particle beams available:

Γ	¹ H	² H	³ He	4He	Dual Beams
Beam energies/Range (MeV)	10~90	10~50		20~100	
Typical currents int µA					
Employed ext (µA)	5	20		5	

Hours per week machine is in operation (excluding maintenance):	92
Hours per week employed in radionuclide production:	5
Hours per week machine maintenance:	5
Additional applications of the cyclotron: Materials science for space and nuclear fusion Production of functional materials Biotechnology, Radiation chemistry	
Radiotherapy/Activation Analysis/Radiobiology/Physics:	

Radiotherapy/Activation Analysis/Radiobiology/Physic Radiobiology, Physics

Others: Radionuclides used for studies of plant physiology
Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	N ₂	37 MBq	l per week	
13 _N	$H_2^{\ 1b}O$	100 MBq	l per week	¹⁸ O depleted water
¹⁸ F	$H_2^{18}O(99.3\%)$	600 MBq	1 per month	
¹⁸ F	$H_2O$	100 MBq	2 per month	
¹³⁹ Ce			occasional	
¹⁸⁶ Re	¹⁸⁶ W (97%)	37 MBq	3 per year	enriched ¹⁸⁶ W recovery

- [6] Radionuclides planned to be produced in the near future:  ${}^{48}V, {}^{62}Zn/{}^{62}Cu$
- [7] Major radiopharmaceuticals produced:

[8]	If yes	s, which c	radionuclides/radiopharmaceu ones and how often? we supplied ¹³⁹ Ce and ¹⁸⁶ Re	ticals to other institutions?	No
[9]			earch/diagnosis carried out on s cate imaging devices available r		No
		l KeV SP			
		mma cam			
		-	n Tomography (SPET) ission Tomography (PET)		
[10]	a. b.	-	engaged in nuclear reaction cro ype of nuclear data do you use?		Yes
		-	Reaction cross sections	Yes	
		-	Thick target yields	Yes	
		-	Decay data	Yes	
[11]	Does	s your inst	itute accept IAEA research fell	ows for training/experience?	Yes

•

2

3

Institute: Postal Address:	Gunma University School of Medicine 39-15 Showa-machi 3-chome Maebashi-shi Gunma-ken 371
Telephone: Fax/E-mail:	81-27-2208661
Person in-charge: (Title/Position)	Prof. Keigo Endo Chairman
Other senior staff:	Tomio Inoue; Kunio Matsubara Katsumi Tomiyoshi
Type of cyclotron: Manufacturer: Model:	Baby Cyclotron Japan Steel Works Ltd. BC 1700
Year: (i) of installation: (ii) of any major reconstruction:	1983
	Postal Address: Telephone: Fax/E-mail: Person in-charge: (Title/Position) Other senior staff: Type of cyclotron: Manufacturer: Model: Year: (i) of installation:

[4] Particle beams available:

Γ	H	<b>2</b> H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	18	10		· · · · · · · · · · · · · · · · · · ·	
Typical currents int (µA)	30	30			
Employed ext (µA)					

Troute per "cert maenine is in operation (enerading maintenance):	Hours per week machine is in operation (excluding maintenance):	15
-------------------------------------------------------------------	-----------------------------------------------------------------	----

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹¹ C	14N2	2	2 per week	
¹³ N	¹⁶ O	4	2 per week	
¹⁵ O	14 _N	10	2 per week	
	$H_2^{18}O(50\%)$	4	3 per week	
¹⁸ F	Ne/F ₂	2	2 per week	

- [6] Radionuclides planned to be produced in the near future:  $^{186}Re, ^{186}W(p, n) ^{186}Re$
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG, ¹⁸F-αMT
   ¹³N-Ammonia
   ¹⁵O-Water
   ¹¹C-Met
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is m	edical reso	earch/diagnosis carried out on s	ite/off site?	On site
	If on	site, indi	cate imaging devices available	number	
		1 KeV SP			
		mma cam		1	
			on Tomography (SPET)	Ι	
	* Po	sitron Em	ission Tomography (PET)	2	
[10]	a.	Are you	engaged in nuclear reaction cro	oss-section measurements?	No
. ,	b.	Which t	type of nuclear data do you use?	)	
		-	Reaction cross sections	Yes	
		-	Thick target yields	Yes	
		-	Decay data	Yes	
[11]	Doe	s vour inst	titute accept IAEA research fell	ows for training/experience?	No
L**]	200	5 5 G at 1113	indie devept in Mark rededition fen	ono ioi danning onperionee.	110

[4] Particle beams available:

Γ	¹ H	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	11				
Typical currents int (µA)	40				
Employed ext (µA)	40				

Hours per week machine is in operation (excluding maintenance):

48 Planned Installation underway

48

2

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

The installation of the RDS 111 cyclotron shall begin in December, 1997, and PET diagnosis is expected to start in February, 1998.

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹³ N	$H_2O$	15	l per week	
¹⁵ 0	$^{15}N_2$ (99.999%)	7.4	3 per week	
¹⁸ F	$H_2^{18}O(98\%)$	12	4 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:  ${}^{18}F$ -FDG

[8]	Do you supply radionuclides/radiopharmaceu If yes, which ones and how often?	ticals to other institutions?	No
[9]	Is medical research/diagnosis carried out on s	ite/off site?	On site
	If on site, indicate imaging devices available	number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	1 1 1	
[10]	<ul><li>a. Are you engaged in nuclear reaction cr</li><li>b. Which type of nuclear data do you use</li></ul>		No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	No No Yes	
[11]	Does your institute accept IAEA research fell	ows for training/experience?	No

- [1] Institute: Nihon Medi-Physics Co. Ltd. Hyogo Facility Postal Address: 9-1 Techno Park, Sanda City Hyogo Pref., 669-13 Telephone: 81-795-684771 Fax/E-mail: 81-795-683071 Person in-charge: Shigeaki Kataoka [2] (Title/Position) Manager of Technical Section 1 Other senior staff: [3] Type of cyclotron: Fixed field, fixed frequency, accelerating H ions Manufacturer: IBA s.a Model: Cyclone 30 .
  - Year: (i) of installation: (ii) of any major reconstruction:
- [4] Particle beams available:

Γ	¹ H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	16 - 30				
Typical currents int (µA)					
Employed ext (µA)	330				

12

1990

Hours per week machine is in operation (excluding maintenance): 125

Hours per week employed in radionuclide production: 125

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
⁸⁷ Rb	⁸² Kr (99%)	80 (EOB)	l per week	
IIIIIn	¹¹² Cd (97%)	180 (EOB)	1-2 per week	
123 _I	¹²⁴ Xe (99%)	750 (EOS)	2-3 per week	
²⁰⁷ Tl	²⁰³ Tl (97%)	300 (EOS)	2-3per_week	

- [6] Radionuclides planned to be produced in the near future:  ${}^{I8}F$
- [7] Major radiopharmaceuticals produced: ²⁰¹ TlCl ¹²³ I-IMP, ¹²³ I-BMIPP
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often? Hospitals in Japan, everyday
- [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number
  - * 511 KeV SPET
  - * Gamma camera
  - * Single Photon Tomography (SPET)
  - * Positron Emission Tomography (PET)

### [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? No

[1]	Institute: Postal Address:	Nihon Medi-Physics Co. Ltd. Hyogo Facility 9-1 Techno Park, Sanda City Hyogo Pref., 669-13
	Telephone:	81-795-684771
	Fax/E-mail:	81-795-683071
[2]	Person in-charge:	Shigeaki Kataoka
	(Title/Position)	Manager of Technical Section 1
	Other senior staff:	
[3]	Type of cyclotron:	Fixed field, fixed frequency, accelerating H ions
	Manufacturer:	IBA s.a
	Model:	Cyclone 30
	Year: (i) of installation:	1992

[4] Particle beams available:

F	¹ H ² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	15 - 30			
Typical currents int (µA)				
Employed ext (µA)	360			

12

Hours per week machine is in operation (excluding maintenance):	125

Hours per week employed in radionuclide production: 125

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

(ii) of any major reconstruction:

Others:

#### JPN-15

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
⁸¹ Rb	⁸² Kr (99%)	80 (EOB)	1 per week	
¹¹¹ In	¹¹² Cd (97%)	180 (EOB)	1 per 2 weeks	
¹²³ I	¹²⁴ Xe (99%)	750 (EOS)	2-3 per week	
²⁰¹ <i>Tl</i>	²⁰³ Tl (97%)	300 (EOS)	2-3 per week	

- [6] Radionuclides planned to be produced in the near future:  ${}^{I8}F$
- [7] Major radiopharmaceuticals produced: ²⁰¹ TlCl ¹²³ I-IMP, ¹²³ I-BMIPP
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often? Hospitals in Japan, everyday
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

## [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? No

[1]	Institute: Postal Address:	Hyogo Institute for Aging Brain & Cognitive Disorders 520 Saisho-ko, Himeji Hyogo 670
	Telephone: Fax/E-mail:	81-792-955511 81-792-958199; ishii@hiabcd.go.jp
[2]	Person in-charge: (Title/Position)	Dr. Kazunari Ishii Director of PET Section
	Other senior staff:	Masahiro Susaki Toru Kida
[3]	Type of cyclotron: Manufacturer: Model:	Superconducting Negative Ion Cyclotron Oxford OSCAR-2
	Year: (i) of installation: (ii) of any major reconstruction:	1992

[4] Particle beams available:

Γ	H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	12				
Typical currents int (µA)	50				
Employed ext (µA)	50				

Hours per week machine is in operation (excluding maintenance):	3~4
Hours per week employed in radionuclide production:	3
Hours per week machine maintenance:	1

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	¹⁴ N ₂ (99.9999%)	37	2 per week	$1\% O_2$ addition
¹⁵ O	$^{15}N_2$ (99.8%)	56	20 per week	15% CO ₂ addition
⁷⁸ F	$H_2^{18}O(50\%)$	15	2 per week	enriched H ₂ ¹⁸ O recovery

[6] Radionuclides planned to be produced in the near future:

[7]	Major radiopharmaceuticals produced: ¹⁸ F-FDG		
	¹⁵ O-Carbon Monoxide, ¹⁵ O-Water, ¹⁵ O-Ca	rbon Dioxide _, ¹⁵ O-Oxygen	
[8]	Do you supply radionuclides/radiopharmace If yes, which ones and how often?	uticals to other institutions?	No
[9]	Is medical research/diagnosis carried out on If on site, indicate imaging devices available		On site
	* 511 KeV SPET		
	* Gamma camera		
	* Single Photon Tomography (SPET)		
	* Positron Emission Tomography (PET)	1	
[10]	<ul><li>a. Are you engaged in nuclear reaction of</li><li>b. Which type of nuclear data do you use</li></ul>		No
	- Reaction cross sections	Yes	
	- Thick target yields	No	
	- Decay data	Yes	
[11]	Does your institute accept IAEA research fe	llows for training/experience?	Yes

[4] Particle beams available:

ſ	¹ H	211	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	4.25/17	10	26	20	
Typical currents int (µA)	50	50	30	30	
Employed ext (µA)	30 (max. 50)	30 (max. 50)	15 (max. 20)	15 (max. 20)	

Hours per week machine is in operation (excluding maintenance):	50
Hours per week employed in radionuclide production:	20
Hours per week machine maintenance:	3
Additional applications of the cyclotron: It is dedicated only to the materials science research (in situ and post-irradiation measurements, etc.) No RI production in intended	
Radiotherapy/Activation Analysis/Radiobiology/Physics:	

Others: The cyclotron and 2 target chambers are all in a single room

#### JPN-17

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?	No
[9]	Is medical research/diagnosis carried out on site/off site?	No
	If on site, indicate imaging devices available number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	
[11]	Does your institute accept IAEA research fellows for training/experience?	Yes

[1]	Institute: Postal Address:	Kanazawa Cardiovascular Hospital Ha 16 Tanaka, Kanazawa Ishikawa
	Telephone:	81-76-2538000
	Fax/E-mail:	81-76-2530008
[2]	Person in-charge: (Title/Position)	Name not provided
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	Baby cyclotron for medical use The Japan Steel Works Ltd. BC 1710
	Year: (i) of installation: (ii) of any major reconstruction:	1991

[4] Particle beams available:

Γ	Η	H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	17	10			
Typical currents int (µA)					
Employed ext (µA)	60	60			

~ 4

~ 2

Hours per week machine is in operation (e	excluding maintenance): $\sim 20$
······································	

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: PET

#### JPN-18

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	$N_2$ (100%)	3.7	3 per week	
13 _N	$H_2O$	3.7	l per week	
130	N ₂ (98%)	3.7	3 per week	
⁷⁸ F	Ne (99.5%)	7.4	4 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:  $^{18}F$ -FDG
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
  * Gamma camera
  * Single Photon Tomography (SPET)
  * Positron Emission Tomography (PET)
  1

  [10] a. Are you engaged in nuclear reaction cross-section measurements? No

  b. Which type of nuclear data do you use?
   Reaction cross sections
  Thick terretorial data
  - Thick target yieldsDecay data Yes
- [11] Does your institute accept IAEA research fellows for training/experience? No

[1]	Institute: Postal Address:	Nishina Memorial Cyclotron Centre 348-58 Tomegamori, Takizawa Iwate 020-01
	Telephone: Fax/E-mail:	81-19-6886071 81-19-6886072
[2]	Person in-charge: (Title/Position)	S. Suzuki Director
	Other senior staff:	S. Futatsugawa; S. Hatakeyama K. Sera
[3]	Type of cyclotron: Manufacturer: Model:	AVF Shimadzu MCY 1750
	Year: (i) of installation: (ii) of any major reconstruction:	1989

[4] Particle beams available:

Γ	¹ H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	16.9	8.3			
Typical currents int (µA)					
Employed ext (µA)	30	30			

6

8

Hours per week machine is in operation	(excluding maintenance):	40
----------------------------------------	--------------------------	----

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: Proton Induced X-ray Emission (PIXE)

Radionuclide Produced	Target Material (enrichment)	Activity (GBq)	Frequency	Comments
	N ₂	37	2 per week	
130	$N_2(O_2:0.5\%)$	3 GBq/min	6 per week	
¹⁸ F	Ne (F ₂ .0.4%)	14.5	l per week	

- [6] Radionuclides planned to be produced in the near future:  $^{13}N$
- [7] Major radiopharmaceuticals produced:
   ¹⁵O-Oxygen, ¹⁵O-Carbon Dioxide, ¹⁵O-Carbon Monoxiode, ¹⁵O-Water
   ¹⁸F-FDG
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?		On site
	If on	site, indicate imaging devices available number	
	* Ga * Sin	l KeV SPET mma camera Igle Photon Tomography (SPET) sitron Emission Tomography (PET) 1	
[10]	a. b.	Are you engaged in nuclear reaction cross-section measurements? Which type of nuclear data do you use?	No
		<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	

[11] Does your institute accept IAEA research fellows for training/experience?

[1]	Institute: Postal Address:	Nishijin Hospital 1035 Mizomae-cho, Kamigyo-ku Kyoto 602
	Telephone: Fax/E-mail:	81-75-4615514
[2]	Person in-charge: (Title/Position)	Takahiro Kanatsuna President
	Other senior staff:	Takehiko Yagyu; Hitoshi Horii Kazuo Wakita; Ryou Fujii
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion The Japan Steel Works Ltd. BC 1710
	Year: (i) of installation: (ii) of any major reconstruction:	1985

[4] Particle beams available:

•

Γ	¹ H	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	17	10			
Typical currents int (µA)	70 ~ 80	extracting efficiency: (60 ~ 65%)			
Employed ext (µA)	10 ~ 50				

Hours per week machine is in operation (excluding maintenance):	6~10
Hours per week employed in radionuclide production:	6~10
Hours per week machine maintenance:	4~8

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	N ₂ (99.999%0	15	1~2 per week	
¹⁵ O (C ¹⁵ O ₂ )	2.5% CO ₂ +N ₂	6	4~6 per week	continuous inhalation 0.4 GBq in 15 min
⁷⁸ F	0.15~0.5%F ₂ /Ne	10	<i>l~2 per week</i>	
$^{15}O(^{15}O_2, C^{15}O)$	0.5% O ₂ +N ₂	11	4~6 per week	¹⁵ O ₂ 0.6 GBq per batch

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁵O-Oxygen, ¹⁵O-Carbon Dioxide, ¹⁵O-Cabon Monoxide
   4-¹⁸F Fluoro-borono-phenylanine (¹⁸FBPA). ¹⁸F-DOPA
   1-¹¹C -Butyryl-2-polmitoyl glycerol (¹¹C-DAG)
   ¹⁸F-FDG
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?	Diagnosis, on site
	If on site, indicate imaging devices available number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data Yes</li> </ul>	
[11]	Does your institute accept IAEA research fellows for training/experience?	Yes

[1]	Institute: Postal Address:	Kyoto University Hospital Kawahara-cho-54, Shogoin, Sakyo-ku Kyoto 606-01
	Telephone: Fax/E-mail:	81-75-7534567 81-75-7513306; magata@pharm.kyoto-u.ac.jp
[2]	Person in-charge: (Title/Position)	Yasuhiro Magata
	Other senior staff:	Haruhiro Kitano
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation: (ii) of any major reconstruction:	AVF Sumitomo Heavy Industry Cypris 325 1982 1997 - change of electronic circuit

[4] Particle beams available:

	<b>B</b>	<b>4</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	15	8			
Typical currents int (µA)					
Employed ext (µA)	35				

20

2

Hours per week machine is in operation (excluding maintenance):	20

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

.

Radionuclide Produced	Target Material (enrichment)	Activity (GBg) per batch	Frequency	Comments
''C	N ₂	25	2 per week	
¹³ N	$H_2O$	10	l per week	
150	N ₂	4	2 per week	
<i>18</i> F	$H_2^{18}O$	15	3 per week	enriched H ₂ ¹⁸ O recoverv

No

On site

No

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹³N-Ammonia ¹⁵O-Water, ¹⁵O-Oxygen, ¹¹C-Acetate [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? Is medical research/diagnosis carried out on site/off site? [9] If on site, indicate imaging devices available number * 511 KeV SPET 1 * Gamma camera 2 * Single Photon Tomography (SPET) 4 * Positron Emission Tomography (PET) 2 [10] a. Are you engaged in nuclear reaction cross-section measurements? Which type of nuclear data do you use? b.
  - Reaction cross sections
    Thick target yields
    Decay data Yes
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	Nagoya City Rehabilitation Centre 1-2 Mikanyama, Yatomi-cho Mizuho-ku Nagoya 467
	Telephone: Fax/E-mail:	81-52-8354573
[2]	Person in-charge: (Title/Position)	Akihiko Iida Director
	Other senior staff:	Noriyuki Kato Katsumi Araki
[3]	Type of cyclotron: Manufacturer: Model:	AVF Cyclotron Sumitomo Heavy Industries Cypris 370
	Year: (i) of installation: (ii) of any major reconstruction:	1989

[4] Particle beams available:

Γ	<b>H</b>	² ² H −	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	18	10			
Typical currents int (µA)	~ 40	~ 60 (Deflector)			
Employed ext (µA)	~ 20	25			

Hours per week machine is in operation (excluding maintenance):	~ 10
Hours per week employed in radionuclide production:	~ 6
Hours per week machine maintenance:	~3

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$T^{T}C$	N ₂	~ 30	~ 1 per week	
¹⁵ O	$N_2 + CO_2 (2.5\%)$	~ 10	1~2 per week	
¹⁵ O	$N_2 + O_2 (0.5\%)$	~ 10	1~2 per week	
¹⁸ F	$Ne + F_2(5\%)$	~ 15	~ 1 per week	
¹⁸ F	$H_2^{18}O(96\%)$	~ 30	0~1 per week	

- [6] Radionuclides planned to be produced in the near future:  $^{13}N$
- [7] Major radiopharmaceuticals produced:
   ¹⁵O-Oxygen, ¹⁵O-Carbon Monoxie, ¹⁵O-Carbon Dioxide
   ¹⁸F-FDG
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?	On site
	If on site, indicate imaging devices available number	

* 511 KeV SPET
* Gamma camera
* Single Photon Tomography (SPET)
* Positron Emission Tomography (PET)

## [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?

- Reaction cross sections
- Thick target yields
  - Decay data

_

[11] Does your institute accept IAEA research fellows for training/experience? No

[1]	Institute: Postal Address:	Nagoya University School of Medicine Department of Radiology 65 Tsurumaicho, Showa-ku Nagoya City 466
	Telephone: Fax/E-mail:	81-52-7442328 81-52-7442335
[2]	Person in-charge: (Title/Position)	Masanori Tadokoro
	Other senior staff:	Takeo Ishigakt Masanari Nishino
[3]	Type of cyclotron: Manufacturer: Model:	Baby Cyclotron Japan Steel Works BC 2211
	Year: (i) of installation: (ii) of any major reconstruction:	1989

[4] Particle beams available:

	5	299 297 298 298 298 298 298 298 298 298 298 298	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	22	11			
Typical currents int (µA)	100	100			
Employed ext (µA)	60	60			

6

3

Hours per week machine is in operation (excluding maintenance):	10
-----------------------------------------------------------------	----

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	N_2	100	l per month	
¹⁵ O	N ₂	100	l per week	
¹⁸ F	Ne	16	3 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹⁵O-Water ¹¹C-Methionine
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number				
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera 2</li> <li>* Single Photon Tomography (SPET) 1</li> <li>* Positron Emission Tomography (PET) 1</li> </ul>				
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>				
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>				
[11]	Does your institute accept IAEA research fellows for training/	/experience? No			

[1]	Institute: Postal Address:	Osaka City University Medical School Hospital 1-5-7 Asahi-machi, Abenoku Osaka City
	Telephone: Fax/E-mail:	81-6-6452196 81-6-6460686
		81-0-0400080
[2]	Person in-charge: (Title/Position)	Dr. Hironobi Ochi
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	Compact Superconducting, Negative Ion Oxford OSCAR SCC12P
	Year: (i) of installation: (ii) of any major reconstruction:	1992 1993

[4] Particle beams available:

	H ¹	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	12				
Typical currents int (µA)	50				
Employed ext (µA)	15 - 40				

3 - 5

1

Hours per week machine is in operation (excluding maintenance):				

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	$nat N_2$	3500 MBq	l per month	
¹³ N	H ₂ O	1500 MBq	l per week	
¹⁵ 0	$^{15}N_2$	2000 MBq	2 per week	¹⁵ N enriched

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹⁵O-Water, ¹⁵O-Oxygen, ¹⁵O-Carbon Dioxide, ¹⁵O-Carbon Monoxide
   ¹³N-Ammonia
   ¹¹C -Methionine
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	] Is medical research/diagnosis carried out on site/off site?				
	If on s	site, indic	ate imaging devices available	number	
	* Gan * Sing			1	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>			No	
		- -	Reaction cross sections Thick target yields Decay data	No No Yes	
[11]	Does	your insti	tute accept IAEA research fell	ows for training/experience?	No

[1]	Institute: Postal Address:	Institute for Biofunctional Research 5-7-1 Fujishiro-dai, Suita-shi Osaka 565
	Telephone: Fax/E-mail:	81-6-8347000 81-6-8728761
[2]	Person in-charge: (Title/Position)	Naoto Hashimoto Director
	Other senior staff:	Yuji Kuge Koji Tamura
[3]	Type of cyclotron: Manufacturer: Model:	AVF Sumitomo Heavy Industries, Ltd. HM 18
	Year: (i) of installation: (ii) of any major reconstruction:	1992

[4] Particle beams available:

	¹ H		³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	18	10			
Typical currents int (µA)	15 - 20	10 - 15			
Employed ext (µA)	25 max	20 max			

Hours per week machine is in operation (excluding maintenance):	≈ 24
Hours per week employed in radionuclide production:	8-10
Hours per week machine maintenance:	10

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
C	N ₂	40-50	l per month	
	$H_2^{10}O+5mM$ EtOH	1.7	1 per 3 months	
¹⁵ O	$N_2 + O_2(0.4\%)$	7.5	$(2-3) \times (5-7)$	
¹⁸ F	$Ne + F_2(0.2\%)$	5	1 per week	$\frac{18}{F-F_2}$

[6] Radionuclides planned to be produced in the near future:

[7]	Major radiopharmaceuticals produced: ¹⁸ F-FDG, ¹⁸ F-Haloperidol ¹¹ C-1- Octanoic acid, ¹¹ C-NMSP, ¹¹ C-Raclope ¹⁵ O-Water, ¹⁵ O-Oxygen, ¹⁵ O-Carbon Dioxide, ¹³ N-Ammonia	ride, ¹¹ C-Nicergoline ¹⁵ O-Carbon Monoxide	
[8]	Do you supply radionuclides/radiopharmaceut If yes, which ones and how often?	icals to other institutions?	No
[9]	Is medical research/diagnosis carried out on sit		Research, on site Specific to animal PET studies
	* 511 KeV SPET		
	* Gamma camera		
	* Single Photon Tomography (SPET)		
	* Positron Emission Tomography (PET)	1	
[10]	<ul><li>a. Are you engaged in nuclear reaction cro</li><li>b. Which type of nuclear data do you use?</li></ul>	ss-section measurements?	No
	- Reaction cross sections	No	
	- Thick target yields	Yes	
	- Decay data	Yes	
[11]	Does your institute accept IAEA research fello	ws for training/experience?	Yes

[4] Particle beams available:

Γ	H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	18	10			
Typical currents int (µA)	15	15			
Employed ext (µA)	20	20			

2

Hours per week machine is in operation (excluding maintenance):	9
Hours per week employed in radionuclide production:	7

.

.

. ..

Hours per week machine maintenance:

. . . .

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

--

Positron Emission Tomography for Clinical Diagnosis

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) për batch	Frequency	Comments
	¹⁴ N ₂ (99.9999%)	56	2 per week	¹¹ CO ₂
$^{I3}N$	Deionization $H_2O$	4.4	5 per week	$^{13}NO_x$
150	¹⁴ N (99.7%)	12	2 per week	¹⁵ O ₂
	obtained $O_2$		-	flow irradiation
¹⁵ 0	¹⁴ N (99.7%)	12	2 per week	C''O
	obtained $O_2$		-	flow irradiation
150	¹⁴ N (99.7%)	360	l per week	$H_2^{IS}O$
	obtained $O_2$		-	flow irradiation
⁷⁵ O	¹⁴ N (98%)	12	2 per week	$C^{\prime 3}O_2$
	obtained $CO_2$		-	flow irradiation
$^{I8}F$	²⁰ Ne (99.8%)	1.5	l per week	¹⁸ F-FDG

[6] Radionuclides planned to be produced in the near future:

Major radiopharmaceuticals produced: [7] ¹⁸F-FDG ¹⁵O-Water, ¹⁵O- Oxygen, ¹⁵O-Carbon Dioxide, ¹⁵O-Carbon Monoxide ¹³N-Ammonia ¹¹C-Acetate [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often? [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number * 511 KeV SPET 1 * Gamma camera * Single Photon Tomography (SPET) 5 2 * Positron Emission Tomography (PET)

# [10] a. Are you engaged in nuclear reaction cross-section measurements? Yes b. Which type of nuclear data do you use? - Reaction cross sections Yes - Thick target yields

- Decay data Yes
- [11] Does your institute accept IAEA research fellows for training/experience? No

[1]	Institute: Postal Address:	Hokkaido University Hospital N-15 W-7 Kita-ku Sapporo 060
	Telephone: Fax/E-mail:	81-71-7161161 (ext. 5823)
[2]	Person in-charge: (Title/Position)	Nagara Tamaki Professor and Chairman
	Other senior staff:	Chietsugu Kato; Toru Shiga
[3]	Type of cyclotron: Manufacturer: Model:	Not decided
	Year: (i) of installation: (ii) of any major reconstruction:	1998

Particle beams available:

Γ	,H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)		<u></u>			
Typical currents int (µA)					
Employed ext (µA)					

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

[4]

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

* 511 KeV SPET	1
* Gamma camera	
* Single Photon Tomography (SPET)	4
* Positron Emission Tomography (PET)	2

- [10] a. Are you engaged in nuclear reaction cross-section measurements?b. Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
    - Decay data

_

[11] Does your institute accept IAEA research fellows for training/experience? No

[1]	Institute: Postal Address:	Tohohu University, (CYRIC) Cyclotron and Radioisotope Center (CYRIC) Aramaki, Aoba-ku Sendai 980-77
	Telephone: Fax/E-mail:	81-217-7798 81-263-5358; rencyric@risur.cyric.tohhoko.ac.jp
[2]	Person in-charge: (Title/Position)	Prof. Ren Iwata; Prof. Tatsuo Ido
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	AVF Multi-Particle Sumitomo Heavy Industries 680 AVF
	Year: (i) of installation: (ii) of any major reconstruction:	1977

[4] Particle beams available:

Γ	¹ H	211	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	40	25	65	50	
Typical currents int (µA)					
Employed ext (µA)	15	12	5	5	

12

	Hours per week machine	is in operation	(excluding maintenance):	87~96
--	------------------------	-----------------	--------------------------	-------

Hours per week employed in radionuclide production: 16

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics: Activation analysis, Physics

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
<i>"C</i>	N ₂	30	1~3 per week	
⁷⁵ O	N ₂	~ 30	2 per week	
¹⁸ F	$H_2^{18}O(96\%)$	11	3-4 per week	
²⁸ Mg	Al	0.2 MBq	l per week	

[6] Radionuclides planned to be produced in the near future:

[7]	Major radiopharmaceuticals produced: ¹⁸ F-FDG, ¹⁸ F-DOPA ¹¹ C-Methionine, ¹¹ C-Doxepin, ¹¹ C-Nemonapride ¹⁵ O-Water	
[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?	No
[9]	Is medical research/diagnosis carried out on site/off site?	On site
	If on site, indicate imaging devices available number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	
[11]	Does your institute accept IAEA research fellows for training/experience?	Yes

[4] Particle beams available:

Γ	^I H	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	18	10			
Typical currents int (µA)	50	50			
Employed ext (µA)					

8

Hours per week machine is in operation (excluding maintenance):	32
Hours per week employed in radionuclide production:	32

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:
Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹ C	N ₂ (99.9999)	2	2 per week	
13 _N	H ₂ O	2	2 per week	
¹⁵ O	$N_2(B) + 0.5\% O_2$	4	2 per week	
$^{18}F$	$Ne(B) + 5\% F_2$	2	2 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹³N-Ammonia ¹⁵O-Water, ¹⁵O-Oxygen, ¹⁵O-Carbon Monoxide, ¹⁵O-Carbon Dioxide ¹¹C-Methionine, ¹¹C-N-Methylspiperone ¹⁸F-FDG, ¹⁸F-DOPA Do you supply radionuclides/radiopharmaceuticals to other institutions? No [8] If yes, which ones and how often? On site [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number * 511 KeV SPET 1 * Gamma camera 1 * Single Photon Tomography (SPET) 3 * Positron Emission Tomography (PET) 1 Are you engaged in nuclear reaction cross-section measurements? [10] a. b. Which type of nuclear data do you use? Reaction cross sections _ _ Thick target yields Decay data _ [11] Does your institute accept IAEA research fellows for training/experience? No

## **JAPAN**

[1]	Institute: Postal Address:	Tokyo Metropolitan Institute of Gerontology 35-2 Sakaecho Itabashi Tokyo 173
	Telephone: Fax/E-mail:	81-3-39643241 ext. 3503
	Fax/E-mail:	81-3-35794776;
[2]	Person in-charge:	Michio Senda
	(Title/Position)	Head, Positron Medical Centre
	Other senior staff:	Kiichi Ishiwata
		Hinako Toyama
[3]	Type of cyclotron:	AVF, Positive Ion
	Manufacturer:	Sumitomo Heavy Industries
	Model:	Cypris 370
	Year: (i) of installation: (ii) of any major reconstruction:	1990

[4] Particle beams available:

Γ	^I H .	H	ЗНе	He	<b>Dual Beams</b>
Beam energies/Range (MeV)	18	10	24 not routinely used	18 not routinely used	
Typical currents int (µA)	30	10~25			
Employed ext (µA)					

.

8

Hours per week machine is in operation (excluding maintenance):	24
Hours per week employed in radionuclide production:	24

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}C)$	N ₂ (99.9999%)	73	2 per day	30 µA, 20 min
¹⁵ 0	$N_2 + O_2 (O.5\%)$	3 GBq/min	l per week	10 μΑ
¹⁵ O	$N_2 + CO_2 (2.5\%)$	3 GBq/min	l per week	10 μΑ
¹⁸ F	$H_2^{18}O(96\%)$	24	l per week	15 μA, 20 min
¹⁸ F	$Ne+F_2(5\%)$	30	2 per month	24 µA, 120 min

- [6] Radionuclides planned to be produced in the near future:  ${}^{I3}N$
- [7] Major radiopharmaceuticals produced: H₂¹⁵O ¹⁵O-Oxygen, ¹⁵O-Carbon Dioxide, ¹⁵O-Carbon Monoxide ¹¹C-Methionine, ¹⁷C-N-methylspiperone, ¹¹C-Flumazenil ¹⁸F-FDG, ¹⁸F-DOPA
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number
- * 511 KeV SPET * Gamma camera 1 * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 2 Are you engaged in nuclear reaction cross-section measurements? No [10] a. b. Which type of nuclear data do you use? Reaction cross sections _ Thick target yields -Decay data
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

## JAPAN

[1]	Institute: Postal Address:	National Centre of Neurology and Psychiatry 4-1-1 Ogawahigashi-cho, 4-Chome, Kodaira Tokyo 187
	Telephone: Fax/E-mail:	81-423-412711 81-423-446745
[2]	Person in-charge: (Title/Position)	Hiroshi Matsuda Director of Radiological Division
	Other senior staff:	Yutaka Takayama; Satoru Horikoshi Kenichi Ogawa; Masato Kobayashi
[3]	Type of cyclotron: Manufacturer: Model:	Superconducting Compact Oxford OSCAR, SCC12P
	Year: (i) of installation: (11) of any major reconstruction:	1997

[4] Particle beams available:

ſ	$\mathbf{H}^{\mathbf{I}}$	E ^v	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	12			· · · · · · · · · · · · · · · · · · ·	
Typical currents int (µA)					
Employed ext (µA)	11.4				

Hours per week machine is in operation (excluding maintenance): 7

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

10

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁵ O	$N_2 (97\%) + O_2 (1.5\%)$	18		continuous inhalation
¹⁸ F	$H_2^{18}O(50\%)$	20	1-2 per week	enriched water recovery

[6] Radionuclides planned to be produced in the near future:

[7]	Major radiopharmaceuticals produced: ¹⁸ F-FDG ¹⁵ O-Water, ¹⁵ O-Oxygen, ¹⁵ O-Carbon Dioxide, ¹⁵ O-Carbon Monoxide	
[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?	No
[9]	Is medical research/diagnosis carried out on site/off site?	Research/ diagnosis, on site
	If on site, indicate imaging devices available number	
	* 511 KeV SPET* Gamma camera1* Single Photon Tomography (SPET)1* Positron Emission Tomography (PET)1	
[10]	<ul> <li>a. Are you engaged in nuclear reaction cross-section measurements?</li> <li>b. Which type of nuclear data do you use?</li> <li>- Reaction cross sections</li> <li>- Thick target yields</li> <li>- Decay data</li> </ul>	No
[11]	Does your institute accept IAEA research fellows for training/experience?	No

# **JAPAN**

[1]	Institute: Postal Address:	International Medical Centre of Japan Radiology Department 1-21-1 Toyama, Shinjaku-ku Tokyo 162
	Telephone: Fax/E-mail:	81-3-32026560 81-3-32026560; thara@t3.rim.or.jp
[2]	Person in-charge: (Title/Position) Other senior staff:	Dr. Toshihiko Hara Chief, Nuclear Medicine Noboru Kosaka
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation: (ii) of any major reconstruction:	Negative Ion Japan Steel Works BC 2010N 1995
[4]	Particle beams available:	

	H'		³ He	. ⁴He	Dual Beams
Beam energies/Range (MeV)	20	10			yes
Typical currents int (µA)	33	11			
Employed ext (µA)	30	10			

20

2

Hours per week machine is in operation (excluding maintenance): 22

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq)	Frequency	Comments
	N ₂	14.8	10 per week	
¹³ N	$H_2O$	3.7	2 per week	
¹⁵ 0	$\overline{N_2 + H_2}$	3.7	10 per week	
¹⁸ F	$H_2^{18}O (> 95\%)$	7.4	4 per week	

- [6] Radionuclides planned to be produced in the near future:  ${}^{68}Ge, {}^{68}Ga$
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹¹C-Choline ¹⁵O-Water
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical res	earch/diagnosis carried out on s	ite/off site?	On site
	If on site, indi	cate imaging devices available i	umber	
	-		I	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>		No	
	- -	Reaction cross sections Thick target yields Decay data	Yes Yes Yes	
[11]	Does your ins	titute accept IAEA research fell	ows for training/experience?	Yes

# JAPAN

[1]	Institute: Postal Address:	HIMEDIC Imaging Centre at Lake Yamanaka 562-12 Yanagihara, Hirano Yamanakako-mura, Minamitsuru-gun Yamanashi 401-05
	Telephone: Fax/E-mail:	81-555-659135 81-555-203007
[2]	Person in-charge: (Title/Position)	Dr. Michiru Ide
	Other senior staff:	Akira Shotsu; Seiei Yasuda Wakou Takahashi; Shigeharu Takagi
[3]	Type of cyclotron: Manufacturer: Model:	AVF Cyclotron Sumitomo Heavy Industries Ltd. HM 18
	Year: (i) of installation: (ii) of any major reconstruction:	1993

[4] Particle beams available:

	<b>B</b> ¹	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	18	70			
Typical currents int (µA)		10			
Employed ext (µA)		50			

Hours per week machine is in operation (excluding maintenance):	5
Hours per week employed in radionuclide production:	5
Hours per week machine maintenance:	4

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	$^{14}N_2$	5	2 per month	
13 _N	$H_2^{16}O$	16	4 per month	
¹⁵ 0		13	l per month	
	$H_2^{18}O(80\%)$	16	5 per month	enriched H ₂ ¹⁸ O recovery

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹⁵O-Water, ¹⁵O-Oxygen, ¹⁵O-Carbon Dioxide, ¹⁵O-Carbon Monoxide
   ¹³N-Ammonia
   ¹¹C-L-Methionine, ¹¹C-N-Methyl-spiperone
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number
  - * 511 KeV SPET
  - * Gamma camera
  - * Single Photon Tomography (SPET)
  - * Positron Emission Tomography (PET) 3
- [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	No
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? No

# KAZAKSTAN

[1]	Institute: Postal Address:	Institute of Nuclear Physics Almaty-480082
	Telephone: Fax/E-mail:	7-3272-690433 7-3272-631207; adm@lfd.academ.alma-ata.su
[2]	Person in-charge: (Title/Position)	Prof. Arzumanov Artyom Head of Accelerator Laboratory
	Other senior staff:	Sychikov Gennadi; Popov Yuri Batischev Viktor
[3]	Type of cyclotron: Manufacturer: Model:	Variable Energy Isochronous Cyclotron K=50 MeV Efremov Institute in Leningrad U 150
	Year: (1) of installation: (ii) of any major reconstruction:	1965 1972, conversion to variable energy isochronous mode of operation
[4]	Particle beams available:	

		B,	He	4 <del>1</del> He	<b>Dual Beams</b>
Beam energies/Range (MeV)	6 - 30	12 - 25	18.5 - 62	25 - 50	no
Typical currents int (µA)	200	200	100	150	
Employed ext (µA)	30	40	15	20	

Hours per week machine is in operation (excluding maintenance):	50
Hours per week employed in radionuclide production:	20
Hours per week machine maintenance:	3
Additional applications of the cyclotron: Nuclear Science Research, Radiation Material Science Research	
Radiotherapy/Activation Analysis/Radiobiology/Physics:	

Radiotherapy/Activation Analysis/Radiobiology/Physic Physics

Others

Typically the cyclotron was operated 5600 hours of beam on target per year Now due to temporary financial difficulties beam time is reduced to 1500 hours per year

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
⁵⁷ Co	Ni	0.04	3 per year	
²⁰¹ Tl	²⁰³ Tl (96%)	3.7	5 per year	enriched ²⁰³ Tl recovery
*			<u></u>	

*Small quantities KBq of ²³⁶Pu, ^{237Pu}, ²³⁸Pu are also produced

- [6] Radionuclides planned to be produced in the near future:  ${}^{57}Co, {}^{67}Ga, {}^{109}Cd$
- [7] Major radiopharmaceuticals produced: *Thallium-201*
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often?
   201 Tl-Thallous chloride 10 times in 1994
   5 times in 1995
   3 times in 1996

[9]	Is medical research/diagnosis carried out on site/off site?	Off site
	If on site, indicate imaging devices available number	

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

# [10] a. Are you engaged in nuclear reaction cross-section measurements? Yesb. Which type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

#### [11] Does your institute accept IAEA research fellows for training/experience? Yes

# KOREA, REPUBLIC OF

[1]	Institute: Postal Address:	Seoul National University Hospital Department of Nuclear Medicine 28 Yungun-Dong, Chongro-Ku Seoul 110-744
	Telephone: Fax/E-mail:	82-2-7603805 82-2-7457690; jmjing@plaza.snu.ac.kr
[2]	Person in-charge: (Title/Position) Other senior staff:	Jae Min Jeong Director of Cyclotron and Radiochemistry
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion EBCO TR-13
	Year: (1) of installation: (11) of any major reconstruction:	1994
[4]	Particle beams available:	

		He	 <b>Ie</b>	Dual Beams
Beam energies/Range (MeV)	13			
Typical currents int (µA)				
Employed ext (µA)	25			

4

Hours per week machine is in operation (excluding maintenance): 10

Hours per week employed in radionuclide production: 10

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}C$	$1^4N_2$ (nat)	30	1 per month	
13N	H ₂ O	3	l per month	
⁷⁵ O	$^{15}N_2(97\%)$	3.7	l per week	
¹⁸ Fi	$H_2^{-18}O$	30	5 per week	enriched H ₂ ¹⁸ O recovery

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹⁵O-Water
   ¹³N-Ammonia
   ¹¹C-Acetate
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?

#### [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number

* 511 KeV SPET	
* Gamma camera	4
* Single Photon Tomography (SPET)	4
* Positron Emission Tomography (PET)	1

# [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?

-	Reaction cross sections	No
-	Thick target yields	No
-	Decay data	Yes

#### [11] Does your institute accept IAEA research fellows for training/experience? Yes

#### KOREA, REPUBLIC OF

[1]	Institute: Postal Address:	Korea Cancer Centre Hospital (KCCH) 215-4 Gongneung-Dong Nowon-Ku Seoul
	Telephone: Fax/E-mail:	82-2-9742501 82-2-9753231
[2]	Person in-charge: (Title/Position)	Dr. Sang Moo Lim Head, Cyclotron Application Laboratory
	Other senior staff:	Jong Doo Lee; Kwon Soo Chun; Seung Dae Yang Yong Sup Suh; Soon Hyuk Ahn; Jong Seo Chai Dong Hun Lee; Chang Woon Choi, Eun HeeKim
[3]	Type of cyclotron: Manufacturer: Model:	AVF Scanditronix MC 50
	Year: (i) of installation: (ii) of any major reconstruction:	1987

[4] Particle beams available:

[	H ¹		³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	50	25		50.5	
Typical currents int (µA)	200				
Employed ext (µA)	60	low current	low current		

20

6

Hours per week machine is in operation (excluding maintenance): 40

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Neutron therapy, Neutron radiography, Thin layer activation

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁸ F	$H_2^{18}O(97\%)$	20	3 per week	production test
⁵¹ Cr	nat V		base on demand	
⁶⁷ Ga	⁶⁸ Zn	10	l per week	
¹¹¹ In	^{nat} Cd		base on demand	
¹²³ I	¹²⁴ TeO	15	l per week	
²⁰¹ Tl	²⁰³ Tl	10	l per week	

- [6] Radionuclides planned to be produced in the near future: ¹⁸F production by ²⁰Ne target High purity ¹²³I production by ¹²⁴Xe target on plan: ¹¹C, ⁴⁵Ti, ²¹¹At, ¹⁸⁶Re, ¹²⁴I
- [7] Major radiopharmaceuticals produced:
   ⁶⁷Ga-citrate
   ²⁰¹Tl-Thallous Chloride
   Na¹²³I, ¹²³I-mIBG,
   ¹⁸F-FDG
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often? ⁶⁷Ga-citrate, ²⁰¹TlCl, Na¹²³I, ¹²³I-mIBG 1 per week

#### [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

	* 51	1 KeV SPI	ET		
	* Ga	amma came	era	6	
	* Si	ngle Photo	n Tomography (SPET)	1	
			ssion Tomography (PET)	1	
[1 <b>0]</b>	a. b.	•	engaged in nuclear reaction cro ype of nuclear data do you use?		Yes
		-	Reaction cross sections	Yes	
		-	Thick target yields	Yes	
		-	Decay data	Yes	
[11]	Doe	s your insti	itute accept IAEA research fell	ows for training/experience?	Yes

## KOREA, REPUBLIC OF

[1]	Institute: Postal Address:	Samsung Medical Centre Department of Nuclear Medicine 50 Ilwon-Dong, Kangnam-Ku Seoul 135-710
	Telephone: Fax/E-mail:	82-2-34102621 82-2-34102639; btkim@smc.samsung.co.kr
[2]	Person in-charge: (Title/Position)	Dr. Byung-Tae Kim Chairman
	Other senior staff:	Sang Zun Kim; Kyung Han Lee Yearn Sung Choe; Yong Choi
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion GE PETtrace
	Year: (i) of installation: (ii) of any major reconstruction:	1994
۲ <i>۸</i> ٦	Dertiale harma annilahlar	

[4] Particle beams available:

Γ	H	<b>2</b> H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	16.5	8.4			yes
Typical currents int (µA)	75	60			
Employed ext (µA)	25	25			

3

Hours per week machine is in operation (excluding maintenance): 10

Hours per week employed in radionuclide production: 10

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{I4}N_2$	37	2 per week	
$H_2^{16}O$	5.5	I per week	
14N2	1.8	2 per week	
H ₂ ¹⁸ O (97%)	45	6 per week	$enriched H_2^{18}O$ recovery
	(enrichment) $\frac{14}{N_2}$ $H_2^{16}O$ $14N_2$	$(enrichment) (GBq) per batch  \frac{14}{N_2} 37H_2^{16}O 5.514N_2 1.8$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

- [6] Radionuclides planned to be produced in the near future:
- Major radiopharmaceuticals produced: ¹⁸F-FDG, ¹⁸F-Methylbenzylspiperone [7] ¹¹C-Methionine ¹³N-Ammonia ¹⁵O-Water [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often? On site [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number * 511 KeV SPET 2 of 5 gamma camera * Gamma camera 5 * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 1 No [10] a. Are you engaged in nuclear reaction cross-section measurements? Which type of nuclear data do you use? b. Reaction cross sections No ~ Thick target yields No -Decay data Yes [11] Does your institute accept IAEA research fellows for training/experience? No

#### **NETHERLANDS**

[1]	Institute: Postal Address:	Vrije Universiteit BV Cyclotron Vu De Boelelaan 1085c NL-1081 HV Amsterdam
	Telephone: Fax/E-mail:	31-20-4449123 31-20-4449128
[2]	Person in-charge: (Title/Position)	Dr. P.J. Van der Jagt General Manager
	Other senior staff:	C. Hoekstra; F. Van Langevelde P.J. Van Lenffen
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation: (ii) of any major reconstruction:	Negative Ion IBA s.a. Cyclone 18/9 1997

#### [4] Particle beams available:

	H.		He	He	<b>Dual Beams</b>
Beam energies/Range (MeV)	18	9			yes
Typical currents int (µA)	80	35			
Employed ext (µA)					

Hours per week machine is in operation (excluding maintenance):

Installation under way

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	+		<u></u>	

- [6] Radionuclides planned to be produced in the near future:  ${}^{18}F, {}^{17}C, {}^{13}N, {}^{15}O$
- [7] Major radiopharmaceuticals produced:

[8]	Do you supply radionuclides/radiopharmaceu If yes, which ones and how often? ¹⁸ F-FDG planned	ticals to other institutions?	Yes
[9]	Is medical research/diagnosis carried out on s	ite/off site?	On site
	If on site, indicate imaging devices available	number	
	* 511 KeV SPET	1	
	* Gamma camera	2	
	* Single Photon Tomography (SPET)	Ι	
	* Positron Emission Tomography (PET)	2	
[10]	<ul><li>a. Are you engaged in nuclear reaction cr</li><li>b. Which type of nuclear data do you use</li></ul>		No
	- Reaction cross sections	Yes	
	- Thick target yields	Yes	
	- Decay data	Yes	
[11]	Does your institute accept IAEA research fell	ows for training/experience?	No

[1]	Institute: Postal Address:	Vrije Universiteit BV Cyclotron Vu De Boelelaan 1085c NL-1081 HV Amsterdam
	Telephone: Fax/E-mail:	31-20-4449123 31-20-4449128
[2]	Person in-charge: (Title/Position)	Dr. P.J. Van der Jagt General Manager
	Other senior staff:	C. Hoekstra;F. Van Langevelde P.J. Van Lenffen
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion Philips AVF
	Year: (i) of installation: (ii) of any major reconstruction:	1965

[4] Particle beams available:

		<b>2</b> 11	· ³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	6 - 28	3 - 16	10 - 45	6 - 32	
Typical currents int (µA)	200				
Employed ext (µA)	35	15	10	10	

6

Hours per week machine	is in operation	(excluding maintenance):	65

Hours per week employed in radionuclide production: 65

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics: Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBg) per batch	Frequency	Comments
78 _F				
⁶⁷ Ga	⁶⁷ Zn			
^{8/m} Rb	$^{82}Kr (> 99.8\%)$			
123 _I	¹²⁴ Xe (> 99%)			
²⁰¹ Tl	$^{203}Tl (> 95.5\%)$			

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹²³I-MIBG, ¹²³I-Iomazenil, ¹²³I-Iodine hippuran, ¹²³I-Sodium iodide
   ⁸¹Rb ^{81m}Kr generator
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on	site/off site?	On site	
	If on site, indicate imaging devices available number			
	* 511 KeV SPET	1		
	* Gamma camera	2		
	* Single Photon Tomography (SPET)	1		
	* Positron Emission Tomography (PET) 2			
[10]	a. Are you engaged in nuclear reaction of	cross-section measurements?	No	
	b. Which type of nuclear data do you us	e?		
	- Reaction cross sections	Yes		
	- Thick target yields	Yes		
	- Decay data	Yes		
[11]	Does your institute accept IAEA research fe	llows for training/experience?	No	

# **NETHERLANDS**

[1]	Institute: Postal Address:	Eindhoven University of Technology (TUE) Postbus 513 NL-5600 MB Eindhoven
	Telephone: Fax/E-mail:	31-40-2474048 31-40-2438060; botman@cycl.phys tue.nl
[2]	Person in-charge: (Title/Position)	R. Queens
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	AVF Cyclotron Philips AVF
	Year: (1) of installation: (11) of any major reconstruction:	1963
[4]	Particle beams available:	

	¹ H	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	3 - 27				
Typical currents int (µA)	100				
Employed ext (µA)	60				

Hours per week machine is in operation (excluding maintenance):	80
Hours per week employed in radionuclide production:	40
Hours per week machine maintenance:	8

Additional applications of the cyclotron: Element analysis Nuclear physics techniques

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others.

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: Cyclotron used by the company Cygene - Amersham b.v.

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions?	Yes
	If yes, which ones and how often?	
	Through Cygene - Amersham b.v.	

- [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number
  - * 511 KeV SPET
  - * Gamma camera
  - * Single Photon Tomography (SPET)
  - * Positron Emission Tomography (PET)

[10] a. b.	Are you engaged in nuclear reaction cross-section measurements? Which type of nuclear data do you use?	No	

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? Yes

#### **NETHERLANDS**

[1]	Institute: Postal Address:	Eindhoven University of Technology (TUE) Postbus 513 NL-5600 MB Eindhoven
	Telephone: Fax/E-mail:	31-40-2474046
[2]	Person in-charge: (Title/Position)	Dr. J.A. Van der Heide
	Other senior staff:	J. I. M. Botman H. L. Hagedoorn
[3]	Type of cyclotron: Manufacturer: Model:	2nd Harmonic dees with 6th harmonic flat top dees Home made ILEC
	Year: (i) of installation: (ii) of any major reconstruction:	1989

[4] Particle beams available:

	H	E,	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	3				
Typical currents int (µA)					
Employed ext (µA)	20				

4

Hours per week machine is in operation (excluding maintenance): 20

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: Microbeam PLXE analysis

#### NET-4

.

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions?	No
	If yes, which ones and how often?	

[9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

# [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?

- Reaction cross sections
- Thick target yields
- Decay data
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

#### **NETHERLANDS**

[1]	Institute: Postal Address:	Groningen University Hospital PET Centre P.O. Box 30.001 NL-9700 RB Groningen
	Telephone: Fax/E-mail:	31-50-3613311 31-50-3611687
[2]	Person in-charge: (Title/Position)	Prof. W. Vaalburg
	Other senior staff:	A. M. J. Paans; P. H. Elsinga
[3]	Type of cyclotron: Manufacturer: Model:	AVF Scanditronix MC 17F
	Year: (i) of installation: (ii) of any major reconstruction:	1991

[4] Particle beams available:

Γ		211	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	17	8.5			
Typical currents int (µA)	50	50			
Employed ext (µA)	30	50			

10

3

Hours per week machine is in operation (excluding maintenance):	10
-----------------------------------------------------------------	----

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}C$	$N_2 + 1\% O_2$	21.06	21-22 per week	
¹³ N	$\frac{H_2^{16}O + 1 \ \mu M}{EtOH}$	8.06	16-17 per week	circulating target
150	$N_2 + 1\%O_2$	5.36	22-23	
¹⁸ F	H ₂ ¹⁸ O (80-96%)	7.85	5-6 per week	

- [6] Radionuclides planned to be produced in the near future:  ${}^{II}C, {}^{I3}N, {}^{I5}O, {}^{I8}F$
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG, ¹⁸F-Fluorocarazolol ¹³N-Ammonia ¹⁵O-Water, ¹⁵O-Carbon Monoxide ¹¹C-Acetate, L-1-¹¹C Tyrosine

[8]	8] Do you supply radionuclides/radiopharm If yes, which ones and how often?		naceuticals to other institutions?	Yes
	$^{13}NO_2 / ^{13}NO_3$	for plant physiology	25 time per year	

[9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number

	* Ga * Sir	l KeV SPET mma camera gle Photon Tomography (SPET) sitron Emission Tomography (PET)	Yes Yes	
[10]	a. b.	Are you engaged in nuclear reaction c Which type of nuclear data do you use		No
		<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	Yes Yes Yes	

[11] Does your institute accept IAEA research fellows for training/experience? Yes

## **NETHERLANDS**

[1]	Institute:	Mallinckrodt Medical B.V.
	Postal Address:	P.O. Box 3
		NL-1755 ZG Petten
	Telephone:	31-224-567890
	Fax/E-mail:	31-224-563566
[2]	Person in-charge:	J.F.J. van der Grift
	(Title/Position)	Executive Director Operations
	Other senior staff:	R.J. Reiff
[2]	Turne of analytical	to show on Calatory
[3]	Type of cyclotron:	Isochronoms Cyclotron
	Manufacturer:	Philips
	Model:	MC 17F
	Year: (1) of installation:	1966
	(ii) of any major reconstruction:	1996
[4]	Particle beams available:	

[4] Particle beams available:

		³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	10 - 30			
Typical currents int (µA)	150			
Employed ext (µA)	150			

24

Hours per week machine is i	in operation (excluding maintenance):	100
-----------------------------	---------------------------------------	-----

Hours per week employed in radionuclide production: 100

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others.

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) sper batch	Frequency	Comments
⁶⁷ Ga	⁶⁸ Zn	not published	2 per week	
¹¹¹ In	110Cd	not published	2 per week	
²⁰¹ <i>T</i> l	²⁰³ <i>Tl</i>	not published	daily	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ⁹⁹Mo - ^{99m}Tc generator Cyclotron products and derivates Labelling compounds
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? Not published

[9]	Is medical research/diagnosis carried out on site/off site?	Both
	If on site, indicate imaging devices available number	

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

# [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?

- Reaction cross sections
- Thick target yields
- Decay data
- [11] Does your institute accept IAEA research fellows for training/experience? No

# **NETHERLANDS**

[1]	Institute: Postal Address:	Mallinckrodt Medical B V. P.O. Box 3 NL-1755 ZG Petten
	Telephone: Fax/E-mail:	31-224-567890 31-224-563566
[2]	Person in-charge: (Title/Position)	J.F.J. van der Grift Executive Director Operations
	Other senior staff:	R.J. Reiff
[3]	Type of cyclotron: Manufacturer: Model [.] Year: (1) of installation:	Negative Ion IBA Cyclone 30 1993
	(11) of any major reconstruction:	

[4] Particle beams available:

	<b>H</b>	<b>H</b>	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	15-30				yes
Typical currents int (µA)					
Employed ext (µA)	2 x 180				

18

Hours per week machine is in operation (excluding maintenance):	150
Hours per week employed in radionuclide production:	150

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
⁶⁷ Ga	⁶⁸ Zn	not published	2 per week	
⁸⁷ Rb	⁸² Kr	not published	4 per week	
¹¹¹ In	¹¹⁰ Cd	not published	2 per week	
¹²³ I	¹²⁴ Xe	not published	4 per week	
²⁰⁷ <i>Tl</i>	203 <i>Tl</i>	not published	daily	

[6] Radionuclides planned to be produced in the near future:

[7]	Major radiopharmaceuticals produced:		
	⁹⁹ Mo - ^{99m} Tc	generator	
	Cyclotron	products and derivates	
	Labelling	compounds	

- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? Not published
- [9] Is medical research/diagnosis carried out on site/off site? Both If on site, indicate imaging devices available number
  - * 511 KeV SPET
  - * Gamma camera
  - * Single Photon Tomography (SPET)
  - * Positron Emission Tomography (PET)

# [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?

- Reaction cross sections
- Thick target yields
- Decay data
- [11] Does your institute accept IAEA research fellows for training/experience? No

#### NORWAY

[1]	Institute: Postal Address:	University of Oslo Department of Physics P.O. Box 1048, Blindern N-0316 Oslo
	Telephone: Fax/E-mail:	47-22-856460 47-22-856422
[2]	Person in-charge: (Title/Position)	Prof. Magne Guttorusen
	Other senior staff:	John Rekstad Svein Messelt
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation:	Sector focusing Scanditronix MC 35 1979
	(ii) of any major reconstruction:	

#### [4] Particle beams available:

	H.	<b>H</b>	He	He	Dual Beams
Beam energies/Range (MeV)	35	17	47	35	
Typical currents int (µA)	100	80	10	20	
Employed ext (µA)	70	50	5	10	

2

5

Hours per week machine is in operation (excluding maintenance):	5
-----------------------------------------------------------------	---

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Nuclear Physics. The cyclotron is mainly devotes to nuclear structure studies using particle gamma coincidence

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
211 At	Bi	400 MBq	l per week	

- [6] Radionuclides planned to be produced in the near future:  ${}^{I8}F$
- [7] Major radiopharmaceuticals produced:
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?	No
	If on site, indicate imaging devices available number	

- * 511 KeV SPET
- * Gamma camera

~

- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

Decay data

# [10] a. Are you engaged in nuclear reaction cross-section measurements? No b. Which type of nuclear data do you use? - Reaction cross sections No - Thick target yields No

[11] Does your institute accept IAEA research fellows for training/experience? Yes

No

#### POLAND

[1]	Institute: Postal Address:	Henryk Niewodniczanski Institue of Physics Radzikowskiego 152 PL-31-341 Krakow
	Telephone:	48-12-37 02 22
	Fax/E-mail:	48-12-37 54 41; dyrektor@bron.ifj.edu.pl
[2]	Person in-charge:	Dr. Barbara Petelenz
	(Title/Position)	Head of the Laboratory of Physical Chemistry
	Other senior staff:	Ewa Ochab; Edmund Bakewicz
[3]	Type of cyclotron:	Isochronous, K-factor = 60
	Manufacturer:	This Institute
	Model:	AIC-144
	Year: (i) of installation:	1994
	(ii) of any major reconstruction:	1997

[4] Particle beams available:

	ΈĻ		He	4He	Dual Beams
Beam energies/Range (MeV)	10 - 60	15 - 30		30 - 60	
Typical currents int. (µA)	50	50		30	
Employed external (µA)	n/a	n/a		n/a	

Hours per week machine is in operation (excluding maintenance): Planned for 1998

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: In Vitro radiobiological studies Development of hadron therapy Pilot irradiations of solid targets

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: Automated target assembly is being designed

#### POL-1

Radionuclide Produced	Target Material (enrichment)	Activity (GBq)	Frequency	Comments

- [6] Radionuclides planned to be produced in the near future:  ${}^{67}Ga, {}^{123}I, {}^{111}In, {}^{139}Ce$
- [7] Major radiopharmaceuticals produced:  ${}^{67}Ga$ -Citrate (planned)

[8]		you supply radionuclides/radiopharmaceuticals to other institutions? es, which ones and how often?	No
[9]	Is n	nedical research/diagnosis carried out on site/off site?	Off site
	If o	n site, indicate imaging devices available number	
	* 51	1 KeV SPET	
	* G	amma camera	
	* Si	ngle Photon Tomography (SPET)	
	* Pe	ositron Emission Tomography (PET)	
[10]	a.	Are you engaged in nuclear reaction cross-section measurements?	No
	1.	Which time of muchan data do you upo?	

b. Which type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? Yes

#### POLAND

[1]	Institute: Postal Address:	Warsaw University Heavy Ion Laboratory, uL Pasteura 5A PL-02-097 Warszawa
	Telephone: Fax/E-mail:	48-22-658 20 21 48-22-659 27 14
[2]	Person in-charge: (Title/Position)	Prof. Dr. hab. Jan Kowracki
	Other senior staff:	Tomasz Czosnyka Jerzy Jastrzebski
[3]	Type of cyclotron: Manufacturer: Model:	AVF, 4-sector, 2-dee, 2 m diameter cyclotron Magnet - Dubna, rest all Polish parts
	Year: (i) of installation: (ii) of any major reconstruction:	1994 ECR installation 1997

[4] Particle beams available:

	L H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	*		_	
Typical currents int. (µA)				
Employed external (µA)				

* ~5 MeV/n¹²C, ¹⁴N, ¹⁶O, ¹⁹Ne, ²⁰Ne, ⁴⁰Ar after ECR installation

Hours per week machine is in operation (excluding maintenance): 100

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

24

Additional applications of the cyclotron: Basic research e.g., Coulomb excitation, Giant Dipole Resonances In-beam high-spin spectroscopy

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: Radioactive decays in He-jet system and isotope separation in-line POL-2
Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
			······································	

- [6] Radionuclides planned to be produced in the near future:  $^{123}I$ ,  $^{111}In$
- [7] Major radiopharmaceuticals produced:

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions?	No
	If yes, which ones and how often?	

Planned after the ECR installation

- [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number
  - * 511 KeV SPET
  - * Gamma camera
  - * Single Photon Tomography (SPET)
  - * Positron Emission Tomography (PET)

# [10] a. Are you engaged in nuclear reaction cross-section measurements? Yesb. Which type of nuclear data do you use?

- Reaction cross sections Yes
- Thick target yields
- Decay data Yes
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

ROMANIA

[1]	Institute:	National Institute for Research & Development for Nuclear Physics & Engineering - Horia Hulubei
	Postal Address:	(INPE-HH) 1 Nuclear Reactor Street RO-76900 Bucharest-Magurele
	Telephone:	401 7807040 / 4413
	Fax/E-mail:	401 4209101; petru@ROIFA.ifa.ro
[2]	Person in-charge: (Title/Position)	Eng. Chem. Dana Voiculescu
	Other senior staff:	Eugen Ivanov, Dan Plostinaru, Petru Racolta, Bogdan Constrantinescu, Dumitru Catana, Florian Constanti, Liviu Popa-Simil, Mihai Dumitru, Dorin Dudu, Alexand Popa-Nemoiu
[3]	Type of cyclotron:	Classical, variable energy, 60 cm magnetic pole radius
	Manufacturer:	URSS - Petrograd (Leningrad)
	Model:	U-120 / 1956
	Year: (i) of installation: (ii) of any major reconstruction:	1957 / 1958 1970 development of 7 beam transport lines
	(	

[4] Particle beams available:

	H	<b>H</b>	He	⁴ He	Dual Beams
Beam energies/Range (MeV)	0.7 - 14	1.4 - 14	2.1 - 42	2.8 - 28	
Typical currents int. (µA)*	150	200	100	50	
Employed external (µA)	30	40	1	20	

*We do not know exactly the internal beam because of multiple molecular species present at the final radius (example: H, H-H, H-H-H)

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Elemental analysis (PIXE, PIGE, RBS), Hyperfine interactions (PAC, TDPA, C/D), Fast neutron generation, Thin layer activation (TLA), Charged particle activation analysis (CPAA)

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: Design for positron generation in-line with cyclotron

< 24 now ≈ 100 before 1989 0

> 20

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹¹ C		0.1	1 experiment	1985
F	$H_2^{18}O$	few GBq	l per week	few weeks
²² Na	²² Mg	0.01	1 experiment	study
$^{52}Mn$	⁵¹ Cr	0.01	2 experiments	study
⁵⁵ Fe	³⁵ mn	1.50	l per week	until 1985
⁶⁷ Ga	⁶⁵ Cu	0.1	l experiment	study
¹⁰⁹ Cd	109 Ag	10 MBq	l per week	until 1987
123I	122 Te / 121 Sb	0.1	1 per week	study

- [6] Radionuclides planned to be produced in the near future:  $^{123}I$ ,  $^{67}Ga$
- [7] Major radiopharmaceuticals produced:
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No
   If yes, which ones and how often?
   Note: In the past the preliminary experiemtns werer made with cooperation of the Colentina Hospital, Department of Nuclear Medicine.
   ¹⁰⁹Cd and ⁵⁵Fe were delivered to the INPE's Centre for Radioisotope Preparatiion where sources were made and sold to non-ferrous mines for XRF applications.
- [9] Is medical research/diagnosis carried out on site/off site? Off site If on site, indicate imaging devices available number
- * 511 KeV SPET 1 * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) [10] a. Are you engaged in nuclear reaction cross-section measurements? No Which type of nuclear data do you use? b. Reaction cross sections Yes Yes Thick target yields Decay data Yes [11] Does your institute accept IAEA research fellows for training/experience? No

## **RUSSIAN FEDERATION**

[1]	Institute: Postal Address:	Bakoulev Scientific Centre for Cardiovascular Surgery Roubevsekoe sh 135 121552 Moscow
	Telephone [.] Fax/E-mail	7-95-2373230 7-95-2372172
[2]	Person in-charge: (Title/Position)	Dr I. P Aslanıdıs Head of the Radıodiagnostics Laboratory
	Other senior staff:	M. N. Vakhromeyeva E. P. Dezevyanko
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS-11
	Year: (1) of installation: (11) of any major reconstruction:	1998 (planned)

[4] Particle beams available:

[	E.	He He	⁴He	Dual Beams
Beam energies/Range (MeV)	11			
Typical currents int. (µA)				
Employed external (µA)	50			

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others[.] PET 32 planned Installation underway

32 planned

4 planned

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments

- [6] Radionuclides planned to be produced in the near future:  ${}^{11}C, {}^{13}N, {}^{15}O$
- [7] Major radiopharmaceuticals produced: (planned)
   ¹⁸F-FDG
   ¹³N-Ammonia
   ¹¹C-Acetate
   ¹⁵O-Water
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? *Planned* If yes, which ones and how often?

[9]	Is m	edical research/diagnosis carried out on site/off site?	On site
	If or	n site, indicate imaging devices available number	
	* Ga * Sii	1 KeV SPET amma camera ngle Photon Tomography (SPET) sitron Emission Tomography (PET) 1	
	TU	sition Emission Tomography (TET)	
[10]	a. b.	<ul> <li>Are you engaged in nuclear reaction cross-section measurements?</li> <li>Which type of nuclear data do you use?</li> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	No

[11] Does your institute accept IAEA research fellows for training/experience? No

## **RUSSIAN FEDERATION**

[1]	Institute: Postal Address:	Cyclotron Co. Ltd. Bondarebko Sq. 1 249020 Obninsk
	Telephone: Fax/E-mail:	7-95-2552385 9-95-2552326
[2]	Person in-charge: (Title/Position)	Prof. N. N. Krasnov Director General
	Other senior staff:	A. A. Tonomarev Dr. Y. G. Sevastianov
[3]	Type of cyclotron: Manufacturer: Model:	Classical Cyclotron Scientific Institute, Electrophysics, St. Petersburg U-150-1
	Year: (i) of installation: (ii) of any major reconstruction:	1963 1993

[4] Particle beams available:

		<b>4</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	22 - 28	22		44	
Typical currents int. (µA)	77 - 350	700		400	
Employed external (µA)	50				

28

Hours per week machine is in operation (excluding maintenance): 168	8
---------------------------------------------------------------------	---

Hours per week employed in radionuclide production: 140

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

In 1998 it is planned to begin producing the radionuclides with a new (second) cyclotron

RUS-2

Radionuclide Produced	Target Material (enrichment)	Activity (GBg) per batch	Frequency	Comments
⁵⁷ Co	58 Ni	as ordered	as ordered	
⁶⁷ Ga	⁶⁸ Zn ( ⁶⁷ Zn)		44	
⁶⁸ Ge	Ga ₃ Ni			
⁸³ Sr	Rb	"	"	
88 Y	Sr		"	
109 Cd	109 Ag	<i>\$1</i>	4	
¹¹¹ In	$\frac{112}{Cd} (^{11}Cd)$			
¹³⁹ Ce	La		<u> </u>	
¹⁹⁵ Au	Pt		······································	
²⁰¹ Tl	²⁰³ Tl	"		

- [6] Radionuclides planned to be produced in the near future:  ${}^{67}Cu$ ,  ${}^{103}Pd$ ,  ${}^{123}I$ ,  ${}^{124}I$
- [7] Major radiopharmaceuticals produced:  ${}^{67}Ga, {}^{111}In, {}^{201}Tl$
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often?
   ⁵⁷Co, ⁶⁷Ga, ⁶⁸Ge, ⁸⁵Sr, ⁸⁸Y, ¹⁰⁹Cd, ¹¹¹In, ¹³⁹Ce, ¹⁹⁵Au, ²⁰¹Tl
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

# [10] a. Are you engaged in nuclear reaction cross-section measurements? Yesb. Which type of nuclear data do you use?

-	Reaction cross sections	No
-	Thick target yields	Yes
-	Decay data	No

[11] Does your institute accept IAEA research fellows for training/experience? Yes

## **RUSSIAN FEDERATION**

[1]	Institute: Postal Address:	Institute of the Human Brain 9 Pavlov Street St. Petersburg 197376
	Telephone: Fax/E-mail:	7-812-2342359 7-812-2342347; korsakov@brain.nw.ru
[2]	Person in-charge: (Title/Position)	Name not provided
	Other senior staff:	Eya Mrsonzhnikav
[3]	Type of cyclotron: Manufacturer: Model:	Fixed energy, Positive Ion Scanditronix MC-17
	Year: (i) of installation: (ii) of any major reconstruction:	1990

[4] Particle beams available:

	B,	E Constanting of the second se	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	17	8.5		44	
Typical currents int. (µA)	18 - 40	40		400	
Employed external (µA)					

9

Hours per week machine is in operation (excluding maintenance): 10

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Radiochemistry / PET

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

RUS-3

Radionuclide Produced	Target Material (enrichment)	Activity (GBg) per batch	Frequency	Comments
	$N_2$ (high purity)	18i	2 per week	
¹³ N	$H_2O$ under $H_2$	14	2 - 3 per week	
¹⁵ O	$N_2 + 1\% O_2$	7	3 - 5 per week	
⁷⁸ F	$H_2^{18}O(96\%)$	7 - 11	2 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹¹C-Methionine, ¹¹C-Pyruvate, ¹¹C-Acetate, ¹¹C-L-DOPA,
   ¹³N- Ammonia
   ¹⁵O-Water
   ¹⁸F-FDG
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on s	site/off site?	Research on site	
	If on site, indicate imaging devices available number			
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	1		
[10]	<ul><li>a. Are you engaged in nuclear reaction or</li><li>b. Which type of nuclear data do you use</li></ul>		No	
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	No Yes No		
[11]	Does your institute accept IAEA research fel	lows for training/experience?	No	

## **RUSSIAN FEDERATION**

[1]	Institute: Postal Address:	V. G. Khlopin Radium Institute 2nd Murinsky AV 28 St. Petersburg 194021
	Telephone: Fax/E-mail:	7-812-2476181 7-812-2378095
[2]	Person in-charge: (Title/Position)	Name not provided Head of Nuclear Reaction and Nuclear Medicine Laboratory
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	Efremov NIIEFA MGC 20
	Year: (i) of installation: (ii) of any major reconstruction:	1988

[4] Particle beams available:

		<b>4</b>	³ He	He	Dual Beams
Beam energies/Range (MeV)	2 - 18	2 - 10	8 - 24	6-20	
Typical currents int. (µA)	100	50			
Employed external (µA)	50	25			

30

Hours per week machine is in operation (excluding maintenance): 30

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁸ F	$H_2^{18}O(96\%)$	50	4 per week	enriched H ₂ ¹⁸ O recovery
¹²³ I	$^{723}TeO_2$	10	2 per week	

- [6] Radionuclides planned to be produced in the near future:  ${}^{67}Ga, {}^{111}In$
- [7] Major radiopharmaceuticals produced: ¹²³I- Sodium Iodide, ¹²³I-Ortho-Iodohippurate

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions?	Yes
	If yes, which ones and how often?	
	About 20 hospitals twice a week	
	-	

[9] Is medical research/diagnosis carried out on site/off site? Off site

If on site, indicate imaging devices available number

* 511 KeV SPET

* Gamma camera

-

- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements?b. Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
    - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

## SAUDI ARABIA

- [1] Institute: King Faisal Specialist Hospital and Research Centre Postal Address: P.O. Box 3354 Riyadh 11211 Telephone: 966-1-4647272 ext. 31770 Fax/E-mail: 966-1-4424743; daniel@kfshrc.edu.sa Person in-charge: Eng. Edward Daniel Carroll [2] (Title/Position) Head of Cyclotron Operations Other senior staff: Salman Mohamed Miliebari George Miller [3] Type of cyclotron: Positive ion, AVF, electrostatic extraction Manufacturer: The Cyclotron Corporation Model: CS 30 Year: (i) of installation: 1981
  - (ii) of any major reconstruction:
- [4] Particle beams available:

	<b>H</b>	<b>3 - 11</b>	He	He	Dual Beams
Beam energies/Range (MeV)	26.5	15	38	29.5	
Typical currents int. (µA)	100	(300)	(135)	(90)	
Employed external (µA)	50	(100)	(60)	(40)	

Hours per week machine is in operation (excluding maintenance):	40
Hours per week employed in radionuclide production:	38
Hours per week machine maintenance:	5
Additional applications of the cyclotron: Until 1991 we were able to accelerate other particles. We have only protons for more than six years. Proton currents are our typical	

operation. Others are machine specification.

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: Two (2) hours target development

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁸ F	$H_2^{18}O, 95+\%$	25	4 per week	
¹³ N	$H_2^{10}O, Nat$	7.4	3 per week	
67Ga	⁶⁸ Zn, 99+%	25.4	l per week	⁶⁸ Zn recovery
⁸¹ Rb / ^{81m} Kr	nat Kr	2.9	5 per week	Kr recovery
123 _I	¹²⁴ Te, 96+%	13.6	4 per week	¹²⁴ Te recovery
²⁰¹ Tl	$^{203}Tl, 97+\%$	24.9	l per week	²⁰³ Tl recovery

- * at EOB except ²⁰¹Tl, product at separation calculated back to EOB
- [6] Radionuclides planned to be produced in the near future:  ${}^{II}C_{I}$   ${}^{III}In$

[7] Major radiopharmaceuticals produced:
 ¹²³I- Sodium Iodide (oral and capsules), ¹²³I-Ortho-Iodohippurate, ¹²³I- mIBG
 ¹²³I-Iodohippuran
 ⁶⁷Ga-Gallium citrate,
 ²⁰¹Tl-Thallous chloride,
 ¹⁸F-FDG
 ¹³N-Ammonia

- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
  If yes, which ones and how often?
  14 hospitals in Saudi Arabia varies from 4 times a week to 1 time per month
  1 hospital in Qatar 1 per week
  1 center in West Asia 1 per month
- [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number

* 511 KeV SPET
* Gamma camera 2
* Single Photon Tomography (SPET) 3
* Positron Emission Tomography (PET) 1

[10] a. Are you engaged in nuclear reaction cross-section measurements? Yes
b. Which type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? Yes

## SOUTH AFRICA

[1]	Institute: Postal Address:	National Accelerator Centre (NAC) P. O. Box 72 Faure 7131
	Telephone: Fax/E-mail:	27-21-8433820 27-21-2721843
[2]	Person in-charge: (Tıtle/Position)	Prof. J. F. Sharpey-Schafer Director of NAC
	Other senior staff:	R. Pretorius
[3]	Type of cyclotron:	Separated-sector cyclotron with a solid pole injector cyclotron
	Manufacturer: Model:	NÁC
	Year: (i) of installation: (ii) of any major reconstruction:	Operation started in December 1986 Second injector cyclotron in 1994

[4] Particle beams available:

	H.	<b>a</b>	³ He	He	Dual Beams
Beam energies/Range (MeV)	28 - 200	50 - 100	50 - 100	50 - 200	
Typical currents int. (µA)	85 at 66 MeV	1	1	1	
Employed external (µA)	85 at 66 MeV	I	1	1	

Hours per week machine is in operation (excluding maintenance): 148 on

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics: All of them

Others:

148 on the average

33

20 on the average

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
²² Na	naiMg	9 - 18	3 - 4 per year	
⁶⁷ Ga	^{nai} Zn	13	l per week	
$\frac{8}{Rb}$ / $\frac{8}{m}$ Kr	natKr	1	2 per week	
^{III} In	naiIn	0.5 - 1.0	2 per month	
¹²³ I	NaI	11	l per week	
¹³⁹ Ce	^{nai} Pr	10		first production run
201 Tl	nai Tl		l per week	

- * at EOB except ²⁰¹Tl, product at separation calculated back to EOB
- [6] Radionuclides planned to be produced in the near future:  ${}^{18}F$ ,  ${}^{103}Pd$
- [7] Major radiopharmaceuticals produced:
   ¹²³I- Sodium Iodide (oral and injection, capsules), ¹²³I- mIBG,
   ⁶⁷Ga-Gallium citrate
   ⁸¹Rb / ^{81m}Kr generator
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often?
   30 nuclear medicine centers in South Africa, on weekly basis
   1 nuclear medicine department in Nambia
   DuPont Merck Co (²²Na at 3 4 times per year)
   Amersham International (²²Na at 1 2 times per year)

[9]	Is medical research/diagnosis carried out on site/off site?	Off site
	If on site, indicate imaging devices available number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	Yes
	- Reaction cross sections Ves	

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	Centro PET Complutense C/Manuel Bartolomė Cossio 28040 Madrid
	Telephone: Fax/E-mail:	34-1-53448 96 34-1-55308 45
[2]	Person in-charge: (Title/Position)	Dr. Jose Luis Garreras
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	Superconducting, negative ion Oxford Electronics OSCAR
	Year: (i) of installation: (11) of any major reconstruction:	1995

[4] Particle beams available:

	É É	E C	³ He	He	Dual Beams
Beam energies/Range (MeV)	12				
Typical currents int. (µA)					
Employed external (µA)	50				

Hours per week machine is in operation (excluding maintenance):	10
Hours per week employed in radionuclide production:	10
Hours per week machine maintenance:	2
Additional applications of the cyclotron:	

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{I3}N$	$H_2^{16}O$	3.7	2 per week	
¹⁸ F	$H_2^{18}O(98\%)$	~ 50	5 per week	

[6] Radionuclides planned to be produced in the near future:

[7]	Major radiopharmaceuticals produced: ¹³ N- ammonia ¹⁸ F-FDG				
[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? We plan to supply ¹⁸ F-FDG to other institutions	No			
[9]	Is medical research/diagnosis carried out on site/off site?	Yes, on site & off site			
	If on site, indicate imaging devices available number				
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>				
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No			
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>				
[11]	Does your institute accept IAEA research fellows for training/experience?	No			

# **SPAIN**

[1]	Institute: Postal Address:	Clinica Universitaria de Nava Apartadp, 4029 31080 Pamplona	rra
	Telephone: Fax/E-mail:	34-48-172294 34-48-172294; Ivelasco@cun.:	unav.es
[2]	Person in-charge: (Title/Position)	J. A. Richter Chief of Nuclear Medicine	J. M. Marti-Climent Physicist
	Other senior staff:	I. Penuelas C. Sanchez	
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion, fixed energy Ion Beam Applications, s.a. Cyclone 18/9	
	Year: (i) of installation: (ii) of any major reconstruction:	1996	

[4] Particle beams available:

Γ	L H		³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	18	9			yes
Typical currents int. (µA)	15	10			
Employed external (µA)	15	10			

Hours per week machine is in operation (excluding maintenance):	3.5
Hours per week employed in radionuclide production:	3.5
Hours per week machine maintenance:	2

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
^{<i>n</i>} C	$^{14}N_2 99.999\%$ < 0.5% $O_2$	8	3 per week	
⁷³ N	$H_2^{16}O$	1.5	1 per month	
130	¹⁴ N ₂ 99.99% < 1% O ₂	8	2 per week	
⁷⁸ F	H ₂ ¹⁸ O	30	5 per week	enriched H ₂ ¹⁸ O recovery

- [6] Radionuclides planned to be produced in the near future:  $18F-F_2$
- [7] Major radiopharmaceuticals produced:
   ¹¹C-Methionine
   ¹³N-Ammonia
   ¹⁵O-Water
   ¹⁸F-FDG
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often?
   ¹⁸F-FDG, daily
   Beginning in September, 1997
- [9] Is medical research/diagnosis carried out on site/off site?
   Both, on site Diagnosis off site
   If on site, indicate imaging devices available number

1

* 511 KeV SPET

- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a.Are you engaged in nuclear reaction cross-section measurements?Nob.Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
  - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

### **SWEDEN**

[1]	Institute: Postal Address:	Uppsala University PET Centre, UAS S-75185 Uppsala
	Telephone: Fax/E-mail:	46-18-183381 46-18-183390; bengt.langstrom@pet.uu.se
[2]	Person in-charge: (Title/Position)	Prof. Bengt Langstrom
	Other senior staff:	Gunnar Antoni; Yvonne Andersson; Mats Bergström; Karl Johan Fajth; Göran Westerberg
[3]	Type of cyclotron: Manufacturer: Model:	Fixed energy isocronous cyclotron Scanditronix MC 17
	Year: (i) of installation: (ii) of any major reconstruction:	1991

[4] Particle beams available:

	建建		3 <b>He</b>	He	Dual Beams
Beam energies/Range (MeV)	17	8.5			
Typical currents int. (µA)					
Employed external (µA)	45	40			

Hours per week machine is in operation (excluding maintenance):	~ 50
Hours per week employed in radionuclide production:	~ 30
Hours per week machine maintenance:	~ 2

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{14}N_2$	up to 50	~25 per week	
¹⁴ N ₂	on line	~4 per week	
$H_2^{18}O(80 - 98\%)$	~50	~3 per week	
$Cu^{76}Se_2$	~1	1 - 2 per week	
-	(enrichment) ${}^{14}N_2$ ${}^{14}N_2$ $H_2{}^{18}O$ (80 - 98%)	(enrichment)         per batch ${}^{14}N_2$ up to 50 ${}^{14}N_2$ on line ${}^{14}N_2$ on line ${}^{12}O(80-98\%)$ ~50	(enrichment)         per batch $^{14}N_2$ up to 50         ~25 per week $^{14}N_2$ on line         ~4 per week $^{14}N_2$ on line         ~4 per week $H_2^{18}O(80 - 98\%)$ ~50         ~3 per week

[6] Radionuclides planned to be produced in the near future:

 [7] Major radiopharmaceuticals produced:
 ~ 150 different tracers
 ¹¹C-Methionine, ¹¹C-Hydroxytryptophane, ¹¹C-Raclopride, ¹¹C-Acetate, ¹¹C-DOPA
 ¹⁵O-Water, ¹⁵O-Carbon Monooxide, ¹⁵O-Oxygen, ¹⁸F-FDG

[8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
 If yes, which ones and how often?
 Beginning in September, 1997
 ¹⁸F, ⁷⁶Br

#### On site [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 2 [10] a. Are you engaged in nuclear reaction cross-section measurements? No Which type of nuclear data do you use? b. Reaction cross sections No _

-	Thick target yields	No
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? No

## SWITZERLAND

[1]	Institute: Postal Address:	University Hospital Geneva 24, rue Micheli-du-Crest CH-1211 Geneva
	Telephone: Fax/E-mail:	41-22-3727165 41-22-3727169
[2]	Person in-charge: (Title/Position)	Prof. G. J. Beyer
	Other senior staff:	Ch. Morel
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation:	Negative Ion, fixed energy Ion Beam Applications, s.a. Cyclone 18/9 1997
	(ii) of any major reconstruction:	1777

## [4] Particle beams available:

	<b>B</b>	<b>H</b>	He	He	Dual Beams
Beam energies/Range (MeV)	18	9			yes
Typical currents int. (µA)					
Employed external (µA)					

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

40 planned Installation underway

30 planned

5 planned

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments

- [6] Radionuclides planned to be produced in the near future:  ${}^{11}C, {}^{13}N, {}^{15}O, {}^{18}F, {}^{64}Cu, {}^{67}Cu, {}^{86}Y, {}^{120}I, {}^{123}I, {}^{124}I$
- [7] Major radiopharmaceuticals produced:  ${}^{18}F$ -FDG and others planned

[8]	Do you supply radionuclides/radiopharmaceu If yes, which ones and how often? ¹⁸ FDG to 8 Centres daily beginning in Septen		Yes
[9]	Is medical research/diagnosis carried out on s	ite/off site?	Yes
	If on site, indicate imaging devices available	number	
	* 511 KeV SPET		
	* Gamma camera	2	
	* Single Photon Tomography (SPET)	2	
	* Positron Emission Tomography (PET)	2	
[10]	<ul> <li>a. Are you engaged in nuclear reaction cr</li> <li>b. Which type of nuclear data do you use?</li> </ul>		Yes
	- Reaction cross sections	Yes	
	- Thick target yields	Yes	
	- Decay data	Yes	
[11]	Does your institute accept IAEA research fell	ows for training/experience?	Yes

## SWITZERLAND

- [1] Institute: Paul Scherrer Institute (PSI) Postal Address: CH-5232 Villigen-PSI Telephone: Not provided Fax/E-mail: Not provided [2] Person in-charge: Prof. P. A. Schubiger (Title/Position) Other senior staff: R. Schwarzbach J. Jegge Type of cyclotron: AVF Cyclotron [3] Manufacturer: **Phillips** Model: Year: (i) of installation: 1974 (ii) of any major reconstruction:
- [4] Particle beams available:

	B	<b>H</b>	He	He	Dual Beams
Beam energies/Range (MeV)	10-70	10-60	30-150	20-120	
Typical currents int. (µA)					
Employed external (µA)	70	10	10	10	

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

150 hours in operation

18 hours service and set up

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	N ₂	37	2 per week	
150	<i>O</i> ₂	1	12 per week	
¹⁸ F	$H_2^{18}O$ (96%)	37	3 per week	
³² Fe	Ni	1	l per month	
⁶⁷ Cu	Zn	1.5	1 per week	
⁷⁶ Br	KBr	5	2 per month	
123 _I	KI	20	2 per month	

[6] Radionuclides planned to be produced in the near future:

[7]	¹⁵ О-И ¹¹ С-F	Vater	rmaceuticals produced: , ¹¹ C-Raclopride, ¹¹ C-Methic DOPA,	onine, ¹¹ C-Ketamine	
[8]	If yes	, which or	radionuclides/radiopharmaceunes and how often? <i>up production to 5 hospitals</i>	iticals to other institutions?	Yes
[9]			arch/diagnosis carried out on s ate imaging devices available		On site
	* 511	KeV SPE	T		
	* Gar	nma came	ra		
	* Sing	gle Photor	n Tomography (SPET)		
	* Pos	itron Emis	ssion Tomography (PET)	Yes	
[10]	а. b.	-	engaged in nuclear reaction cr pe of nuclear data do you use		Yes
		-	Reaction cross sections	Yes	
		-	Thick target yields	Yes	
		-	Decay data	Yes	
[11]	Does	your insti	tute accept IAEA research fell	lows for training/experience?	Yes

## SWITZERLAND

Raemistrasse. 100 CH-8081 Zurich

Name not provided

PhD. Radiochemist

41-1-2551111

[1] Institute: Postal Address:

> Telephone: Fax/E-mail:

[2] Person in-charge: (Title/Position)

Other senior staff:

[3] Type of cyclotron: Manufacturer: Model: Fixed energy, negative ion General Electric PETTrace

University Hospital Zurich

41-1-2554428; westera@dmr.usz.ch

Year: (1) of installation: (ii) of any major reconstruction:

[4] Particle beams available:

		<b>a</b>	³ He	He	Dual Beams
Beam energies/Range (MeV)	16.5	8.5			
Typical currents int. (µA)					
Employed external (µA)					

1994

Hours per week machine is in operation (excluding maintenance):40 Stand-byHours per week employed in radionuclide production:20 Beam on targetHours per week machine maintenance:3

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

279

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	N ₂	6	4 per week	
¹³ N	$H_2^{-16}O$	5	10 per week	
¹⁵ O	$N_2 (+O_2)$	150 MBq/min	2 per week for	2-10 hours each
⁷⁸ F	$H_2^{18}O$ (97%)	80	7 per week	enriched water recovery

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹³N- Ammonia,
   ¹⁵O-Water
   ¹¹C-Flumazenil
   ¹⁸F-FDG

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? 2 hospitals 1 time per week	Yes
[9]	3 hospitals 2 times per week Is medical research/diagnosis carried out on site/off site?	On site

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET) Yes
- [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
    - Decay data

[11] Does your institute accept IAEA research fellows for training/experience? No

## SYRIAN ARAB REPUBLIC

- [1] Institute: Postal Address: P.O. Box 6091 Damascus Telephone: 963-11-6112289 Fax/E-mail: 963-11-6111926/7 Person in-charge: [2] Dr. Abdul Hamid Al-Reyyes (Title/Position) Other senior staff: [3] Type of cyclotron: Negative Ion, variable energy Manufacturer: Ion Beam Applications, s.a. Model: Cyclone 30 1998/9
  - Year: (i) of installation: (ii) of any major reconstruction:
- [4] Particle beams available:

	E.	<b>H</b>	3∰e	<b>He</b>	Dual Beams
Beam energies/Range (MeV)	15 - 30				yes
Typical currents int. (µA)					
Employed external (µA)	350				

Hours per week machine is in operation (excluding maintenance): Installation to begin in 1998

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics: **Physics** 

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	1			

- [6] Radionuclides planned to be produced in the near future:  ${}^{II}C, {}^{I8}F, {}^{67}Ga, {}^{I23}I, {}^{I24}I, {}^{201}II$
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ⁶⁷Ga-citrate
   ²⁰¹Tl-chloride
   Others planned
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes, If yes, which ones and how often? Planned

[9]	Is medical research/diagnosis carried out on site/off site?	Research & diagnosis
		on site
	If on site, indicate imaging devices available number	

- * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) Will be available * Positron Emission Tomography (PET) Will be available Are you engaged in nuclear reaction cross-section measurements? [10] a. b. Which type of nuclear data do you use? Reaction cross sections _ Thick target yields --Decay data
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

## **UNITED KINGDOM**

[1] Institute: University of Aberdeen Postal Address: Department of Biomedical Physics & Bioengineering Foresterhill, Aberdeen, AB25 2ZD Telephone: 44-1224-681818 ext 51155 Fax/E-mail: 44-1224-685645 Person in-charge: Dr. A. Welch [2] (Title/Position) Director, Aberdeen PET Centre Other senior staff: P. Mikecz; M. Dodd Type of cyclotron: Positive Ion, Fixed Energy [3] Manufacturer: The Cyclotron Corporation Model: CS-30 Year: (i) of installation: 1987 (ii) of any major reconstruction:

[4] Particle beams available:

			³ He	4He	Dual Beams
Beam energies/Range (MeV)	26	15			
Typical currents int. (µA)	100	200			
Employed external (µA)	10 - 20	20			

10

10

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

This cyclotron will stop its operation around the end of 1997. It will be replaced by a RDS 111 UK-1

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
13 _N	¹² CH ₄	1	2 per week	
¹⁵ 0	$1^{14}N_2 + 1\% O_2$		l per week	continuous flow
¹⁸ F	$^{20}Ne + 0.3\% F_2$	3 - 5	3 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹³N-Ammonia, ¹⁵O-Water
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medica	al rese	arch/diagnosis carried out on si	ite/off site?	Yes, on site
	If on site	e, indic	ate imaging devices available r	number	
	* 511 Ke				
	* Gamm				
	•		n Tomography (SPET)		
	* Positro	on Emi	ssion Tomography (PET)	1	
[10]	a. Ar	re you	engaged in nuclear reaction cro	oss-section measurements?	No
	b. W	hich ty	pe of nuclear data do you use?		
		-	Reaction cross sections	Yes	
		-	Thick target yields	Yes	
		-	Decay data	Yes	
[11]	Does you	ur insti	tute accept IAEA research felle	ows for training/experience?	Yes

## **UNITED KINGDOM**

[1]	Institute: Postal Address:	University of Aberdeen Department of Biomedical Physics & Bioengineering Foresterhill, Aberdeen, AB9 2ZD
	Telephone: Fax/E-mail:	44-1224-681818 ext 51155 44-1224-685645
[2]	Person in-charge: (Title/Position)	Dr. A. Welch Director, Aberdeen PET Centre
	Other senior staff:	P. Mikecz; M. Dodd
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion, Fixed Energy CTI RDS 111
	Year: (i) of installation:	1997

Year: (i) of installation: (ii) of any major reconstruction:

[4] Particle beams available:

	H,	<b>H</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11				
Typical currents int. (µA)	50				
Employed external (µA)	35*				

~ 5*

Hours per week machine is in operation (excluding maintenance):	~ 20 [*]
-----------------------------------------------------------------	-------------------

Hours per week employed in radionuclide production:  $\sim 20^*$ 

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

* Planned to commence at the end of 1997

* Projected values

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	$\frac{14}{N_2}$	40*		
13 _N	¹² CH ₄	3*		
¹⁵ O	$^{14}N_2 + 1\% O_2$	3*		
18 _F	$H_2^{18}O$	5*	4 per week	

- * Estimated for planned operation to commence at the end of 1997
- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹³N-Ammonia ¹⁵O-Water ¹¹C-Amino acids
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out or	n site/off site?	Yes, on site
	If on site, indicate imaging devices availabl	e number	
	* 511 KeV SPET * Gamma camera		
	* Single Photon Tomography (SPET)		
	* Positron Emission Tomography (PET)	1	
[10]	<ul><li>a. Are you engaged in nuclear reaction</li><li>b. Which type of nuclear data do you us</li></ul>		No
	- Reaction cross sections	Yes	
	- Thick target yields	Yes	
	- Decay data	Yes	
[11]	Does your institute accept IAEA research for	ellows for training/experience?	Yes

# **UNITED KINGDOM**

[1]	Institute: Postal Address:	The University of Birmingham School of Physics and Astronomy Edgbaston Birmingham B15 2TT
	Telephone: Fax/E-mail:	44-121-4144704 44-121-4144704; r.g.green@bham.ac.uk
[2]	Person in-charge: (Title/Position)	Prof. T.D. Beynon
	Other senior staff:	R.G. Green
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation:	60" Classical University of Birmingham 60" Nuffield Cyclotron 1948
	(ii) of any major reconstruction:	1740

[4] Particle beams available:

Γ	¹ H	21	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	10	20	30	40	
Typical currents int. (µA)		1000	200	100	
Employed external (µA)		50	20	30	

*The 60" Nuffield Cyclotron is the oldest running cyclotron

Hours per week machine is in operation (excluding maintenance):	110
Hours per week employed in radionuclide production:	110
Hours per week machine maintenance:	Variable
Additional applications of the cyclotron:	

Additional applications of the cyclotron: Used only for radioisotope production

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

287

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
²² Na	Mg	11	2 per year	
⁶³ Zn	Cu	11	2 per year	
⁸¹ Rb	NaBr	0.9	46 generators per week	⁸¹ Rb - ^{81m} Kr Generator
¹⁰⁹ Cd	Ag	45	1 per month	

- [6] Radionuclides planned to be produced in the near future: As dictated by the market demand
- [7] Major radiopharmaceuticals produced:  ${}^{8/}Rb - {}^{8/m}Kr$  Generator
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? Amersham International, monthly 46 Hositals throughout the United Kingdom for medical imaging during 50 weeks per year
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

	* Ga * Sin	1 KeV SPET amma camera agle Photon Tomography (SPET) sitron Emission Tomography (PET)	l Industrial PET	
[10]	a. b.	Are you engaged in nuclear reaction cr Which type of nuclear data do you use		No
		<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>		

[11] Does your institute accept IAEA research fellows for training/experience? Yes

# **UNITED KINGDOM**

[1]	Institute: Postal Address:	The University of Birmingham School of Physics and Astronomy Edgbaston Birmingham B15 2TT
	Telephone: Fax/E-mail:	44-121-4144704 44-121-4144704; r.g.green@bham.ac.uk
[2]	Person in-charge: (Title/Position)	Prof. T.D. Beynon
	Other senior staff:	R.G. Green
[3]	Type of cyclotron: Manufacturer: Model:	3 Sector variable frequency, 36" Pole Diameter University of Birmingham Radial Ridge Cyclotron
	Year: (i) of installation: (ii) of any major reconstruction:	1957

[4] Particle beams available:

	¹ H [*]	2 <b>H</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)		12.5	33	24.5	
Typical currents int. (µA)		800		150	
Employed external (µA)		200	50	50	

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Used only for  $^{18}F$  production

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:
Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁸ F	$H_2O$	1.8	every day_	
			_	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? Plan to produce ¹⁸ F-FDG to supply local hospitals	Planned
[9]	Is medical research/diagnosis carried out on site/off site?	
	If on site, indicate imaging devices available number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> <li>1 industrial PET</li> </ul>	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	
[11]	Does your institute accept IAEA research fellows for training/experience?	Yes

### **UNITED KINGDOM**

[1]	Institute: Postal Address:	Wolfson Brain Imaging Cambridge University C Box 65 Addenbrooks's F Cambridge CB22QQ	Clinical School
	Telephone: Fax/E-mail:	44-1223-331823 jcc24@wbic.cam.ac.uk	
[2]	Person in-charge: (Title/Position)	Dr. John Clark PET Science Director	Prof. John D. Pickard Clinical Director
	Other senior staff:		
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion, Fixed Ene General Electric PETTrace	rgy
	Year: (i) of installation: (ii) of any major reconstruction:	1995	

[4] Particle beams available:

	<b>1</b> 91	21	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	16.5	8.5			
Typical currents int. (µA)					
Employed external (µA)	40				

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: The Wolfson Brain Imaging Centre is dedicated to the study of damaged brain using PET and MRI. It is sited in the neuro-intensive care environment to provide mininal transfer time for sick patients.

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

available 24 hours per day depends upon clinical demands

~ 2

UK-5

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{11}CO_2$	⁷⁴ N ₂	up to 110	as required	for ¹¹ CH ₃ I radiosynthesis
150	$N_2$		as required	on-line
¹⁸ F	$H_2^{18}O(97\%/20\%)$		as required	yes

[6] Radionuclides planned to be produced in the near future:

Major radiopharmaceuticals produced: [7] ¹⁸F-FDG ¹⁵O-Water, ¹⁵O-Oxygen, ¹⁵O-Carbon Monoxide a¹¹C-radioligands Do you supply radionuclides/radiopharmaceuticals to other institutions? No [8] If yes, which ones and how often? [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number * 511 KeV SPET 1 * Gamma camera 1 * Single Photon Tomography (SPET) 1 * Positron Emission Tomography (PET) 1 Are you engaged in nuclear reaction cross-section measurements? No [10] a. b. Which type of nuclear data do you use? Reaction cross sections Yes Yes -Thick target yields Yes Decay data _

[11] Does your institute accept IAEA research fellows for training/experience? Yes

#### **UNITED KINGDOM**

[1]	Institute: Postal Address:	MRC Cyclotron Unit Hammersmith Hospital Ducane Road London W12 ONN
	Telephone: Fax/E-mail:	44-181-3833775
[2]	Person in-charge: (Title/Position)	Prof. T. Jones
	Other senior staff:	V.W. Pike; Bruce McKay
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion, Variable Energy Scanditronix MC 40 MARK II
	Year: (i) of installation: (ii) of any major reconstruction:	1986

[4] Particle beams available:

Γ	IH	<b>H</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	40	18	53	40	
Typical currents int. (µA)	65	65	30	30	
Employed external (µA)	40				

6

Hours per week machine is in operation (excluding maintenance):	100
Hours per week employed in radionuclide production:	100

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics: Radiotherapy

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}C$	$1^{4}N_{2} \text{ or } N_{2}/H_{2}$		regular	
<i>ISO</i>	14N2		daily	
	$H_2^{18}O$		regular	
⁷⁷ Br				
⁸¹ Rb	⁸² Kr		daily	⁸¹ Rb - ^{81m} Kr Generator
120 ₁				
124 _I			······································	

- [6] Radionuclides planned to be produced in the near future:  $^{94m}Tc$ ,  $^{64}Cu$
- [7] Major radiopharmaceuticals produced: Wide range of ¹¹C and ¹⁸F-labelled compounds ¹⁵O-Water ¹⁸F-FDG, ¹⁸F-DOPA, ¹⁸FU ¹¹C-Raclopride, ¹¹C-Deprenyl, S-¹¹C-CGP12177, R-¹¹C-PK11195 ¹¹C-Diprenorphine, ¹¹C-WAY-100635, ¹¹C-RT1-55, ¹¹C-Flumazenil, ¹¹C-SCH23390, ¹¹C-MHED, ¹¹C-Thymidine

 [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often? Krypton-81m generators daily
 ¹⁸F-FDG on request
 ¹⁸F-DOPA, ¹⁸FU on request miscellaneous isotopes on request

#### [9] Is medical research/diagnosis carried out on site/off site? Yes

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera

.

- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

4 clinical PET, and 1 animal PET

Yes

- [10] a. Are you engaged in nuclear reaction cross-section measurements?b. Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
  - Decay data
- [11] Does your institute accept IAEA research fellows for training/experence?

#### UNITED KINGDOM

[1]	Institute: Postal Address:	MRC Cyclotron Unit Hammersmith Hospital Ducane Road London W12 ONN
	Telephone: Fax/E-mail:	44-181-3833775
[2]	Person in-charge: (Title/Position)	Prof T. Jones
	Other senior staff:	V.W Pike, Bruce McKay
[3]	Type of cyclotron: Manufacturer: Model:	Oxygen-15 Generator Ion Beam Applications, s a 3D
	Year (1) of installation: (11) of any major reconstruction:	1991

[4] Particle beams available:

	<b>H</b> ** **	EE .	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)		3.2			
Typical currents int. (µA)					
Employed external (µA)					

Hours per week machine is in operation (excluding maintenance): 100

Hours per week employed in radionuclide production. 100

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁵ 0	$^{14}N_2$			

- Radionuclides planned to be produced in the near future: [6]
- Major radiopharmaceuticals produced: [7] ¹⁵O-Water Do you supply radionuclides/radiopharmaceuticals to other institutions? [8] No If yes, which ones and how often? Is medical research/diagnosis carried out on site/off site? On site [9] If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 4 Clinical PET, 1 Animal PET Are you engaged in nuclear reaction cross-section measurements? [10] a. Which type of nuclear data do you use? b. Reaction cross sections -
  - Thick target yields -_
    - Decay data
- Yes [11] Does your institute accept IAEA research fellows for training/experience?

#### **UNITED KINGDOM**

[1]	Institute: Postal Address:	St. Thomas Hospital The Clinical PET Centre London SE1 7EH
	Telephone: Fax/E-mail:	44-171-9228068 44-171-6200790
[2]	Person in-charge: (Title/Position)	Prof. G. N. Maisey Chairman, Division of Radiological Sciences
	Other senior staff:	Julie Sutcliffe; Paul Halstead Paul Marsden
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction:	1991

[4] Particle beams available:

		³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11			
Typical currents int. (µA)	80			
Employed external (µA)	30			

12

3

Hours per week machine is in operation (excluding maintenance):	12

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

We maintain the cyclotron ourselves and have no contract with CTI. We have 2 CPU's for ¹⁸FDG production

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁷ C	14N2	20	10 per week	mainly experiments
	$ \begin{array}{c} H_2^{\ 76}O + \\ 50\mu M EtOH \end{array} $	1.5	2 per week	
150	$^{15}N_2:O_2$	20	2 per week	expensive method
¹⁸ F	$H_2^{18}O(96\%)$	50	5 per week	high pressure silver target

[6] Radionuclides planned to be produced in the near future:

[7]	¹¹ C-N	r radiophar DG, ¹⁸ F-F Aethionine, Immonia	maceuticals produced: luoromisonidazole ¹¹ C- Flumazenil		
[8]	If yes	s, which one	adionuclides/radiopharmace es and how often? 1 per week	euticals to other institutions?	Yes
[9]	Is me	dical reseat	rch/diagnosis carried out on	site/off site?	Research/ diagnosis on site
	If on site, indicate imaging devices available number			011 5110	
	* Gan * Sin	•	-	2	
[10]	a. b.	-	ngaged in nuclear reaction o be of nuclear data do you us	eross-section measurements? e?	No
		- - -	Reaction cross sections Thick target yields Decay data	No No No	
[11]	Does	your institi	ute accept IAEA research fe	llows for training/experience?	No

#### **UNITED KINGDOM**

[1]	Institute: Postal Address:	Douglas Cyclotron Unit Clatterbridge for Oncology Bebington, Wirral L63 4JY
	Telephone: Fax/E-mail:	44-151-3346366 44-151-3342845; andrzejk@cco.trust.co.uk
[2]	Person in-charge: (Title/Position)	Dr. Andrzej Kacperek Head of Cyclotron Unit
	Other senior staff:	B. Marsland
[3]	Type of cyclotron: Manufacturer: Model:	AVF, Single Particle, Fixed Energy Scanditroix MC-62
	Year: (i) of installation: (ii) of any major reconstruction:	1984 Beamline of proton therapy, 1988

[4] Particle beams available:

	H H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	62 nominal			
Typical currents int. (µA)	up to 50			
Employed external (µA)	10			

Hours per week machine is in operation (excluding maintenance):	av. 6
Hours per week employed in radionuclide production:	< 1
Hours per week machine maintenance:	6
Additional applications of the avalatron:	

Additional applications of the cyclotron: Proton radiotherapy of ocular tumors Radiobiology (proton therapy support)

Radiotherapy/Activation Analysis/Radiobiology/Physics: *Physics Research (e.g. Dosimetry)* 

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq)	Frequency	Comments
⁶⁴ Cu		very small quantities		research
⁸¹ Rb / ^{81m} Kr	natKr	300 mCi	l per month	development
⁷⁰¹ Pd		very small quantities	<u> </u>	research
¹³⁷ Ce		very small quantities	<u> </u>	research

- Radionuclides planned to be produced in the near future: ¹⁸F-FDG using ¹⁸O-water target, ⁵⁵Co as long lived positron emitter for brain research [6]
- [7] Major radiopharmaceuticals produced: We do not the facilities on site

-

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? ²² Na, ⁵⁷ Ni, ⁶⁴ Cu, ¹⁰¹ Pb, ¹³⁹ Ce infrequently to 2 Universities		Yes
[9]	] Is medical research/diagnosis carried out on site/off site?		Both, Yes
	If on site, indicate imaging devices available number		
	* 511 KeV SPET CCO may upgrade the γ camer with double-headed capability		a
	* Gamma camera	1	
	* Single Photon Tomography (SPET)		
	* Positron Emission Tomography (PET)		
[10]	<ul><li>a. Are you engaged in nuclear reaction cross</li><li>b. Which type of nuclear data do you use?</li></ul>	-section measurements?	No

	- Thick target yields	Yes	
	- Decay data	Yes	
[11]	Does your institute accept IAEA research f	ellows for training/experience?	Yes

Yes

Reaction cross sections

[1]	Institute: Postal Address:	Good Samaritan Hospital PET Net Pharmaceutical Services 1111 E. McDowell Rd. Phoenix AZ 85006
	Telephone: Fax/E-mail:	1-602-2394100 1-602-2392810
[2]	Person in-charge: (Title/Position)	Tricia Giurlani PDC Manager
	Other senior staff:	David Stith; Jay Stivers
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction	1990

[4] Particle beams available:

[	H	- ² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	11			•	
Typical currents int. (µA)	40 - 100				
Employed external (µA)	20 - 40				

5 - 10

Hours per week machine is i	n operation	(excluding maintenance):	15 - 30
-----------------------------	-------------	--------------------------	---------

Hours per week employed in radionuclide production: 5 - 10

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}C$	¹⁴ N ₂	74	1 per 2 months	
$^{13}N$	$H_2^{10}O$	3.7	1 - 2 per month	
150	¹⁵ N : ¹⁶ O, 39 : 1	7.4	l patient per month	~ 10 runs
⁷⁸ F	$H_2^{18}O$ (~ 97%)	15	5 per week	

- [6] Radionuclides planned to be produced in the near future:
- Major radiopharmaceuticals produced: [7] 18 F-FDG  $^{13}N$  - Ammonia,  $^{11}C$ - Methionine ¹⁵O-Water
- Yes [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? ⁷⁸F-FDG daily ¹³N-Ammonia ~ 1 per month

#### [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 1 No [10] a. Are you engaged in nuclear reaction cross-section measurements? Which type of nuclear data do you use? b. Reaction cross sections -

- Thick target yields -
- Decay data _

[11] Does your institute accept IAEA research fellows for training/experience?

[1]	Institute: Postal Address:	Lawrence Berkeley National Laboratory Centre for Functional Imaging 1 Cyclotron Road, MS 55-121 Berkeley, CA 94720
	Telephone:	1-510-4864083
	Fax/E-mail:	1-510-4864768; hfvanbrocklin@lbl.gov
[2]	Person in-charge:	Dr. Henry Van Brocklin
	(Title/Position)	Head, Radiopharmaceutical Chemistry
	Other senior staff:	James O'Neil
		Thomas F. Budinger
[3]	Type of cyclotron:	Negative Ion
	Manufacturer:	CTI
	Model:	RDS 111
	Year: (1) of installation: (ii) of any major reconstruction	1995

[4] Particle beams available:

	<b>H</b>	HALL AND	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11				
Typical currents int. (µA)					
Employed external (µA)	10- 50				

Hours per week machine is in operation (excluding maintenance):	5 - 6
Hours per week employed in radionuclide production:	5 - 6
Hours per week machine maintenance:	av. 2

Additional applications of the cyclotron: Isotope production for use in nuclear science applications, i.e., source for injection into the LBNL 88 - inch cyclotron

Radiotherapy/Activation Analysis/Radiobiology/Physics: Others:

USA-2

٠

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
Be	⁷ Li / ⁶ Li		1 - 2 per year	solid target
¹³ N	$\frac{H_2^{16}O}{5 \text{ mM EtOH}} +$		2 per month	
¹⁸ F	$^{18}O_2 (> 98\%)$		2 per week	¹⁸ O ₂
¹⁸ F	^H ¹⁸ O (> 97%)		3 per week	enriched H2 ¹⁸ O recovery

- [6] Radionuclides planned to be produced in the near future:  ${}^{II}C, {}^{IS}O$
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG, ¹⁸F-Fluoro-meta-tyrosine ¹³N-Ammonia
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?	On site
	If on site, indicate imaging devices available number	
	* 511 KeV SPET * Gamma camera * Single Distance Temperature (SDET)	
	* Single Photon Tomography (SPET)1* Positron Emission Tomography (PET)2	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	
[11]	Does your institute accept IAEA research fellows for training/experience?	Yes

[1]	Institute: Postal Address:	Crocker Nuclear Laboratory University of California, Davis 1 Bainer Drive, Davis, CA 95616
	Telephone: Fax/E-mail:	1-916-7521460 1-916-7520952
[2]	Person in-charge: (Title/Position)	Manuel C. Lagunas-Solar Senior Radiochemist
	Other senior staff:	Nolan X. Zeng; Carlos M. Castaneda Krystyna Trzepla-Nabaglo; Omar F. Carvacho
[3]	Type of cyclotron: Manufacturer: Model:	76 inch Isochronous Cyclotron W. M. Brobeck & Associates
	Year: (i) of installation: (ii) of any major reconstruction:	1964-1966

[4] Particle beams available:

Γ	В	21	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	4 - 68	15 - 45	20 - 90	16 - 90	
Typical currents int (µA)					
Employed ext (µA)	30	40	1	40	

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

40 hours in 1980-1986; 4 - 8 hours per week in 1987-1993

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics: All of them

Others: Food irradiation and conservation 112

~16

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁸ F*	naiNe	3.0-4.5	2-4 per week	
¹²³ I*		3.7-7.4	4 per week	
203Bi, 206Bi	nat Pb	180-370 MBq	2-4 per year	

¹²³I production performed in 1980-1986 ¹⁸F production in 1987-1993

- [6] Radionuclides planned to be produced in the near future:  ${}^{18}F, {}^{205}Bi, {}^{206}Bi, {}^{67}Cu$
- [7] Major radiopharmaceuticals produced:  ${}^{18}F$ -FDG

[8]	Do you supply radionuclides/radiopharmaceutic	cals to other institutions?	Yes
	If yes, which ones and how often?		
	Benedict Nuclear Pharmaceuticals, CO, USA	4 per week	
	University of California, Irvine, CA, USA	1-2 per week	
	University of California, Berkeley, CA, USA	1-2 per week	
	VA Hospital, Palo Alto CA, USA	1-2 per week	
	National Institute of Health, MD, USA	2-4 per year	
	NeoRx Corporation, WA, USA	2-4 year	
[9]	Is medical research/diagnosis carried out on site	e/off site?	Off site
	If on site, indicate imaging devices available nu	umber	

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

# [10] a. Are you engaged in nuclear reaction cross-section measurements? Yes b. Which type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? Yes

Institute: [1] University of California-Irvine Postal Address: Brain Imaging Centre Irvine, CA 92697 Telephone: 1-714-8242018 Fax/E-mail: 1-714-8242230; aanajafi@uci.edu [2] Person in-charge: Dr. Ahmod A. Najafi (Title/Position) Other senior staff: Type of cyclotron: Positive Ion [3] Manufacturer: Scanditronix Model: MC 17 1988 Year: (i) of installation: (ii) of any major reconstruction: Particle beams available: [4]

Γ		E C	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	8 - 10				
Typical currents int (µA)	20				
Employed ext (µA)	20				

Hours per week machine is in operation (excluding maintenance):	12
Hours per week employed in radionuclide production:	12
Hours per week machine maintenance:	2 - 3

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

	Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$\vdash$					
L					

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:  18 F-FDG,  18 F-DOPA
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?	On site
	If on site, indicate imaging devices available number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET) Yes</li> </ul>	
[10]	<ul> <li>a. Are you engaged in nuclear reaction cross-section measurements?</li> <li>b. Which type of nuclear data do you use? <ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul> </li> </ul>	No

[11] Does your institute accept IAEA research fellows for training/experience? No

[1]	Institute: Postal Address:	University of California at Los Angeles Biomedical Cyclotron 10833 Le Conte Avenue Los Angeles, CA 90095
	Telephone: Fax/E-mail:	1-310-8256231 1-310-8254517
[2]	Person in-charge: (Title/Position)	N. Satyamurthy
	Other senior staff:	Joe Cook Bernard Amarasekera
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction	1990

[4] Particle beams available:

	ц. Н	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	11			yes
Typical currents int. (µA)				
Employed external (µA)	40			

2 - 3

Hours per week machine is in operation (excluding maintenance):	40

Hours per week employed in radionuclide production: 25

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

.

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	¹⁴ N ₂	55	4 per week	
^B N	$H_2^{16}O$	3	25 per week	
¹⁵ 0	¹⁵ N ₂	74	16 per week	
¹⁸ F	$H_2^{18}O(97\%)$	20	10 per week	
⁷⁸ F	¹⁸ O ₂ (97%)	40	4 per week	enriched ¹⁸ O ₂ recovery

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG, ¹⁸F-Fluorodopa, ⁷⁸F-Fluoro-m-tyrosine, ¹⁸F-Fluoroacyclovir, ¹⁸F-Fluoro-ethylspiperone, ¹⁸F-WIN
   ¹¹C-WIN, ¹¹C-Acetate, ¹¹C-Carbon Monoxide, ¹³N- Ammonia
   ¹⁵O-Water, ¹⁵O-Carbon Monoxide, ¹⁵O-Oxygen
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical rese	arch/diagnosis carried out on s	ite/off site?	On site
	If on site, indic	ate imaging devices available i	number	
[10]	* Positron Emi a. Are you			No
	- - -	Reaction cross sections Thick target yields Decay data	No Yes Yes	
[11]	Does your inst	itute accept IAEA research fell	ows for training/experience?	No

[1]	Institute: Postal Address:	University of California at Los Angeles Biomedical Cyclotron 10833 Le Conte Avenue Los Angeles, CA 90095
	Telephone:	1-310-8256231
	Fax/E-mail:	1-310-8254517
[2]	Person in-charge: (Title/Position)	N. Satyamurthy
	Other senior staff:	Joe Cook
		Bernard Amarasekera
[3]	Type of cyclotron:	Negative Ion
	Manufacturer:	CTI
	Model:	RDS 112
	Year: (i) of installation:	1990
	(ii) of any major reconstruction	

[4] Particle beams available:

	'H	H ²	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	11				yes
Typical currents int. (µA)					
Employed external (µA)	40				

2 - 3

Hours per week machine is in operation (excluding maintenance): 40

Hours per week employed in radionuclide production: 25

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

USA-6

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	14N2		4 per week	_
$\frac{13}{N}$	$H_2^{16}O$		25 per week	
150	$^{13}N_2$		16 per week	
<i>18</i> F	$H_2^{18}O(97\%)$		10 per week	
⁷⁸ F	¹⁸ O ₂ (97%)		4 per week	enriched ¹⁸ O ₂ recovery

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG, ¹⁸F-Fluorodopa, ¹⁸F-Fluoro-m-tyrosine, ¹⁸F-Fluoroacyclovir, ¹⁸F-Fluoro-ethylspiperone, ¹⁸F-WIN
   ¹¹C-WIN, ¹¹C-Acetate, ¹¹C-Carbon Monoxide, ¹³N- Ammonia
   ¹⁵O-Water, ¹⁵O-Carbon Monoxide, ¹⁵O-Oxygen
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?				
	If on site, indicate imaging devices available number				
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	б			
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>				
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	No Yes Yes			
[11]	Does your institute accept IAEA research fe	llows for training/experience?	No		

- [1] Institute: University of Southern California Postal Address: 1510 San Pablo, #350 Los Angeles, CA 90033 1-213-3421166 Telephone: Fax/E-mail: 1-213-3425778; pconti@hsc.usc.edu Person in-charge: Dr. Peter S. Conti [2] (Title/Position) Director, PET Imaging & Radiological Resources Other senior staff: James R. Bading; Miar Alauddin; John Fissikis; Keith Higa; Betty Ku Type of cyclotron: [3] Negative Ion Manufacturer: CTI Model: RDS 111 1990 Year: (i) of installation: (ii) of any major reconstruction
- [4] Particle beams available:

		³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11			
Typical currents int. (µA)	150		_	
Employed external (µA)	20 - 40			

15

3

Hours per week machine is in operation (excluding maintenance):	20
-----------------------------------------------------------------	----

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	14 N2	16.5	1 per month	
¹³ N	H ₂ O / EtOH	1.7	3 per month	
150	$^{15}N_2$	11.2	4 per month	
78 _F	$H_2^{18}O$ (96%)	35	5 per week	$H_2^{18}O$ not recovered
¹⁸ F		15	l per month	$^{18}F-F_2$

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG, ¹⁵O-Water, ¹⁵O-Oxygen, ¹⁵O-Carbon Monoxide, ¹⁵O-Carbon Dioxide ¹³N-Ammonia
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often?
   ¹⁸F-FDG daily

[9]	Is medical research/diagnosis carried out on site/off site?			Both on & off site	
	If or	n site, indic	ate imaging devices available r	umber	
	* 51	1 KeV SPI	ET		
	* G	amma came	era		
	* Si	ngle Photo	n Tomography (SPET)		
	* Positron Emission Tomography (PET) 1				
[10]	a.	Are you	engaged in nuclear reaction cro	oss-section measurements?	No
	b. Which type of nuclear data do you use?				
		-	Reaction cross sections	No	
		-	Thick target yields	No	
		-	Decay data	No	
[11]	Doe	s your insti	itute accept IAEA research fello	ows for training/experience?	No

[1]	Institute: Postal Address:	PETNet / VA Palo Alto Nuclear Medicine Service (115) 3801 Miranda Ave Palo Alto, CA 94304
	Telephone: Fax/E-mail:	1-650-4962540 1-650-4962590
[2]	Person in-charge: (Title/Position)	Dr. Henry C. Padgett Manager
	Other senior staff:	Dave Wilson
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction	1996

[4] Particle beams available:

	, E	<b>É</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11				
Typical currents int. (µA)					
Employed external (µA)	25 - 40				

Hours per week machine is in operation (excluding maintenance):	5 - 15
Hours per week employed in radionuclide production:	5 - 15
Hours per week machine maintenance:	~ 0

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: We are a commerical supplier

equency	Comments
per week	As $^{13}NH_3$
per week	As ¹⁸ F
) per week	$H_2^{18}O$ not recovered

- [6] Radionuclides planned to be produced in the near future:  ${}^{15}O$
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹³N-Ammonia
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often?
   2 3 per week

[9]	Is medical research/diagnosis carried out on site/off site?		Yes, On site
	If on site, indicate imaging devices available n	umber	
	* 511 KeV SPET	1	
	* Gamma camera		
	* Single Photon Tomography (SPET)	3	
	* Positron Emission Tomography (PET)	1	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>		No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>		
[11]	Does your institute accept IAEA research fellows for training/experience?		Yes

[1]	Institute: Postal Address:	Northern California PET Imaging Centre 3195 Folsom Blvd. Sacramento, CA 95816
	Telephone: Fax/E-mail:	1-916-4556073
[2]	Person in-charge: (Tıtle/Posıtion)	Diana Tribey Manager
	Other senior staff:	Mason Jones
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction	1992

[4] Particle beams available:

ſ	¹ H	* * * <b>2H</b>	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	11		:		yes
Typical currents int. (µA)					
Employed external (µA)	20 - 40				

2

Hours per week machine is in operation (excluding maintenance):	10
Hours per week employed in radionuclide production:	10

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

USA-9

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
T = T C	14 _N	27	l per year	
13 _N	H ₂ O/EtOH	~ 3	1 per month	
150	⁷⁵ N	~ 7	l per month	
	H ₂ ¹⁸ O	24	10 per week	$H_2^{18}O$ not recovered

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹³N-Ammonia
   ¹⁵O-Water
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often?
   ¹⁸F-FDG 1 per month

[9]	Is medical research/diagnosis carried out on site/off site?	On site
	If on site, indicate imaging devices available number	
	* 511 KeV SPET 1 * Gamma camera * Single Photon Temperarby (SPET)	
	* Single Photon Tomography (SPET)* Positron Emission Tomography (PET)	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	
[11]	Does your institute accept IAEA research fellows for training/experience?	No

- [1] Institute: Yale University / VA PET Centre (115A) Postal Address: 950 Campbell Avenue West Haven, CT 06516 Telephone: 1-203-9374884 Fax/E-mail: garg@biomed.med-yale.edu Person in-charge: [2] Pradeep Garg (Title/Position) Director, Radiopharmaceutical Chemistry Other senior staff: Type of cyclotron: [3] Negative Ion Manufacturer: CTI Model: RDS 112 1990 - 91
  - Year: (i) of installation: (ii) of any major reconstruction
- [4] Particle beams available:

	H,	³ He	** <b>4</b> He	Dual Beams
Beam energies/Range (MeV)	11			
Typical currents int. (µA)				
Employed external (µA)				

Hours per week machine is in operation (excluding maintenance):	30 - 40
Hours per week employed in radionuclide production:	~ 4 - 5
Hours per week machine maintenance:	0 - 10

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

USA-10

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
		33	2 - 3 per week	R & D
¹³ N		1.1	10-20 per week	
150	15 <u>N</u>	4.4	6 - 20 per week	
	$H_2^{18}O(>96\%)$	16.7	5 - 7 per week	$H_2^{18}O$
				not recovered

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG, ¹⁸F-Altanserine, ¹⁸F-para-Fluorobenzylguanidines
   ¹³N-Ammonia
   ¹⁵O-Water
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?		On site
	If on site, indicate imaging devices available	e number	
[10]	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	2 multiple multiple 1	No
[10]	<ul><li>a. Are you engaged in nuclear reaction of</li><li>b. Which type of nuclear data do you us</li></ul>		NO
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	No No Yes	
[11]	Does your institute accept IAEA research fe	llows for training/experience?	Yes

[1] Institute: Postal Address:

> Telephone: Fax/E-mail:

Mount Sinai Medical Centre 4300 Alton Road Miami Beach, FL-33140

- 1-305-6742465 1-305-6742428
- [2] Person in-charge:<br/>(Title/Position)Dr. Thomas E. Boothe<br/>Director, Cyclotron/Radiochemistry

Other senior staff:

Mike Plitnikes; Patricia Smith Manny Tavana

[3] Type of cyclotron: Manufacturer: Model: Positive Ion The Cyclotron Corporation CS-30

Proprietary

Proprietary

Year: (i) of installation: 1972 (ii) of any major reconstruction:

[4] Particle beams available:

		² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	Proprietary				
Typical currents int (µA)					
Employed ext (µA)					

Hours per week machine is in operation (excluding maintenance): Proprietary

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

USA-11

Radionuclide Produced	Target Material (enrichment)	Activity (GBg) per batch	Frequency	Comments
⁶⁷ Ga	⁶⁸ Zn			Proprietary
¹¹¹ In	¹¹² Cd			Proprietary
²⁰¹ Tl	²⁰³ <i>Tl</i>			Proprietary

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often?
   ⁶⁷Ga-chloride
   ¹¹¹In-chloride
   ²⁰¹Tl-chloride
   world wide
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

* 511 KeV SPET

- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
  - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

- Institute: [1] St. Joseph's Hospital Postal Address: 3003 Dr. Martin Luther King Jr. Blvd. Tampa, FL 33607 Telephone: 1-813-8765620 Fax/E-mail: [2] Person in-charge: John Mather (Title/Position) Other senior staff: Kathie Krista, Mike Mosley John O'Connen [3] Type of cyclotron: Negative Ion Manufacturer: CTTModel: *RDS 112* Year: (i) of installation: 1989 (ii) of any major reconstruction:
- [4] Particle beams available:

Γ	<b>LH</b> ,	211	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11		· · · · · · · · · · · · · · · · · · ·		yes
Typical currents int (µA)					
Employed ext (µA)	20 - 40				

10

2

Hours per week machine is in operation (excluding maintenance): 10

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

USA-12

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁸ F	H ₂ ¹⁸ O (97%)	16 - 27	5 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:  $^{18}F$ -FDG

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? ¹⁸ F-FDG 5 days per week	Yes			
[9]	Is medical research/diagnosis carried out on site/off site?	Off site			
	If on site, indicate imaging devices available number				
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>				
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No			
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>				
[11]	Does your institute accept IAEA research fellows for training/experience?	No			

- [1] Institute: Emory University PET Centre Postal Address: 1364 Clifton Road Atlanta, GA 30322 Telephone: Fax/E-mail: 1-404-7127930 Person in-charge: Mark Goodman [2] (Title/Position) Other senior staff: Ronald Crowe Type of cyclotron: [3] Negative Ion Manufacturer: CTI Model: RDS 112 Year: (i) of installation: 1992 (ii) of any major reconstruction
- [4] Particle beams available:

	EL .	<b>2</b> H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11				yes
Typical currents int. (µA)					
Employed external (µA)	20 - 40				

~ 4

Hours per week machine is in operation (excluding maintenance): 30

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:
Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
⁷⁸ F	¹⁸ O ₂	8 - 10	1 per week	$^{18}F-F_2$
¹⁵ 0	¹⁵ N	~ 7	4-5 per week	
¹⁸ F	$H_2^{18}O(97\%)$	~ 5	5 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:  $^{18}F$ -FDG
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?	On site
	If on site, indicate imaging devices available number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> <li>2</li> </ul>	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No

- Reaction cross sections
- Thick target yields
- Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

- Institute: [1] Theragenics Corporation Postal Address: 5325 Oakbrook Parkway Norcross, GA 30093 Telephone: Fax/E-mail: 1-770-3818447 Person in-charge: [2] Tony Longo (Title/Position) Cyclotron Facility Manager Other senior staff: Tom West; Ty Robin; Joe Rodgers; J. Hwung [3] Type of cyclotron: Negative Ion Manufacturer: IBA Model: Cyclone 18+ Year: (i) of installation: 1992 (ii) of any major reconstruction
- [4] Particle beams available:

		<b>4</b>	³ He	 Dual Beams
Beam energies/Range (MeV)	18			
Typical currents int. (µA)	various			
Employed external (µA)	n/a			

Hours per week machine is in operation (excluding maintenance): 144 to 168

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Typical 0 - 36

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁰³ Pd	Rh	10 to 60	1 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁰³Pd, Brachytherapy

[8]	If yes, whi	oply radionuclides/radiopharmaceuch ones and how often? Typical 1 to 10 per month per clien		Yes
[9]	Is medical	research/diagnosis carried out on s	ite/off site?	Some research on site
	If on site, i	ndicate imaging devices available	number	
	-			
[10]		you engaged in nuclear reaction cr ch type of nuclear data do you use Reaction cross sections Thick target yields Decay data		No
[11]	Does your	institute accept IAEA research fell	ows for training/experience?	No

- [1] Institute: Theragenics Corporation Postal Address: 5325 Oakbrook Parkway Norcross, GA 30093 Telephone: Fax/E-mail: 1-770-3818447 [2] Person in-charge: Tony Longo (Title/Position) Cyclotron Facility Manager Other senior staff: Tom West; Ty Robin; Joe Rodgers; J. Hwung [3] Type of cyclotron: Negative Ion Manufacturer: IBA Model: Cyclone 18+ Year: (i) of installation: 1994 (ii) of any major reconstruction
- [4] Particle beams available:

Ī	¹ H	2 <b>H</b>	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	18				
Typical currents int. (µA)	various				
Employed external (µA)	n/a				

Hours per week machine is in operation (excluding maintenance): 144 to 168

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Typical 0 - 36

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁰³ Pd	Rh	10 to 60	l per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁰³Pd, Brachytherapy

[8]	Do you supply radionuclides If yes, which ones and how Medical; Typical 1 to 10 pe		Yes
[9]	Is medical research/diagnosi	is carried out on site/off site?	Some research on site
	If on site, indicate imaging o	devices available number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomograph</li> <li>* Positron Emission Tomog</li> </ul>	• • •	
[10]	<ul><li>a. Are you engaged in n</li><li>b. Which type of nuclear</li></ul>	uclear reaction cross-section measurements? r data do you use?	No
	<ul> <li>Reaction of</li> <li>Thick targ</li> <li>Decay dat</li> </ul>	•	
[11]	Does your institute accept L	AEA research fellows for training/experience?	No

- [1] Institute: Theragenics Corporation Postal Address: 5325 Oakbrook Parkway Norcross, GA 30093 Telephone: Fax/E-mail: 1-770-381 8447 Person in-charge: [2] Tony Longo (Title/Position) Cyclotron Facility Manager Other senior staff: Tom West; Ty Robin; Joe Rodgers; J. Hwung Type of cyclotron: [3] Negative Ion Manufacturer: IBA Model: Cyclone 18+ Year: (i) of installation: 1996 (ii) of any major reconstruction
- [4] Particle beams available:

		<b>a</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	18				
Typical currents int. (µA)	various				
Employed external (µA)	N/A				

Hours per week machine is in operation (excluding maintenance): 144 to 168

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Typical 0 - 36

Turnical 0 36

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁰³ Pd	Rh	10 to 60	1 per week	
· · · · · · · · · · · · · · · · · · ·				

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁰³Pd, Brachytherapy

[8]	Do you supply radionuclic If yes, which ones and how Medical; Typical 1 to 10	w often?	s to other institutions?	Yes
[9]	Is medical research/diagne	osis carried out on site/c	off site?	Some research on site
	If on site, indicate imaging	g devices available num	ber	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomogram</li> <li>* Positron Emission Tomogram</li> </ul>			
[10]		a nuclear reaction cross- ear data do you use?	section measurements?	No
		n cross sections arget yields lata	Yes Yes Yes	
[11]	Does your institute accept	IAEA research fellows	for training/experience?	No

- [1] Institute: Theragenics Corporation Postal Address: 5325 Oakbrook Parkway Norcross, GA 30093 Telephone: Fax/E-mail: 1-770-381 8447 [2] Person in-charge: Tony Longo (Title/Position) Cyclotron Facility Manager Other senior staff: Tom West; Ty Robin; Joe Rodgers, J. Hwung Type of cyclotron: [3] Negative Ion Manufacturer: IBA Model: Cyclone 18+ Year: (i) of installation: 1996 (ii) of any major reconstruction
- [4] Particle beams available:

ſ	¹ H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	18			
Typical currents int. (µA)	various			
Employed external (µA)	N/A			

Hours per week machine is in operation (excluding maintenance): 144 to 168

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Typical 0 - 36

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
<i>103</i> Pd	Rh	10 to 60	l per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁰³Pd, Brachytherapy

[8]	If ye	es, which o	radionuclides/radiopharmaceut nes and how often? cal 1 to 10 per month per client		Yes
[9]	Is m	edical rese	arch/diagnosis carried out on s	ite/off site?	Some research on site
	If or	n site, indic	ate imaging devices available r	number	On Sile
	* Ga * Si				
[10]	a. b.	•	engaged in nuclear reaction cro ype of nuclear data do you use?		No
		- -	Reaction cross sections Thick target yields Decay data	Yes Yes Yes	
[11]	Doe	s your inst	itute accept IAEA research felle	ows for training/experience?	No

- [1] Institute: The Queens Medical Centre Postal Address: 1301 Punchbowl Street Honolulu, HI 96813 Telephone: 1-808-5377500 Fax/E-mail: 1-808-5377812; pmcguigan@queens.org [2] Person in-charge: Patrick McGuigan (Title/Position) Other senior staff: Nancy Chun Type of cyclotron: [3] Negative Ion Manufacturer: CTI Model: RDS 111 Year: (i) of installation: 1998 (ii) of any major reconstruction
- [4] Particle beams available:

	H	He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11			Yes
Typical currents int. (µA)				
Employed external (µA)				

Hours per week machine is in operation (excluding maintenance): Installation underway

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
· · · · · · · · · · · · · · · · · · ·				

- [6] Radionuclides planned to be produced in the near future:  ${}^{I8}F$
- [7] Major radiopharmaceuticals produced: Planned  ${}^{18}F$ -FDG
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Planned If yes, which ones and how often? Plan to supply ¹⁸FDG for 511 KeV SPET at other medical Centres

[9] Is medical research/diagnosis carried out on site/off site? Yes

If on site, indicate imaging devices available number

* 511 KeV SPET	
* Gamma camera	1
* Single Photon Tomography (SPET)	6
* Positron Emission Tomography (PET)	32 ring prototype

## [10] a. Are you engaged in nuclear reaction cross-section measurements?b. Which type of nuclear data do you use?

- Reaction cross sections
- Thick target yields
- Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

[1]	Institute: Postal Address:	Medi-Physics, Inc. Amersham Healthcare 3350 Ridge Avenue Arlington Heights, IL 60004
	Telephone: Fax/E-mail:	1-847-3988400
[2]	Person in-charge: (Title/Position)	Thomas Springer Director of Operations
	Other senior staff:	Brian Carus
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion, Variable Energy Scanditronix MC-40
	Year: (i) of installation: (ii) of any major reconstruction	1979
C 47		

#### [4] Particle beams available:

	<b>'H</b>	<b>H</b>	He .	⁴ He	Dual Beams
Beam energies/Range (MeV)	Proprietary				
Typical currents int. (µA)					
Employed external (µA)				· · · · · · · · · · · · · · · · · · ·	

Hours per week machine is in operation (excluding maintenance): Proprietar

Proprietary information

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
Proprietary				
information				

- [6] Radionuclides planned to be produced in the near future: *Proprietary Information*
- [7] Major radiopharmaceuticals produced:  ${}^{201}T, \ l^{123}I, {}^{111}In$

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? Proprietary Information	Yes
[9]	Is medical research/diagnosis carried out on site/off site?	No
	If on site, indicate imaging devices available number	
(10)	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	۸7-
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	
[11]	Does your institute accept IAEA research fellows for training/experience?	No

[1]	Institute: Postal Address:	Medi-Physics, Inc. Amersham Healthcare 3350 . Ridge Avenue Arlington Heights, IL 60004
	Telephone: Fax/E-mail:	1-847-3988400
[2]	Person in-charge: (Title/Position)	Thomas Springer Director of Operations
	Other senior staff:	Brian Carus
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion, Variable Energy Sumitomo & CGR PV-750
	Year: (i) of installation: (ii) of any major reconstruction	1986
F 43	<b>N</b>	

[4] Particle beams available:

	LH.	28	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	Proprietary				
Typical currents int. (µA)					
Employed external (µA)					

Hours per week machine is in operation (excluding maintenance): Proprietary Information

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
Proprietary				
information				

- [6] Radionuclides planned to be produced in the near future: *Proprietary Information*
- [7] Major radiopharmaceuticals produced:  $^{201}Tl$ ,  $^{123}I$ ,  $^{111}In$
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often? Proprietary Information

[9] Is medical research/diagnosis carried out on site/off site? No
 If on site, indicate imaging devices available number
 * 511 KeV SPET
 * Gamma camera

- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

# [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?

- Reaction cross sections
- Thick target yields
- Decay data
- [11] Does your institute accept IAEA research fellows for training/experience? No

[1]	Institute: Postal Address:	Medi-Physics, Inc. Amersham Healthcare 3350 Ridge Avenue Arlington Heights, IL 60004
	Telephone: Fax/E-mail:	1-847-3988400
[2]	Person in-charge:	Thomas Springer
	(Title/Position)	Director of Operations
	Other senior staff:	Brian Carus
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion, Variable Energy Scanditronix MC-40
	Year: (i) of installation: (ii) of any major reconstruction	1979

[4] Particle beams available:

		<b>2H</b>	3Не	⁴ He	Dual Beams
Beam energies/Range (MeV)	Proprietary				
Typical currents int. (µA)					
Employed external (µA)					

Hours per week machine is in operation (excluding maintenance):

Proprietary information

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
Proprietary information				
· · · · · ·				

- [6] Radionuclides planned to be produced in the near future: Proprietary Information
- [7] Major radiopharmaceuticals produced:  $\frac{201}{Tl}$ ,  $\frac{123}{I}$ ,  $\frac{711}{In}$

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions?	Yes
	If yes, which ones and how often?	
	Proprietary Information	

[9]	Is medical research/diagnosis carried out on site/off site?	No
	If on site, indicate imaging devices available number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	
[11]	Does your institute accept IAEA research fellows for training/experience?	No

[1]	Institute: Postal Address:	PET Net - Chicago 200 E. Howard Street No: 240 Des Plaines, IL 60018
	Telephone: Fax/E-mail:	1-847-2971322
[2]	Person in-charge: (Title/Position)	Russ Greenberg Manager
	Other senior staff:	Clyde Cole
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction	1995
F 47	w	

[4] Particle beams available:

. [	<b>H</b>	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	11			yes
Typical currents int. (µA)				
Employed external (µA)	20 - 40			

1

Hours per week machine is in operation (excluding main	itenance): 10
--------------------------------------------------------	---------------

Hours per week employed in radionuclide production: 10

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{18}F$	$H_2^{18}O(97\%)$	~ 20	5 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:  ${}^{18}F$ -FDG

[8]	If y	you supply radionuclides/radiopharmaceuticals to other institutions? es, which ones and how often? -FDG 5 times per week	Yes
[9]	Is n	nedical research/diagnosis carried out on site/off site?	Off site
	Ifo	n site, indicate imaging devices available number	
	* G * S	11 KeV SPET amma camera ingle Photon Tomography (SPET) ositron Emission Tomography (PET)	
[10]	a. b.	Are you engaged in nuclear reaction cross-section measurements? Which type of nuclear data do you use?	No
		<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	
	[11]	Does your institute accept IAEA research fellows for training/experience?	No

[1]	Institute: Postal Address:	Methodist Medical Centre of Illinois 112 Crescent, Peoria Illinois 61606
	Telephone: Fax/E-mail:	1-309-6724191
[2]	Person in-charge: (Title/Position)	Danny Bingham Manager
	Other senior staff:	Brenda Shields
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction	1990
Г <b>А</b> Э		

[4] Particle beams available:

Γ	¹ H	<b>H</b>	He	⁴He	Dual Beams
Beam energies/Range (MeV)	11				yes
Typical currents int. (µA)					
Employed external (µA)	20 - 40				

Hours per week machine is in operation (excluding maintenance):	20
-----------------------------------------------------------------	----

Hours per week employed in radionuclide production: 20

Hours per week machine maintenance: 0.5

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹³ N	¹³ C		l per week	
¹⁸ F	$H_2^{18}O$		5 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:  ${}^{18}F$ -FDG
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often?
   ¹⁸F-FDG 5 per week

[9]	Is medical research/diagnosis carried out on site/off site?	Off site
	If on site, indicate imaging devices available number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> </ul>	
	* Positron Emission Tomography (PET) 1	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements</li><li>b. Which type of nuclear data do you use?</li></ul>	nts? No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> </ul>	

- Decay data
- [11] Does your institute accept IAEA research fellows for training/experience? No

347

Occasionally

8

[1]Institute:Indiana University Cyclotron FacilityPostal Address:2401 Milo B. Sampson LaneBloomington, IN 47408

 Telephone:
 1-812-8559365

 Fax/E-mail:
 1-812-8556645; @iucf.indiana.edu

[2] Person in-charge:<br/>(Title/Position)Dr. John M. Cameron<br/>Director

Other senior staff:

Director M. Wedekind; W. Jacobs

J. Collins

- [3]Type of cyclotron:<br/>Manufacturer:<br/>Model:Separated Sector<br/>In-house<br/>K200Year: (i) of installation:1975
  - (ii) of any major reconstruction:
- [4] Particle beams available:

Г		²² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	200	90	270		
Typical currents int (µA)	20				
Employed ext (µA)	5				

Hours per week machine is in operation (excluding maintenance): 160

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: Injector to Cooled Beam Storage Ring USA-24

Radionuclides produced: [5]

Radionuclide Produced	Target Material (enrichment)	Activity (GBg) per batch	Frequency	Comments
	· · · · · · · · · · · · · · · · · · ·		- <u></u>	

- Radionuclides planned to be produced in the near future:  $^{124}I$ [6]
- [7] Major radiopharmaceuticals produced: Produced off-site

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions?	Yes
	If yes, which ones and how often?	
	Indiana University Medical School, Department of Medicine	

Off site

[9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

#### [10] a. Are you engaged in nuclear reaction cross-section measurements? Yes Which type of nuclear data do you use? b. Reaction cross sections Yes -

- Thick target yields Yes --
  - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

- [1] Institute: Indiana University Cyclotron Facility Postal Address: 2401 Milo B. Sampson Lane Bloomington, IN 47408 Telephone: 1-812-8559365 Fax/E-mail: 1-812-8556645; @iucf.indiana.edu Dr. John M. Cameron [2] Person in-charge: (Title/Position) Director Other senior staff: M. Wedekind; W. Jacobs J. Collins Type of cyclotron: Separated Sector [3] Manufacturer: In-house Model[.] K16 1972 Year: (i) of installation: (ii) of any major reconstruction:
- [4] Particle beams available:

Γ	<b>'H</b>	2 <b>1</b>	³ He	He	Dual Beams
Beam energies/Range (MeV)	3-16				
Typical currents int (µA)	50				
Employed ext (µA)	10				

Hours per week machine is in operation (excluding maintenance): 160

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Injector to K200 Cyclotron

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

8

Occasionally

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
Be	Li	various	occasionally	research

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: *Produced off-site*

[8]	If ye Indi	es, which o	radionuclides/radiopharmaceut nes and how often? sity Medical School sity	ticals to other institutions?	Yes
[9]	Is m	nedical rese	arch/diagnosis carried out on s	ite/off site?	Off site
	If o	n sıte, indic	ate imaging devices available r	number	
[10]	* Ga * Si * Po	ositron Emi	era n Tomography (SPET) ssion Tomography (PET)		V
[10]	a. b.	•	engaged in nuclear reaction cro pe of nuclear data do you use?		Yes
		- - -	Reaction cross sections Thick target yields Decay data	Yes Yes	
[11]	Doe	es your insti	tute accept IAEA research fell	ows for training/experience?	Yes

- Postal Address: 550 N. University Blvd. (UH 0028) Indianapolis IN 46202 Telephone: 1-317-2743412 Fax/E-mail: 1-317-2743475 [2] Person in-charge: Bruce H. Mock (Title/Position) Associate Professor of Radiology Other senior staff: Gary Hutchias; G. Keith Mulholland
- Type of cyclotron: [3] Negative Ion Manufacturer: CTI Model: RDS-112 Year: (i) of installation: 1992
  - (ii) of any major reconstruction:
- Particle beams available: [4]

[1]

Institute:

	¹ H ² H	He	⁴ He	<b>Dual Beams</b>
Beam energies/Range (MeV)	11			yes
Typical currents int (µA)	n/a			
Employed ext (µA)	20 - 40			

50 Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

15

5

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
<i>"C</i>	14 _{N2}	35	15 per week	
N	H ₂ O	2	4 per week	
150	$^{15}N_2$ (>98%)	8	20 per week	
¹⁸ F	$H_2^{18}O(>90\%)$	21	8 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹¹C-Acetate, ¹¹C-Hydroxy Ephedrine ¹⁵O-Water ¹³N-Ammonia
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?
   ¹⁸F-Fluoride 1-10 times per month

[9]	Is medical research/diagnosis carried out on site/off site?			On site
	If on s	site, indicate imaging devices availabl	e number	
	* 511	KeV SPET	2	
	* Gan	nma camera	4	
	* Sing	gle Photon Tomography (SPET)	9	
		tron Emission Tomography (PET)	2	
[10]	а.	Are you engaged in nuclear reaction	cross-section measurements?	No
	b.	Which type of nuclear data do you us	;e?	
		- Reaction cross sections		
		- Thick target yields	Yes	
		- Decay data	Yes	
[11]	Does	your institute accept IAEA research f	ellows for training/experience?	Yes

[1]	Institute: Postal Address:	University of Iowa PET Imaging Centre Iowa City, IA 52242
	Telephone: Fax/E-mail:	1-319-3564100 1-319-3536512; richard-hichwa@uiowa.edu
[2]	Person in-charge: (Title/Position)	Prof. Richard D. Hichwa Director
	Other senior staff:	G. Leonard Watkins; Laura Boles Ponto Mark T. Madsen
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion, Sector-focused, Resistive Magnet Scanditronix MC-17 F
	Year: (i) of installation: (ii) of any major reconstruction:	1990 Redesign of software display and control Replacement of manual operations with fully automated functions

[4] Particle beams available:

	· · · <b>II</b> · · · ·	<b>4</b>	³ He	He	Dual Beams
Beam energies/Range (MeV)	18	7.3 (fixed energy)			
Typical currents int (µA)	1-70	1-70			
Employed ext (µA)	25-50 100 max	10-15 100 max			

Hours per week machine is in operation (excluding maintenance): > 40

Hours per week employed in radionuclide production: 20 - 30

Hours per week machine maintenance:

< 1 target maintenance 1 per year

Additional applications of the cyclotron:

We produce radioactive sources for various detector experiments in conjunction with the high energy physics group

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}C$	$^{14}N_2(+0.1\%O_2)$	92.5	1-2 per week	
150	$^{14}N_2 (+1\%O_2)$	7.4	5-7 per week	
78 _F	$H_2^{18}O(97\%)$	22	5 per week	H ₂ ¹⁸ O recovered
48 _V	^{nat} Ti	0.37	l per week	PIN source to replace [ ⁶⁸ Ge] in tomograph

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹⁵O-Oxygen
   ¹⁵O-Water,
   ¹⁵O-Carbon Monoxide,
   ¹⁶C-Carbon Dioxide
   ¹¹C-Methionine,
   ¹¹C- Acetate,
   ¹¹C-Carbon Monoxide,
   ¹¹C-Carbon Dioxide,
   ¹¹C-receptor ligands of various types
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often? Not at present. We are considering delivery of ¹⁸F-FDG to other hospitals. Much depends on a positive financial analysis of this operation, and FDA (US federal government food and drug administration) approval of FDG for routine clinical imaging

Medical

research/ diagnosis

[9] Is medical research/diagnosis carried out on site/off site? These activities occur on site

If on site, indicate imaging devices available number

- * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 1 [10] a. Are you engaged in nuclear reaction cross-section measurements? Yes Which type of nuclear data do you use? b. Yes Reaction cross sections Yes Thick target yields -Decay data No
  - [11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	Massachusetts General Hospital Department of Radiology Boston, MA 02114
corre	Telephone: Fax/E-mail: sia@PETN6.MGH.Harvard.Edu	1-617-7268336 1-617-7265123;
[2]	Person in-charge: (Title/Position)	John A. Correia
	Other senior staff:	John Babich; Eli Livni Alan Fishman
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion Scanditronix MC-17 F
	Year: (i) of installation: (ii) of any major reconstruction:	1989 Older Allis Chalmers Cyclotron Replaced in 1989

[4] Particle beams available:

	H,	<b>H</b>	³ He _.	⁴He	Dual Beams
Beam energies/Range (MeV)	18	8.5			
Typical currents int (µA)					
Employed ext (µA)	15 - 50				

6

Hours <b>j</b>	per week	machine i	s in	operation	(excluding	maintenance):	40
----------------	----------	-----------	------	-----------	------------	---------------	----

Hours per week employed in radionuclide production: 34

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	$1^{4}N_{2} + 1\%O_{2}$	54	4 per week	
¹³ N	CO ₂	1.6	10 per week	
¹³ N	$haiH_2O$	35	6 per week	
¹⁵ O ₂	$N_2 + 1\% O_2$	8	20 per week	
78 _F	$H_2^{18}O(96+\%)$	35	5 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:  $^{18}F$ -FDG  $^{18}N_2$ ,  $^{13}N$ -Ammonia  $^{18}F$   $^{15}O$ -Water,  $^{15}O$ -Oxygen,  $^{15}O$ -Carbon Dioxide  $^{11}C$  receptor ligands  $^{18}F$  receptor ligands Do you supply radionuclides/radiopharmaceuticals to other institutions? No [8] If yes, which ones and how often? [9] Is medical research/diagnosis carried out on site/off site? Yes. On site If on site, indicate imaging devices available number * 511 KeV SPET 1 * Gamma camera 1 * Single Photon Tomography (SPET) 1 * Positron Emission Tomography (PET) 1 Are you engaged in nuclear reaction cross-section measurements? No [10] a. Which type of nuclear data do you use? b. Reaction cross sections Yes -Thick target yields Yes -Decay data Yes -[11] Does your institute accept IAEA research fellows for training/experience? Yes

USA-29

[1]	Institute: Postal Address:	Johns Hopkins Medical Institutions Division of Nuclear Medicine PET Center 600 North Wolfe Street, Tower B1-167 Baltimore, MD 21287-0816
	Telephone: Fax/E-mail:	1-410-9552916 1-410-9550691; robert-dannals@tracer.nm.jhu.edu
[2]	Person in-charge: (Title/Position)	Dr. Robert F. Dannals
	Other senior staff:	Hayden T. Ravert; John L. Musachio William B. Mathews
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion Scanditronix RNP-16
	Year: (i) of installation: (ii) of any major reconstruction:	1981

[4] Particle beams available:

	H	211	³ He	He	Dual Beams
Beam energies/Range (MeV)	16	8			
Typical currents int (µA)	100	50			
Employed ext (µA)	50	25			

20

4

Hours per week machine is in operation (excluding maintenance): 60

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

357

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	14N	40	5 per day	
150	¹⁴ N/O ₂	8	10 per week	
<i>18</i> F		8	2 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹¹C-Carfertanil, ¹¹C-McN 5652, ¹¹C-Raclopride, ¹¹C-WIN 35,428 ¹⁵O water ¹⁸F FDG
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?
- Yes [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) 5 * Positron Emission Tomography (PET) 1 [10] a. Are you engaged in nuclear reaction cross-section measurements? No Which type of nuclear data do you use? b. Reaction cross sections -Thick target yields --Decay data [11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	National Institute of Drug Abuse (NIDA) Brain Imaging Centre 5500 Nathan Shock Drive Baltimore, MD 21224
	Telephone: Fax/E-mail:	1-410-5502911 1-410-5501441 / 550 2914
[2]	Person in-charge: (Title/Position)	Dr. Edythe D. London Director
	Other senior staff:	Jonathan Links; Andrew Horti; Lloyd Weyl; Varughese Kurian; Morgan Stratton; Jeffrey Banta
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 111
	Year: (i) of installation: (ii) of any major reconstruction	1997
<b>.</b>		

[4] Particle beams available:

	H	A	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	11				
Typical currents int. (µA)					
Employed external (µA)	50				

Hours per week machine is in operation (excluding maintenance): Installation underway

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

#### Others:

Radiochemistry labs under construction

USA-30

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹¹ C	$^{14}N_2 + 2.5\% ^{16}O_2$		· · · <b>_</b> ····	
¹⁵ 0	$^{14}N_2 + 2.5\% {}^{16}O_2$			
¹⁸ F	$H_2^{18}O(>96\%)$			
¹⁸ F	¹⁸ O ₂ (96%)			

- [6] Radionuclides planned to be produced in the near future: *As listed above*
- [7] Major radiopharmaceuticals produced:

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?	No
[9]	Is medical research/diagnosis carried out on site/off site?	On site
	If on site, indicate imaging devices available number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	

[11] Does your institute accept IAEA research fellows for training/experience?

[1] Institute: Postal Address:

> Telephone: Fax/E-mail:

[2] Person in-charge: (Title/Position)

Other senior staff:

[3] Type of cyclotron: Manufacturer: Model: National Institute of Health Bldg. 10, Rm 1C401, MSC 1180 Bethesda, MD 20892

1-301-4960345 1-301-4023521; paul@nmdhst.cc.nih.gov

William Eckelman Chief PET Department

Paul S. Plascjak

Fixed Energy Compact The Cyclotron Corporation CS 30

Year: (i) of installation: (ii) of any major reconstruction: 1985

[4] Particle beams available:

	H 3		* ³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	26.5	14.8	38.1	29.6	
Typical currents int (µA)	200	300	135	90	
Employed ext (µA)	60	100	60	40	

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Cyclotrons used primarily for PET radionuclide production

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

72 6 days per week

 $\sim$  35 hours for radionuclide production

4
Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}C$	N ₂	3-75	2-6 per week	
13 _N	H ₂ O	1-2	3-5 per week	
¹⁵ O	N ₂	~ 1/min	2-3 per day	
¹⁸ F	Ne	1-15	2-5 per week	
¹⁸ F	¹⁸ O (95%)	15-30	2-3 per week	
211At	Bi	0.5-1.5	~ 3 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁵O-Water
   ¹⁸F-DOPA, ¹⁸F-FPrTZTP, ¹⁸F-FDG
   ¹³N-Ammonia
   ¹¹C-Raclopride, 6-¹⁸F-Cyclofoxy, ¹¹C-Palmitic Acid, ¹¹C-Arachidonic acid
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?
   ¹⁸FDG provided to 1 centre 1 per week

[9]	Is me	dical rese	arch/diagnosis carried out on s	ite/off site?	Yes Research/ diagnosis on site
	If on	site, indic	ate imaging devices available i	number	
	* 511	KeV SPI	ET		
	* Gar				
	* Sin				
	* Positron Emission Tomography (PET) 3				
[10]	a. Are you engaged in nuclear reaction cross-section measurements?			oss-section measurements?	No
	b.	Which ty	vpe of nuclear data do you use?	•	
		-	Reaction cross sections	Yes	
		-	Thick target yields	Yes	
		-	Decay data	Yes	
[11]	Does	your inst	tute accept IAEA research fell	ows for training/experience?	No

[1] Institute: Postal Address:

Bethesda, MD 20892

William Eckelman

Paul S. Plascjak

Chief, PET Department

National Institute of Health

Bldg. 10, Rm 1C401, MSC 1180

 Telephone:
 1-301-4960345

 Fax/E-mail:
 1-301-4023521; paul@nmdhst.cc.nih.gov

[2] Person in-charge: (Title/Position)

Other senior staff:

[3] Type of cyclotron: Manufacturer: Model: Fixed Energy Compact Japan Steel Works Ltd. JSW-1710

Year: (i) of installation: (ii) of any major reconstruction:

[4] Particle beams available:

Γ	H	<b>2</b> H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	17.5	9.8			
Typical currents int (µA)	150	150			
Employed ext (µA)	50	50			

1985

Hours per week machine is in operation (excluding maintenance):

72 6 days per week

~ 35

4

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Cyclotrons used primarily for PET radionuclide production

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBg) per batch	Frequency	Comments
¹¹ C	N ₂	3-75	2-6 per week	
<i>13</i> N	H ₂ O	1-2	3-5 per week	
	N ₂	~ 1/min	2-3 per day	
¹⁸ F	Ne	1-15	2-5 per week	
<i>18</i>	¹⁸ O (95%)	15-30	2-3 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁵O-Water
   6-¹⁸F-DOPA, 6-¹⁸F-dopamine, ¹⁸F-FPrTZTP, ¹⁸F-FDG
   ¹³N-Ammonia
   ¹¹C-Raclopride, 6-¹⁸F-Cyclofoxy, ¹¹C-Palmitic Acid, ¹¹C-Arachidonic acid
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?
   ¹⁸F FDG provided to 1 centre 1 per week

Is medical research/diagnosis carried out on site/off site? On site [9] If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 3 Are you engaged in nuclear reaction cross-section measurements? No [10] a. Which type of nuclear data do you use? b. Reaction cross sections Yes Thick target yields Yes _ Decay data Yes _

[11] Does your institute accept IAEA research fellows for training/experience? No

University of Michigan

Ann Arbor, MI 48109-0552

Prof. Michael R. Kilbourn

Director, PET Chemistry

Dr. Robert Koeppe Mr. James Moskwa

3480 Kresge III

1-313-7639244

1-313-7640288

[1] Institute: Postal Address:

> Telephone: Fax/E-mail:

[2] Person in-charge: (Title/Position)

Other senior staff:

[3] Type of cyclotron: Manufacturer: Model: Medical The Cyclotron Corporation CS-30

4

Year: (i) of installation: (ii) of any major reconstruction:

[4] Particle beams available:

Γ		H.	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	26.0	15.0	38.0	30.0	
Typical currents int (µA)	200	300	100	90	
Employed ext (µA)	30	30	50	40	

1982

Hours per week machine is in operation (excluding maintenance):	15
Hours per week employed in radionuclide production:	12

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	$I^4 N_2$	90	25 per week	
$^{13}N$	1º0	12	> 10 per week	
130	100	12	> 30 per week	
¹⁸ F	$H_2^{18}O(90-97\%)$	15	5 per week	
⁶² Zn	Zn	< 1	2 per week	

[6] Radionuclides planned to be produced in the near future:

[7]	Major radiopharmaceuticals produced: ¹⁸ F-FDG ¹¹ C-Epinephrine, ¹¹ C-Pseudophedrine, ¹¹ C-Dihydiotetabenazine ¹¹ C-Acetate, ¹¹ C-N-methylpiperidinylbenzilate, ¹¹ C-Cartentanil ¹¹ C-Flumazenil (FMZ), ¹¹ C-Raclopride, ¹¹ C-Hydroxyephedrine (HED) ¹⁵ O-Water ¹³ N-Ammonia	
[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?	No
[9]	Is medical research/diagnosis carried out on site/off site?	On site
	If on site, indicate imaging devices available number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> <li>3</li> </ul>	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	

[11] Does your institute accept IAEA research fellows for training/experience?

[1]	Institute: Postal Address:	Gershenson Radiation Oncology Centre Harper Hospital and Wayne State University 3990 John R Detroit, MI 48201
	Telephone: Fax/E-mail:	1-313-7452487 1-313-7452314; maughanr@kci.wayne.edu
[2]	Person in-charge: (Title/Position)	Dr. Richard L. Maughan
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	50 MeV Deuteron Superconducting Cyclotron Michigan State University K100-Harper
	Year: (i) of installation: (ii) of any major reconstruction:	1990

[4] Particle beams available:

Γ		³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	48.5			
Typical currents int (µA)	15			
Employed ext (µA)	internal Be			
(μΑ)	. target			

Hours per week machine is in operation (excluding maintenance):  $\sim 60$ 

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Radiotherapy - Neutrons Radiobiology and Physics studies for neutron radiation therapy and boron neutron capture enhanced fast neutron therapy

Radiotherapy/Activation Analysis/Radiobiology/Physics: We are making neutron spectrum measurements

Others:

no scheduled maintenance during day

USA-34

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:

[8]	-		radionuclides/radiopharmaceu nes and how often?	ticals to other institutions?	No
[9]	Is me	dical rese	arch/diagnosis carried out on s	ite/off site?	No
	If on	site, indic	ate imaging devices available	number	
	* Gai * Sin				
[10]	a. b.	•	engaged in nuclear reaction cro pe of nuclear data do you use?		No
		- - -	Reaction cross sections Thick target yields Decay data	Yes Yes Yes	
[11]	Does	your insti	tute accept IAEA research fell	ows for training/experience?	Yes

[1]	Institute: Postal Address:	Childrens Hospital of Michigan PET Center 3901 Beaubien Blvd Detroit, MI 48201
	Telephone: Fax/E-mail:	1-313-9932618 1-313-9933845; tmangner@PET.wayne.edu
[2]	Person in-charge: (Title/Position)	Dr. Harry T. Chugani Director, PET Center
	Other senior staff:	Thomas J. Mangner, Otto Muzik, Diane Chugani, Marcel DiCarli, Dulak Chakraborty
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation:	Negative Ion CTI RDS-112 1993
	(ii) of any major reconstruction:	

[4] Particle beams available:

Γ	H I	² H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	11				yes
Typical currents int (µA)	100				
Employed ext (µA)	20 - 40				

4

Hours per week machine is in operation (excluding maintenance):	40
Hours per week employed in radionuclide production:	20 - 24

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}C$	$1^{4}N_{2} + 1\%^{16}O_{2}$	60	5-10 per week	
¹³ N	$H_2^{16}O$	1-2.5	5-10 per week	
<i>15</i> 0	$^{15}N_2(99\%) + ^{16}O_2$	1-3.5	10-15 per week	
¹⁸ F	$H_2^{18}O$	23	4-5 per week	

- [6] Radionuclides planned to be produced in the near future:
- Major radiopharmaceuticals produced: [7] ¹⁸F-FDG ¹⁵O-Water ¹³N-Ammonia ¹¹C-Acetate, ¹¹C-Flumazenil, ¹¹C-m-Hydroxyephedrine (HED), 2- ¹¹C-Thymidine, ¹¹C- $\alpha$ -Methyl-L-Tryptophane Do you supply radionuclides/radiopharmaceuticals to other institutions? No [8] If yes, which ones and how often? Is medical research/diagnosis carried out on site/off site? No [9] If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 1 Are you engaged in nuclear reaction cross-section measurements? No [10] a. b. Which type of nuclear data do you use? Reaction cross sections Yes Yes Thick target yields _ _ Decay data Yes [11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	National Superconducting Cyclotron Laboratory Michigan State University South Shaw Lane East Lansing, MI 48824-1321
	Telephone: Fax/E-mail:	1-517-3559671 1-517-3535967
[2]	Person in-charge: (Title/Position)	Dr. CK. Gelbke Director
	Other senior staff:	Peter S. Miller
[3]	Type of cyclotron: Manufacturer: Model:	Superconducting Magnet Cyclotron In-house
	Year: (1) of installation: (ii) of any major reconstruction:	1977-1981
[4]	Particle beams available: * ¹⁶ O ⁴⁺ 15 MeV/nucleon, ¹²⁹ Xe ²²⁺	1996-1998

ſ	L.	H	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)					
Typical currents int (µA)					
Employed ext (µA)					

* Bending limit 520q²/A² MeV/nucleon Focusing limit 160 q/A MeV/nucleon

Hours per week machine is in operation (excluding maintenance): Under reconstruction

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

10 MeV/nucleon for example

Additional applications of the cyclotron: *Injectior to 1200 Cyclotron* 

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments

[6] Radionuclides planned to be produced in the near future:

- [7] Major radiopharmaceuticals produced: Radiopharmaceutical Production is not planned
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

# [10] a. Are you engaged in nuclear reaction cross-section measurements? Yes b. Which type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	National Superconducting Cyclotron Laboratory Michigan State University South Shaw Lane East Lansing, MI 48824-1321
	Telephone: Fax/E-mail:	1-517-3559671 1-517-3535967
[2]	Person in-charge: (Title/Position)	Dr. CK. Gelbke Director
	Other senior staff:	Peter S. Miller
[3]	Type of cyclotron: Manufacturer: Model:	Superconducting Magnet Cyclotron In-house
	Year: (i) of installation: (ii) of any major reconstruction:	1980-1987 1996-1998
[4]	Particle beams available:	

[4] Particle beams available: * Any stable isotope  $A \ge 2$ 

	 H	- <b>10</b>	**** ****	³ He	He ,	Dual Beams
Beam energies/Range (MeV)						
Typical currents int (µA)						
Employed ext (µA)						

* Bending limit  $1200 q^2/A^2$  MeV/nucleon Focusing limit 400 q/A MeV/nucleon

Hours per week machine is in operation (excluding maintenance): 156

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

12

Additional applications of the cyclotron: Production of radioactive nuclear beams by nuclear fragmentation process

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹¹ Li (700 MeV)	Ве	2500 part./sec		
²⁰ Mg (1300 MeV)	Be	3.5 part./sec		
⁴⁰ Cl (2200 MeV)	Be	1.6x106 part/sec		

- [6] Radionuclides planned to be produced in the near future:  ${}^{36}Ca, {}^{56}Ni$
- [7] Major radiopharmaceuticals produced:
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often?
   We supply beams of radionuclides to users, many from other institutions
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements? Yesb. Which type of nuclear data do you use?

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	William Beaumont Hospital 3601 West 13 Mile Road Royal Oak, MI 48083
	Telephone: Fax/E-mail:	1-248-5511211 1-248-5510768
[2]	Person in-charge: (Title/Position)	Dr. Ram B. Sharma
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction	1991
[4]	Particle heams available.	

[4] Particle beams available:

ſ		He	⁴ He	,Dual Beams
Beam energies/Range (MeV)	11			yes
Typical currents int. (µA)	20 - 40			
Employed external (µA)	20 - 40			

Hours per week machine is in operation (excluding maintenance):	10 - 15

Hours per week employed in radionuclide production: 10 - 15

Hours per week machine maintenance: 2 - 4

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

USA-38

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	14N2	10	0 - 2 per week	
⁻⁷³ N	$H_{2}O + MeOH$	1	5 - 10 per week	
⁻¹⁵ O	$^{13}N_2:O_2$ (39:1)	7	10-15 per week	
¹⁸ F	$H_2^{18}O(97)$	16	5 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹³N-Ammonia
   ¹¹C-Acetate
   ¹⁵O-Water
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

On site [9] Is medical research/diagnosis carried out on site/off site? If on site, indicate imaging devices available number * 511 KeV SPET 1 * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 1 [10] a. Are you engaged in nuclear reaction cross-section measurements? No b. Which type of nuclear data do you use? Reaction cross sections -Thick target yields -Decay data -[11] Does your institute accept IAEA research fellows for training/experience? No

- [1] Institute: VA Medical Centre (11P) Postal Address: 1 Veterans Drive Minneapolis, MN 55417 Telephone: 1-612-7252230 Fax/E-mail: 1-612-725-2068 Person in-charge: [2] Dr. D. Rottenberg (Title/Position) Director Other senior staff: Munawwar Sajjad; Rashid Syed Carroll Arnett; E. Akgün Type of cyclotron: [3] Positive Ion Manufacturer: Scanditronix Model: MC-40 Year: (i) of installation: 1985 (ii) of any major reconstruction:
- [4] Particle beams available:

Γ	H.	a de la companya de l	He	He	Dual Beams
Beam energies/Range (MeV)	40	20			
Typical currents int (µA)					
Employed ext (µA)	25	35			

32

6

Trouis per week machine is in operation (excluding manifeliance).	Hours per week machine	is in operation (	(excluding maintenance):	32
-------------------------------------------------------------------	------------------------	-------------------	--------------------------	----

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}C$	$^{14}N_2$	11.0	1 per week	
13 _N	$H_2^{16}O$	2.0	4 per week	
<i>ISO</i>	¹⁴ N ₂	18.5	50 per week	
18 _F	H ₂ ¹⁸ O (97%)	15.0	4 per weel	H ₂ ¹⁸ O recovered
¹⁸ F	²⁰ Ne	11.0	1 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG, ¹⁸F-DOPA, ¹⁸F-Fluorobenzytrozomicol
   ¹³N-Ammonia
   ¹⁵O-water
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	9] Is medical research/diagnosis carried out on site/off site?		
	If on site, indicate imaging devices available	number	
	* 511 KeV SPET		
	* Gamma camera		
	* Single Photon Tomography (SPET)		
	* Positron Emission Tomography (PET)	1	
[10]	a. Are you engaged in nuclear reaction c	ross-section measurements?	No
	b. Which type of nuclear data do you use	?	
	- Reaction cross sections	Yes	
	- Thick target yields	Yes	
	- Decay data	Yes	
[11]	Does your institute accept IAEA research fe	llows for training/experience?	Yes

[1]	Institute: Postal Address:	Saint Louis University Hospital PET Imaging Department 3635 Vista Avenue St. Louis, MO 63110
	Telephone: Fax/E-mail:	1-314-5778801 1-314-2685486
[2]	Person in-charge: (Title/Position)	Dr. Ranajit K. Bera Assistant Professor
	Other senior staff:	Val Lowe; James W. Fletcher
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction	1991

[4] Particle beams available:

	<b>H</b> ۳	<b>2</b> H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11				
Typical currents int. (µA)					
Employed external (µA)	20 - 40				

Hours per week machine is in operation (excluding maintenance):	36
Hours per week employed in radionuclide production:	13

Hours per week machine maintenance: 1.5

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹³ N	^{I3} C	1	4 per week	¹³ C Recovered
150	¹⁵ N ₂	10	4 per month	
78 _F	$H_2^{18}O$ (>95%)	30	8-10 per week	H ₂ ¹⁸ O Recovery

- [6] Radionuclides planned to be produced in the near future:  ${}^{11}C$
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG, ¹⁵O-Water ¹³N- Ammonia
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

# [10] a. Are you engaged in nuclear reaction cross-section measurements? Nob. Which type of nuclear data do you use?

1

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience? No

[1]	Institute: Postal Address:	Creighton University PET Center 901 Dorcas Street Omaha, NE 88106
	Telephone: Fax/E-mail:	1-403-3464181
[2]	Person in-charge: (Title/Position)	Marc Wrichelt Manager
	Other senior staff:	Steve Torres
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction:	1989

[4] Particle beams available:

Γ	ц,	² H	³ He	⁴ He	<b>Dual Beams</b>
Beam energies/Range (MeV)	11	*******			yes
Typical currents int (µA)					
Employed ext (µA)	20 - 40				

2

Hours per week machine is in operation (excluding maintenance):  $\sim 7$ 

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

RadionuclideTarget MaterialProduced(enrichment)		Activity (GBq) per batch	Frequency	Comments
¹⁸ F	$H_2^{18}O$	13	5 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:  ${}^{18}F$ -FDG

[8]	If y	you supply radionuclides/radiopharmaceuticals to other institutions? es, which ones and how often? FDG	Yes
[9]		nedical research/diagnosis carried out on site/off site? n site, indicate imaging devices available number	Off site
	* 51	1 KeV SPET	
	* G	amma camera	
	* Si	ngle Photon Tomography (SPET)	
	* Po	ositron Emission Tomography (PET)	
[10]	a.	Are you engaged in nuclear reaction cross-section measurements?	No

- b. Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
  - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

[1]	Institute: Postal Address:	Medi-Physics, Inc. Amersham Healthcare 900 Durham Ave. South Plainfield, NJ 07080
	Telephone: Fax/E-mail:	1 <b>-9</b> 08-7570500
[2]	Person in-charge: (Title/Position)	Gordon Glass Site Administration Manager
	Other senior staff:	William McClain
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion, Azimuthally Varying Field, Isochronous The Cyclotron Corporation CS-22
	Year: (i) of installation: (ii) of any major reconstruction	1973

[4] Particle beams available:

	L H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	Proprietary			
Typical currents int. (µA)				
Employed external (µA)				

Hours per week machine is in operation (excluding maintenance): Proprietary information

USA-42

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
Proprietary				
information				

- [6] Radionuclides planned to be produced in the near future: *Proprietary Information*
- [7] Major radiopharmaceuticals produced: ⁶⁷Ga ²⁰¹Tl ⁸¹Rb

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions?	Yes
	If yes, which ones and how often?	
	Proprietary Information	

[9]	Is medical research/diagnosis carried out on site/off site?	No
	If on site, indicate imaging devices available number	
[10]	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> <li>a. Are you engaged in nuclear reaction cross-section measurements?</li> <li>b. Which type of nuclear data do you use?</li> </ul>	No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	
[11]	Does your institute accept IAEA research fellows for training/experience?	No

[1]	Institute: Postal Address:	Medi-Physics,Inc. Amersham Healthcare 900 Durham Avenue South Plainfield, NJ 07080
	Telephone: Fax/E-mail:	1-908-7570500
[2]	Person in-charge: (Title/Position)	Gordon Glass Site Administration Manager
	Other senior staff:	Willian McClain
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion, Fixed Field, Fixed Frequency Variable Energy IBA Cyclone 30
	Year: (i) of installation: (ii) of any major reconstruction	1989

[4] Particle beams available:

	¹ H #	<b>H</b>	³ He	He	-Dual Beams
Beam energies/Range (MeV)	Proprietary				
Typical currents int. (µA)					
Employed external (µA)					

Hours per week machine is in operation (excluding maintenance): Proprietary information

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
proprietary				
information		· · · · · · · · · · · · · · · · · · ·		

- [6] Radionuclides planned to be produced in the near future: *Proprietary Information*
- [7] Major radiopharmaceuticals produced: ⁶⁷Ga ²⁰¹Tl ¹Rb
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often? Proprietary Information

[9]	Is medical research/diagnosis carried out on site/off site?	No
	If on site, indicate imaging devices available number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	
[10]	a. Are you engaged in nuclear reaction cross-section measurements?	No
	b. Which type of nuclear data do you use?	
	- Reaction cross sections	
	- Thick target yields	
	- Decay data	
[11]	Does your institute accept IAEA research fellows for training/experience?	No

[1]	Institute: Postal Address:	Columbia Presbyterian Medical Centre Milstein Hospital Building 622 W. 168th Street New York, NY 10032
	Telephone: Fax/E-mail:	1-212-3058815
[2]	Person in-charge: (Title/Position)	Jerry Strugala Manager
	Other senior staff:	Tom Boland; Michael Sanfilippo
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction	1992
5 43		

[4] Particle beams available:

	H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11			yes
Typical currents int. (µA)				
Employed external (µA)	20 - 40			

25

~ 1

Hours per week machine is in operation (excluding maintenance): 2	on (excluding maintenance): 25
-------------------------------------------------------------------	--------------------------------

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
"С	14N	37	5-7 per week	
13 _N	H ₂ O/EtOH	~ 2.2	l per week	
¹⁵ 0	¹⁵ N	~ 7.4	15 per week	
¹⁸ F	$H_2^{18}O(97\%)$	~ 30	2 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹³N-Ammonia ¹¹C-Methionine ¹⁵O-Water Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes [8] If yes, which ones and how often? ¹⁸F FDG to 15 external institutions 5 times per week Is medical research/diagnosis carried out on site/off site? Both [9] If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 1 Are you engaged in nuclear reaction cross-section measurements? No [10] a. b. Which type of nuclear data do you use? Reaction cross sections --Thick target yields
  - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

Yes

[1]	Institute: Postal Address:	North Shore University Hospital Research Department - Cyclotron / PET Facility 350 Community Drive Manhasett, NY 11021
	Telephone: Fax/E-mail:	1-516-5621055 1-516-5621120; rdahl@nshs.edu
[2]	Person in-charge: (Title/Position)	Dr. J. Robert Dahl
	Other senior staff:	Thomas Chaly
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion Scanditronix MC-17F
	Year: (i) of installation: (ii) of any major reconstruction	1987
F 47		

[4] Particle beams available:

	¹ H		³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	17.5	8.75		17.5 Planned	
Typical currents int. (µA)	180	180			
Employed external (µA)	30 - 40	30 - 40			

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Radionuclide Production Development

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

av. 20 on target

av. 20

4 plus 2weeks each year for periodic maintanence

USA-45

- Radionuclide **Target Material** Activity (GBq) Frequency Comments Produced (enrichment) per batch  $^{T}C$  $N_2 + 0.1 \% O_2$ 50 2 per week  $T^3N$  $H_2^{16}O$  (natural) 2 - 3 occasionally 150  $N_2 + 1 \% H_2$ 15 per run 2 per week  $^{18}F$ H218O (96 %)  $H_2^{18}O$  recovered 33 4 per week  $^{18}F$ 18F-F,  $Ne + 0.3 \% F_{2}$ 1 per week 11
- [5] Radionuclides produced:

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸FDG, ¹⁸F-6-FDOPA, ¹⁸F-β-CIT, ¹⁸F-OMD, ¹⁸F-Dopamine,
   ¹¹C-Raclopride
   ¹⁵O-Water
   ¹³N-Ammonia

Thick target yields

Decay data

•

_

- Yes Do you supply radionuclides/radiopharmaceuticals to other institutions? [8] If yes, which ones and how often? Only to research collaborators with continuing joint projects [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number * 511 KeV SPET 1 * Gamma camera 1 * Single Photon Tomography (SPET) 1 * Positron Emission Tomography (PET) 1 No Are you engaged in nuclear reaction cross-section measurements? [10] a. Which type of nuclear data do you use? b. Reaction cross sections Yes _
- [11] Does your institute accept IAEA research fellows for training/experience? Yes

Yes

Yes

[1]	Institute: Postal Address:	State University of New York at Buffalo Department of Nuclear Medicine 105 Parker Hall 3435 Main Street Buffalo, NY 14214-3007
	Telephone:	1-716-8385889
	Fax/E-mail:	1-716-8384918; fred@nucmed.buffalo.edu
[2]	Person in-charge:	Robert E. Ackerhalt
	(Title/Position)	Chairman & Director of the Cyclotron Facility
	Other senior staff:	Michael S. Haka
[3]	Type of cyclotron:	Negative Ion
	Manufacturer:	IBĂ
	Model:	Cyclone 30
	Year: (i) of installation: (ii) of any major reconstruction:	1992
[4]	Particle beams available:	

	¹ H	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	15 - 30				
Typical currents int (µA)	0 - 450				
Employed ext (µA)					

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: PET Isotopes 8 typical / 164 available

8 typical

~4

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	N ₂	118	1 per week	
	$H_2^{16}O(I)$	7.5 - 15	1-2 per week	in target
150	$H_2^{16}O(g)$	23	1-2 per week	each run = 7 doses
¹⁸ F	H ₂ ¹⁸ O (96%)	23	4-5 per week	enriched water recovery
⁶² Cu, ⁶² Zn	^{63,65} Cu	966	l per week	

- [6] Radionuclides planned to be produced in the near future:  $^{103}Pd$
- [7] Major radiopharmaceuticals produced:
   ¹⁸F -FDG
   ¹³N-Ammonia
   ¹⁵O-Water
   ¹⁵O-Carbon Dioxide

 [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often? ¹⁸F-FDG VA daily ¹³N Ammonia weekly ¹⁸F-FDG MFH-3-4 times/week Roswell 1per week Biomedical Research 1-2 per week

[9]	Is medical research/diagnosis carried out on s	Off site	
	If on site, indicate imaging devices available	number	
	* 511 KeV SPET	1	
	* Gamma camera	15	
	* Single Photon Tomography (SPET)	22	
	* Positron Emission Tomography (PET)	3	
[10]	a. Are you engaged in nuclear reaction cr	oss-section measurements?	No
	b. Which type of nuclear data do you use	?	
	- Reaction cross sections		
	- Thick target yields		
	- Decay data		
[11]	Does your institute accept IAEA research fel	lows for training/experience?	Yes

- [1] Institute: Memorial Sloan-Kettering Cancer Centre Postal Address: 1275 York Avenue New York. NY 10021 Telephone: 1-212-6397398 Fax/E-mail: 1-212-7173263 [2] Person in-charge: Ronald Finn (Title/Position) Director, Cyclotron Facility Other senior staff: Yiauchung Sheh Vincent Bui Isochronous, Aximuthally Varying-Field, Positive Ion [3] Type of cyclotron: Manufacturer: The Cyclotron Corporation Model: CS-15 Year: (1) of installation: 1967 (11) of any major reconstruction: 1988-90, replacement of main magnet coils; replacement of target station
- [4] Particle beams available:

H . He ⁴He **Dual Beams** Ħ Beam energies/Range 14.7 7.9 23.2 15.0 (MeV) Typical currents int > 100 > 125 > 120 > 100 (µA) Employed ext 15-20 20-30 5-15 10 (µA)

Hours per week machine is in operation (excluding maintenance):

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Nuclear medicine support and research

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others.

393

**USA-47** 

4 days

Research clinical 3/1 days

0.5 day

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}C$	N ₂	7.4	1-2 per week	
^{IS} O	N ₂	0.1	0.5 day per week	
$^{N8}F$	$H_2^{18}O(96\%)$	7.4	4-6 per week	
⁶⁶ Ga	⁶⁶ Zn (90%0		as required	
88 Y	⁸⁶ Sr (95%)		as required	

- [6] Radionuclides planned to be produced in the near future:  $^{94m}Tc$ ,  $^{48}V$
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹⁵O-Water
   ¹¹C-Methionine
   Numerous radiolabelled monoclonal antibodies
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often?
   Collaborative research programmes only

[9]	Is medical research/diagnosis carried o	ut on site/off site?	On site
	If on site, indicate imaging devices ava	ilable number	
	* 511 KeV SPET	l MCD	
	* Gamma camera	2	
	* Single Photon Tomography (SPET)	5 (+MCD)	
	* Positron Emission Tomography (PE	Γ) 1	
[10]	a. Are you engaged in nuclear read	tion cross-section measurements?	Yes
	b. Which type of nuclear data do y	ou use?	
	- Reaction cross section	ons Yes	
	- Thick target yields	Yes	
	- Decay data	Yes	
[11]	Does your institute accept IAEA resea	rch fellows for training/experience?	Yes

- [1] Institute: Brookhaven National Laboratory Postal Address: Chemistry Department, Bldg. 901 Upton, NY 11973 Telephone: 1-516-344-4397 Fax/E-mail: 1-516-344-7902; wolf@bnl.gov Person in-charge: Dr. J.S. Fowler Dr. A.P. Wolf [2] (Title/Position) Co-Director Co-Director Other senior staff: [3] Type of cyclotron: Positive Ion Manufacturer: BNL Model: 60" Year: (i) of installation: 1960 (ii) of any major reconstruction:
- [4] Particle beams available:

Γ		<b>H</b>	i i i i i i i i i i i i i i i i i i i	He	<b>Dual Beams</b>
Beam energies/Range (MeV)	34	23	56	46	
Typical currents int (µA)	300	300	200	200	
Employed ext (µA)	25	20	10	10	

Hours per week machine is in operation (excluding maintenance): 1500 µA-h on target in 1994

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Development 5% PET Isotope Production 5%

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: Basic research 95% in house / 5% external

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera

-

- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements?b. Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
    - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

- Institute: [1] Brookhaven National Laboratory Postal Address: Chemistry Department, Bldg. 901 Upton, NY 11973 1-516-344-4397 Telephone: Fax/E-mail: 1-516-344-7902; wolf@bnl.gov Dr. J.S. Fowler [2] Person in-charge: Dr. A.P. Wolf (Title/Position) Co-Director Co-Director Other senior staff: [3] Type of cyclotron: Positive Ion Manufacturer: JSW Model: 1710 1982
  - Year: (i) of installation: (ii) of any major reconstruction:
- [4] Particle beams available:

	Ľ.		³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	17	10			
Typical currents int (µA)	60	50			
Employed ext (µA)	40	30			

Hours per week machine is in operation (excluding maintenance):

6000 µA-h on target in 1994

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: PET Isotope proudction 95% Basic research 5%

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: Basic research in house 100% Applied programme in house 100%
Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
······································				

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?
- [9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera

-

- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements?b. Which type of nuclear data do you use?
  - Reaction cross sections
  - Thick target yields
    - Decay data
- [11] Does your institute accept IAEA research fellows for training/experience?

- Institute: [1] Carolinas Medical Center Postal Address: P. O. Box 32861 Charlotten NC 28232 Telephone: 1 704 3555910 Fax/E-mail: 1-704 3553629 [2] Person in-charge: Dr. Edward Easton (Title/Position) Medical Director Other senior staff: Ronald D. Borchert, David M. Coates, Michael Johnson, Andy McKusick, Kevin Larcher [3] Type of cyclotron: Negative Ion Manufacturer: CTI Model: RDS 112 Year: (1) of installation: 1991 (11) of any major reconstruction
- [4] Particle beams available:

Γ	, H ¹	<b>H</b> ²	³ He	⁴He	Dual Beams
Beam energies/Range (MeV)	11				
Typical currents int. (µA)	10-40				
Employed external (µA)	20 - 40				

3

Hours per week machine is in operation	(excluding maintenance):	10
----------------------------------------	--------------------------	----

Hours per week employed in radionuclide production: 10

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹³ N	H ₂ ¹⁶ O	2	2 per week	
¹⁸ F	H ₂ ¹⁸ O (97-98%)	30	5 per week	<u> </u>

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG, ¹⁸F-Fluoride ¹³N-Ammonia
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? *Planned* If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?			Diagnosis On site	
	If on	site, indic	cate imaging devices available 1	number	
	* 51	1 KeV SP	ET	1	
	* Ga	mma cam	era		
	* Sir	igle Photo	n Tomography (SPET)		
	* Po	sitron Emi	ission Tomography (PET)	1	
[10]	a.	Are you	engaged in nuclear reaction cro	oss-section measurements?	No
	b.	-	ype of nuclear data do you use?		
		-	Reaction cross sections	Yes	
		-	Thick target yields	Yes	
		-	Decay data	Yes	
[11]	Does	s your inst	itute accept IAEA research fell	ows for training/experience?	No

[1]	Institute: Postal Address:	Duke University Medical Centre Department of Radiology Box 3808, Durham, NC 27710
	Telephone: Fax/E-mail:	1-919-6847708 1-919-6847121; zalut001@mc.duke.edu
[2]	Person in-charge: (Title/Position)	Dr. Bruce Wieland Dr. Michael Zalutsky Director, Cyclotron Professor
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	Isochronous Fixed Field, Positive Ion The Cyclotron Corporation CS-30
	Year: (i) of installation: (ii) of any major reconstruction:	1985

[4] Particle beams available:

	Ē,	² H	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	27.6	14		28.3	
Typical currents int (µA)	120	120		100	
Employed ext (µA)	70	70		50	

Hours per week machine is in operation (excluding maintenance):	32
Hours per week employed in radionuclide production:	32
Hours per week machine maintenance:	8

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBg) per batch	Frequency	Comments
124 _I	¹²⁵ TeO ₂	0.1	4 per week	
211 At	^{nat} Bi	1	l per week	internal target

- [6] Radionuclides planned to be produced in the near future:
- Major radiopharmaceuticals produced: [7] ¹⁸F-FDG ²¹¹At-labelled antibodies Do you supply radionuclides/radiopharmaceuticals to other institutions? [8] No If yes, which ones and how often? [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 1 No [10] a. Are you engaged in nuclear reaction cross-section measurements? Which type of nuclear data do you use? b. Reaction cross sections No -Thick target yields Yes -Decay data No _ [11] Does your institute accept IAEA research fellows for training/experience? Yes

- Institute: [1] Bowman Gray School of Medicine Postal Address: Medical Centre Blvd Winston-Salem, NC 27157 Telephone: 1-910-7167461 Fax/E-mail: Person in-charge: [2] Dr. Richard L. Witcofski (Title/Position) Director Other senior staff: Richard Ehrenkaufer Henry Chilton [3] Type of cyclotron: Negative Ion Manufacturer: CTI Model: **RDS 112** Year: (1) of installation: 1991 (ii) of any major reconstruction
- [4] Particle beams available:

ſ	·,	3 4 m - H	³ He	He	Dual Beams
Beam energies/Range (MeV)	11	*			yes
Typical currents int. (µA)					
Employed external (µA)	40				

15

1

Hours per week machine is in operation (exe	cluding maintenance): 15
---------------------------------------------	--------------------------

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
^{TT} C	14N	37	l per week	
⁷⁵ 0	⁻¹⁵ N	7	6 per week	
⁷⁸ F	$H_2^{18}O(96\%)$	40	7 per week	H ₂ ¹⁸ O Recovered

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹¹C- Methionine ¹⁵O-Water Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes [8] If yes, which ones and how often? ¹⁸F-FDG Daily We will supply to other institutions beginning in June, 1997. Is medical research/diagnosis carried out on site/off site? Research & [9] diagnosis on site If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 1 Are you engaged in nuclear reaction cross-section measurements? No [10] a. Which type of nuclear data do you use? b.
  - Reaction cross sections
    - Thick target yields
    - Decay data

[11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	The Christ Hospital 2139 Auburn Avenue Cincınnatı, OH 45219
	Telephone [.] Fax/E-mail:	1-513-3698833 kemmet@healthall com
[2]	Person in-charge: (Title/Position)	Thomas G. Kemme Manager
	Other senior staff	Carla C. Pemberton
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 112
	Year: (1) of installation: (11) of any major reconstruction	1991

[4] Particle beams available:

Γ	H	³ He	4 <del>H</del> e	Dual Beams
Beam energies/Range (MeV)	11			yes
Typical currents int. (µA)				
Employed external (µA)	5 - 40			40 - 60

Hours per week machine is in operation (excluding maintenance): 40

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

5

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
	$^{14}N_2 + 2.5\% O_2$	6	1-2 per month	EOS
$^{I3}N$	$H_2O + 5mM EtOH$	1	~ 2 per week	
¹⁸ F	$\overline{H_2^{18}O}$	25	4 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹³N-Ammonia ¹¹C-Acetate
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No Not at present

If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out	t on site/off site?	Diagnosis
	If on site, indicate imaging devices avail	able number	
	* 511 KeV SPET		
	* Gamma camera	6	
	* Single Photon Tomography (SPET)	3	
	* Positron Emission Tomography (PET)	1	
[10]	a. Are you engaged in nuclear reacti	on cross-section measurements?	No
	b. Which type of nuclear data do you	ı use?	
	- Reaction cross section	s <i>No</i>	
	- Thick target yields	No	
	- Decay data	No	
[11]	Does your institute accept IAEA researc	h fellows for training/experience?	No

[1]	Institute: Postal Address:	Case Western Reserve University and University Hospitals of Cleveland Division of Radiology 11100 Euclid Avenue Cleveland, OH 44139
	Telephone: Fax/E-mail:	1-216-8447350 msb5@po.cwru.edu
[2]	Person in-charge: (Title/Position)	Marc Berridge Associate Professor
	Other senior staff:	Lei Zheng; Ken Voelker
[3]	Type of cyclotron: Manufacturer:	Scanditronix
	Model:	MC-17
	Year: (i) of installation: (ii) of any major reconstruction:	1985

[4] Particle beams available:

Г	Er, H ^r		³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	17	8			
Typical currents int (µA)			ļ	_	
Employed ext (µA)	30	40			

Hours per week machine is in operation (excluding maintenance): 25

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: PET radionuclide production exclusively

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

av. 6 (some weeks, none)

.

25

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
^{II} C	^{nat} N ₂	75	10 per week	various synthetic products
$^{13}N$	^{nat} H ₂ O	31	variable 5-35 per week	
130	$^{nat}N_2$	25	15 per week	
¹⁸ F	$H_2^{78}O$	33	6 per week	H ₂ ¹⁸ O recovery

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions?	Yes
	If yes, which ones and how often?	
	Radionuclides/radiochemicals (not radiopharmaceuticals)	
	¹⁸ F- Fluoride	
	¹³ N-Ammonia	
	¹⁸ F- FDG	

[9]	Is medical research/diagnosis carried out on site/off site?				Yes	
	If on site, indicate imaging devices available number					
	* 51	1 KeV SPE	Г	1		
	* Gamma camera			2		
	* Single Photon Tomography (SPET)			3		
	* Positron Emission Tomography (PET) 1					
[10]	a. b.	•	ngaged in nuclear reaction cro be of nuclear data do you use?		No	
		-	Reaction cross sections	Yes		
		-	Thick target yields	Yes		
		-	Decay data	Yes		

[11] Does your institute accept IAEA research fellows for training/experience?

[1]	Institute: Postal Address:	Kettering Medical Centre Department of Nuclear Medicine and PET 3535 Southern Blvd Kettering, OH 45429
	Telephone: Fax/E-mail:	1-937-296 7211 1-937-296 4265
[2]	Person in-charge: (Title/Position)	Dr. Joseph Mantil
	Other senior staff:	
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction	1989
[4]	Particle beams available:	

[4] Particle beams available:

	H,	³ He	, ⁴He	Dual Beams
Beam energies/Range (MeV)	11			Yes
Typical currents int. (µA)	25 - 43			
Employed external (µA)	20 - 35			

12

1

Hours per week machine is in operation (excluding maintenance):	12
-----------------------------------------------------------------	----

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹¹ C	14N2	22	2 per week	
¹³ N	H ₂ O	1.8	2 per week	
150	⁷⁵ N ₂	3.7	0.385 per week	
¹⁸ F	$H_2^{18}O(96\%)$	11 - 22	5 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹¹C-Methionine
   ¹⁵O-Water
   ¹³N-Ammonia
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?	On site
	If on site, indicate imaging devices available number	
	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> </ul>	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>	No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	
[11]	Does your institute accept IAEA research fellows for training/experience?	No

[1]	Institute: Postal Address:	University of Pennsylvania Department of Radiology 1 Silverstein Philadelphia, PA 19104
	Telephone: Fax/E-mail:	1-215-6627552 1-215-6627551; carlos@feynman.pet.upenn.edu
[2]	Person in-charge: (Title/Position)	Dr. Carlos Gonzalez Lepera Facility Manager
	Other senior staff:	Harry White
[3]	Type of cyclotron: Manufacturer: Model:	Positive Ion Japan Steel Works BC3015
	Year: (i) of installation: (ii) of any major reconstruction	1986

[4] Particle beams available:

	<b>h</b>		He	⁴ He	Dual Beams
Beam energies/Range (MeV)	13/22/30	11/15	17/23/40	13/22/30	
Typical currents int. (µA)					
Employed external (µA)	25	25	20	25	

12

8

Hours per week machine is in operation (excluding maintenance):	15

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

USA-56

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
^{II} C	N ₂ (100% UHP)	25	3 per week	
$^{\prime 3}N$	$H_2O$ (natural) + EtOH	4	2 per week	
750	$^{14}N_2 (95\%) + 5\% H_2$	1.5 per minute	3 per week	$H_2^{IS}O$ continous flow
¹⁸ F	$H_2^{18}O(97\%)$	40	4 per week	$H_2^{18}O$ not recovered
²² Na	^{nat} Mg	0.04	l per year	calibration source

- [6] Radionuclides planned to be produced in the near future:  ${}^{55}Co$  ${}^{89}Zr$
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹³N-Ammonia
   ¹¹C-Flumazenil
   ¹⁵O-Water
- No [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often? [9] Is medical research/diagnosis carried out on site/off site? On site If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera * Single Photon Tomography (SPET) 7 2 * Positron Emission Tomography (PET) Are you engaged in nuclear reaction cross-section measurements? Yes [10] a. Which type of nuclear data do you use? b. Reaction cross sections Yes -Thick target yields Yes _ Yes -Decay data [11] Does your institute accept IAEA research fellows for training/experience? Yes

[1]	Institute: Postal Address:	University of Pittsburg PE Presbyterian University H 200 Lotlrop Street Pittsburg, PA 15213	-
	Telephone: Fax/E-mail:	1-412-6470736 1-412-6470700; mathis@v	vad.arad.upmc.edu
[2]	Person in-charge: (Title/Position)		Prof. David Townsend Co-Director PET Facility
	Other senior staff:		
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation:	Negative Ion CTI RDS 112 1991	
	(ii) of any major reconstruction		

[4] Particle beams available:

	<b>H</b>	<b>H</b>	Be	4He	<b>Dual Beams</b>
Beam energies/Range (MeV)	11				yes
Typical currents int. (µA)	70 - 100				
Employed external (µA)	2 x 35				

~ 5

Hours per week machine	is in operation	(excluding maintenance):	~ 40

Hours per week employed in radionuclide production:  $\sim 40$ 

Hours per week machine maintenance:

Additional applications of the cyclotron: Production of PET radionuclides

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
^{II} C	$1^{4}N + 1\% O_{2}$	~37	~30 per week	
$^{13}N$	$H_2^{16}O + EtOH$	~10	~10 per week	
¹⁵ 0	$^{15}N + 1 \% O_2$	~20	~80 per week	
⁷⁸ F	H ₂ ¹⁸ O (96 %)	~25	~10 per week	

- [6] Radionuclides planned to be produced in the near future: *No additional*
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG, ¹⁸F-Altanserin H₂¹⁵O, ¹⁵O-O₂,
   ¹³N-Ammonia
   ¹¹C-Methionine, ¹¹C-SCH 23390, ¹¹C-Raclopride, ¹¹C-WAY100635,
   ¹¹C-Flumazenil, ¹¹C-MCN5652X, ¹¹C-MDL100907, ¹¹C-SR46349B
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on site/off site?			On site
	If on site, indi	cate imaging devices available	number	
			3	
[10]	<ul><li>a. Are you engaged in nuclear reaction cross-section measurements?</li><li>b. Which type of nuclear data do you use?</li></ul>		No	
	- - -	Reaction cross sections Thick target yields Decay data	Yes Yes Yes	
[11]	Does your ins	titute accept IAEA research fell	ows for training/experience?	Yes

[1]	Institute: Postal Address:	University of Tennesse Medical Centre Department of Radiology / PET 1924 Alcoa Highway Knoxville TN 37920
	Telephone: Fax/E-mail:	1-423- 5449700 1-423-5448883; Longford@scanner.hosp.utk.edu
[2]	Person in-charge: (Title/Position)	Dr. G. T. Smith Director, Clinical PET
	Other senior staff:	K. F. Hubner; G. W. Kabalka; C. P. D. Langford
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction	1987

[4] Particle beams available:

		<b>H</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11				
Typical currents int. (µA)					
Employed external (µA)	20 - 40				

~ 3

Hours per week machine is i	in operation	(excluding maintenance):	~ 15
-----------------------------	--------------	--------------------------	------

Hours per week employed in radionuclide production: ~ 15

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
^{<i>H</i>} C	$^{14}N_2$ ; $^{16}O_2(99:1)$	45	2 per month	
¹³ N	$H_2O + 1\mu M EtOH$	1-2	0 - 20 per week	
150	$^{13}N_2 (> 95\%)$	45	1-2 per year	
⁷⁸ F	$H_2^{18}O(.98\%)$	25	5 - 6 per week	
¹⁸ F	$^{18}O_2 (> 98\%)$	20	2 per month	

[6] Radionuclides planned to be produced in the near future:

[7]	Major radiopharmaceuticals produced: ¹³ N- Ammonia ¹⁸ F-FDG 90% of our work ¹⁸ F-DOPA, ¹⁸ F-Borono-2-fluoro-L-phenylan ¹¹ C- 1-Aminocyclobutane carboxylic acid, ¹ ¹¹ C- D,L-Tryptophan, ¹¹ C- Methionine	lanine ¹ C- Acetate,	
[8]	Do you supply radionuclides/radiopharmace If yes, which ones and how often? We intend to become a distribution centre fo in the next 2 - 3 months		No
[9]	Is medical research/diagnosis carried out on	site/off site?	On site
	If on site, indicate imaging devices available	number	
	* 511 KeV SPET		
	* Gamma camera	7	
	* Single Photon Tomography (SPET)	4	
	* Positron Emission Tomography (PET)	2	
[10]	<ul><li>a. Are you engaged in nuclear reaction c</li><li>b. Which type of nuclear data do you use</li></ul>		No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>		
[11]	Does your institute accept IAEA research fe	llows for training/experience?	Yes

20

[1]	Institute: Postal Address:	Vanderbilt University Radiology Department Nashville, TN 37232-6315
	Telephone: Fax/E-mail:	1-615-3437511 1-615-3436531
[2]	Person in-charge: (Title/Position)	Dr. Ronald G. Manning
	Other senior staff:	Jeff Clauton; Dominique Delbeke; Robert Kessler
[3]	Type of cyclotron: Manufacturer: Model: Year: (i) of installation: (ii) of any major reconstruction	Negative Ion CTI RDS 112 1989

[4] Particle beams available:

	Ή	He	⁴ He	Dual Beams
Beam energies/Range (MeV)	11			
Typical currents int. (µA)	80			
Employed external (µA)				

Hours	ner week me	achine is ir	operation	(evoluding	maintenance	). 25
nouis	рег жеек ша	acimic is ii.	operation	(excluding	mannenance	): 23

Hours per week employed in radionuclide production: 25

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq)	Frequency	Comments
ⁿ C	14N2	40	5 per week	
¹³ N	$H_2^{16}O$	36	l per week	
⁷⁵ O	¹³ N ₂	50	l per week	
⁷⁸ F	$H_2^{18}O$	55	15 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹³N- Ammonia
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes
   If yes, which ones and how often?
   PETNet Site
   Several Customers > 15
- [9]Is medical research/diagnosis carried out on site/off site?BothIf on site, indicate imaging devices available number* 511 KeV SPETI* Gamma camera* Single Photon Tomography (SPET)4* Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements? No
  b. Which type of nuclear data do you use?

-	Reaction cross sections	No
-	Thick target yields	No
-	Decay data	No

[11] Does your institute accept IAEA research fellows for training/experience? No

[1]	Institute [.] Postal Address:	Oak Ridge National Laboratory BLDG 6000, MS 6368 Oak Ridge TN 37831-6368
	Telephone: Fax/E-mail:	1-423-5744111 1-423-5741268
[2]	Person in-charge: (Title/Position)	B.A. Tatum Engineering Manager
	Other senior staff.	S.W. Mosko
[3]	Type of cyclotron: Manufacturer: Model:	K=100 Isochronous ORNL
	Year: (1) of installation: (11) of any major reconstruction:	1960
[4]	Particle beams available	

[4] Particle beams available.

		<b>"H</b>	ЗНе	* He	Dual Beams
Beam energies/Range (MeV)	< 60	< 40			
Typical currents int (µA)	< 100	< 200			
Employed ext (µA)	< 50	< 100			

Hours per week machine is in operation (excluding maintenance) 20

Hours per week employed in radionuclide production

Hours per week machine maintenance:

40

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others

419

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:

[8]	-		radionuclides/radiopharmaceu les and how often?	ticals to other institutions?	No
[9]	Is me	edical resea	rch/diagnosis carried out on s	ite/off site?	No
	If on	site, indica	ate imaging devices available i	number	
	* Gai * Sin		-		
[10]	a. b.	-	engaged in nuclear reaction cro pe of nuclear data do you use?		Yes
		- - -	Reaction cross sections Thick target yields Decay data	Yes Yes Yes	
[11]	Does	your insti	ute accept IAEA research fell	ows for training/experience?	No

- [1] Institute: Texas A & M Cyclotron Institute Postal Address: Texas A & M University College Station, TX 77843-3366 Telephone: 1-409-8451411 Fax/E-mail: 1-409-8451899; office@comp.tamu.edu [2] Person in-charge: J.B. Natowitz (Title/Position) Director Other senior staff: D. May; F. Abegglen [3] Type of cyclotron: Superconducting with ECR Source Manufacturer: TAMU Model: K500 1989 Year: (1) of installation: (ii) of any major reconstruction:
- [4] Particle beams available:

i. A	<b>H</b>	<b>H</b>	³ He	fHe	Dual Beams
Beam energies/Range (MeV)	60	120	130	240	
Typical currents int (µA)	_				
Employed ext (µA)	0.2	0.1	0.2	0.1	

Hours per week machine is in operation (excluding maintenance): 160

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

8

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others:

Protons, deuterons, alphas, ⁶Li, ¹⁰B, ¹²C, ¹⁴N, ¹⁶O, and ²⁰Ne can be run at 67 MeV/nucleon. For ions equal to or larger than mass 10, the lower energy limit is 2 MeV/nucleon.

USA-61

Radionuclide Produced	Target Material (enrichment)	Activity (GBg) per batch	Frequency	Comments

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:

[8]	•	ou supply radionuclide s, which ones and how	•	ticals to other institutions?	No
[9]	Is m	edical research/diagnos	ns carried out on s	ite/off site?	No
	If on	site, indicate imaging	devices available i	number	
	* Ga * Su	l KeV SPET mma camera ngle Photon Tomograph sitron Emission Tomog			
[10]	a. b.	Are you engaged in n Which type of nuclea		oss-section measurements?	Yes
		<ul> <li>Reaction</li> <li>Thick targ</li> <li>Decay date</li> </ul>		Yes No Yes	
[11]	Doe	s your institute accept I	AEA research fell	ows for training/experience?	Yes

- [1] Institute: University of Texas Health Centre at Houston Postal Address: 6431 Fannin Street, Houston, TX 77030 Telephone: 1-713-5007755 Fax/E-mail: 1-713-5007771; lbolomey@heart.med.uth.tmc.edu [2] Person in-charge: Leonard A. Bolomey (Title/Position) Executive Director Other senior staff: Frank R. Dobbs Type of cyclotron: Variable Energy Isochronous [3] Manufacturer: Scanditronix Model: MC-40 Year: (i) of installation: 1983 (ii) of any major reconstruction:
- [4] Particle beams available:

		<b>H</b>	³ He	He	Dual Beams
Beam energies/Range (MeV)	8 - 40	4 - 20	8 - 50	8 - 40	
Typical currents int (µA)	400	400	100	100	
Employed ext (µA)	75	75	50	50	

< 4

Hours per week machine is in	operation (excluding	maintenance): 35
------------------------------	----------------------	------------------

Hours per week employed in radionuclide production: 35

Hours per week machine maintenance:

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{I3}N$	H ₂ O	1.8	10 per week	
¹⁵ O	N ₂	3.7	l per week	
⁶² Zn	^{nat} Cu	12	l per week	
67Ga	⁶⁸ Zn	370	1 per week	enriched ⁶⁸ Zn reocovery
In	¹¹² Cd	370	l per week	enriched ¹¹² Cd recovery
178 W	^{nat} Ta	18.5	l per week	

- Radionuclides planned to be produced in the near future:  ${}^{57}Co, {}^{38}K$ [6]
- Major radiopharmaceuticals produced: [7]  $^{18}F-FDG$

[8]	Do you supply radionuclides/radiopharmaceuticals to other institutions?						
	If yes, which ones and how often?						
	Columbia Hospital at Medical City Dallas Dallas, TX 4 per week						
	Presbyterian Hospital of Dallas	Dallas, TX	l per week				
	University of Texas Medical Branch	Galveston, TX	1 per month				
	Hermann Hospital	Houston, TX	12 per week				
	Mount Sinai Medical Centre	Miami Beach, FL	1 per week				
[9]	Is medical research/diagnosis carried o	ut on site/off site?		On site			

[9] Is medical research/diagnosis carried out on site/off site?

If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)

#### [10] a. Are you engaged in nuclear reaction cross-section measurements? No Which type of nuclear data do you use? b.

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience?

[1]	Institute: Postal Address:	University of Texas Research Imaging Centre Health Science Centre, San Antonia 7703 Floyd Curl Drive San Antonio, TX 78284
	Telephone: Fax/E-mail:	1-210-567-8190 1-210-5678152; jerabet@uthscsa.edu
[2]	Person in-charge: (Title/Position)	Dr. Peter Fox Director
	Other senior staff:	Paul Jerabbk
[3]	Type of cyclotron: Manufacturer: Model:	Fixed Energy, Isochronous, Positive Ion Scanditronix MC 17F
	Year: (i) of installation: (ii) of any major reconstruction:	1991

[4] Particle beams available:

Γ	<b>H</b>	<b>'H</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	17.2	8.6			
Typical currents int (µA)	< 10	<10			
Employed ext (µA)	10-50	10 - 40			

Hours per week machine 1s in operation (excluding maintenance):	3 - 5
Hours per week employed in radionuclide production:	3 - 5
Hours per week machine maintenance:	1

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq)	Frequency	Comments
	$N_2 + 0.5\% O_2$	7.4 - 92-5	~ 20 per year	
¹³ N	H ₂ O	3.7 - 7.4	~ 20 per year	
150	$N_2 + 1\% O_2$	14.8 - 18.5	40-50	
¹⁸ F	Ne+1% F ₂	13		¹⁸ <i>F</i> - <i>F</i> ₂
F	$H_2^{18}O(>95\%)$	18.5 - 22	1-3 per week	

- [6] Radionuclides planned to be produced in the near future:
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG
   ¹⁵O-Water
   ¹³N-Ammonia
   ¹¹C-Acetate.
   ¹¹C-Methionine
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often? We do not currently supply radionuclides / radiopharmaceuticals to other institutions. However, we are planning to distribute ¹⁸F-FDG in the futute (1998).

[9]	Is medical research/diagnosis carried out on s	ite/off site?	On site
	If on site, indicate imaging devices available	number	
[10]	<ul> <li>* 511 KeV SPET</li> <li>* Gamma camera</li> <li>* Single Photon Tomography (SPET)</li> <li>* Positron Emission Tomography (PET)</li> <li>a. Are you engaged in nuclear reaction crob. Which type of nuclear data do you use?</li> </ul>		No
	<ul> <li>Reaction cross sections</li> <li>Thick target yields</li> <li>Decay data</li> </ul>	No No No	
[11]	Does your institute accept IAEA research fell	ows for training/experience?	Yes

[1]	Institute: Postal Address:	University of Washington Medical Centre Department of Radiation Oncology Box 356043, Room NN-136 1959 NE Pacific Street Seattle, WA 98195-6043
	Telephone: Fax/E-mail:	1-206-5484136 1-206-5486218; risler@radonc.washington.edu
[2]	Person in-charge: (Title/Position)	Dr. Ruedi Risler Senior Cyclotron Engineer
	Other senior staff:	Kenneth A. Krohn Jeanne A. Link
[3]	Type of cyclotron: Manufacturer: Model:	Compact Room Temperature Cyclotron Scanditronix MC-50
	Year: (i) of installation: (ii) of any major reconstruction:	1983/84

[4] Particle beams available:

	<b>Ja</b>	<b>2</b> 9	A A A A A A A A A A A A A A A A A A A	He	Dual Beams
Beam energies/Range (MeV)	28 - 51	15 - 25	21 - 35	30 - 48	
Typical currents int (µA)					
Employed ext (µA)	70	50	2	0.75	

1.5

8

Hours per week machine is in operation (excluding maintenance): 40

Hours per week employed in radionuclide production:

Hours per week machine maintenance:

Additional applications of the cyclotron: Primary use is for neutron therapy

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Others: Production of PET radionuclides USA-64

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{\prime\prime}C$	N ₂	30 - 100	10 per week	
¹⁵ 0	<i>O</i> ₂	12	2 per week	
¹⁸ F	$H_2^{18}O$ (>95%)	15	6 per week	H ₂ ¹⁸ O recovery
¹⁹ Ne	²⁰ Ne	10	2 per week	flow through target

- [6] Radionuclides planned to be produced in the near future:  $I_{I}^{24}I$   $R_{I}^{87}Y$
- [7] Major radiopharmaceuticals produced:
   ¹⁸F-FDG, ¹⁸F-Fluoromisonidazole, ¹⁸F-Fluoroestradiol, ¹⁸F-FLT
   ¹⁸F-Fluoroestradiol, ¹⁸F-FLT
   ¹¹C-1-D-Glucose, ¹¹C-Thymididne, ¹¹C-meta-Hydorxyephedrine, ¹¹C-CGP12177, ¹¹C-Carbon Dioxide, ¹¹C-Methane
   ¹⁵O-Water, ¹⁵O-Oxygen
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? No If yes, which ones and how often?

[9]	Is medical research/diagnosis carried out on	site/off site?	On site
	If on site, indicate imaging devices available	e number	
	* 511 KeV SPET	1	
	* Gamma camera	1	
	* Single Photon Tomography (SPET)	1	
	* Positron Emission Tomography (PET)	1	
[10]	a. Are you engaged in nuclear reaction of	cross-section measurements?	Yes
	b. Which type of nuclear data do you us	e?	
	- Reaction cross sections	Yes	
	- Thick target yields	Yes	
	- Decay data	Yes	
[11]	Does your institute accept IAEA research fe	llows for training/experience?	Yes

[1] Institute: Postal Address: West Virginia University PET Centre P.O. Box 9236, Morgantown WV 26506-9236

 Telephone:
 1-304-2937798

 Fax/E-mail:
 1-304-2937142; smazza@wvuhscl.hsc.wvu.edu

Director

[2] Person in-charge: (Title/Position)

Other senior staff:

[3] Type of cyclotron: Manufacturer: Model: Samuel M. Mazza Raymond R. Raylman Negative Ion, Dual Beam

Dr. Naresh C. Gupta

General Electric PETTrace

- Year: (i) of installation: (ii) of any major reconstruction:
- [4] Particle beams available:

_		<b>a</b>	³ He	⁴ He	Dual Beams
Beam energies/Range (MeV)	16.5	8.5			yes
Typical currents int (µA)					
Employed ext (µA)	20	10			

1995

Hours per week machine is in operation (excluding maintenance):5Hours per week employed in radionuclide production:5Hours per week machine maintenance:1

Additional applications of the cyclotron:

Radiotherapy/Activation Analysis/Radiobiology/Physics:

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
$^{13}N$	H ₂ O		3 per week	
¹⁵ 0	N2		Irregularly	
¹⁸ F	$H_2^{18}O(97\%)$		5 per week	

- Radionuclides planned to be produced in the near future: [6]
- [7] Major radiopharmaceuticals produced: ¹⁸F-FDG ¹³N-Ammonia ¹⁵O-Water
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes If yes, which ones and how often? ¹⁸F Fluoride, Irregularly ¹⁸F-FDG Planned

On site

[9]	Is medical research/diagnosis carried out on site/off site?
	If on site, indicate imaging devices available number

- * 511 KeV SPET
- * Gamma camera
- * Single Photon Tomography (SPET)
- * Positron Emission Tomography (PET)
- [10] a. Are you engaged in nuclear reaction cross-section measurements? No Which type of nuclear data do you use? b.

1

-	Reaction cross sections	Yes
-	Thick target yields	Yes
-	Decay data	Yes

[11] Does your institute accept IAEA research fellows for training/experience?

[1]	Institute: Postal Address:	University of Wisconsin Medical Physics Department 1530 MSC 1300 University Avenue Madison, WI 53706
	Telephone: Fax/E-mail:	1-608 2631024 1-608 2633910
[2]	Person in-charge: (Title/Position)	Prof. R. J. Nickels
	Other senior staff:	Andrew Roberts, Onofre deJesus
[3]	Type of cyclotron: Manufacturer: Model:	Negative Ion, Isochronous CTI RDS 112
	Year: (i) of installation: (ii) of any major reconstruction	1986

[4] Particle beams available:

	H	He He	Dual Beams
Beam energies/Range (MeV)	11		yes
Typical currents int. (µA)			
Employed external (µA)	50		

~1

Hours	per week	machine	is in c	operation	(excluding	maintenance)	: ~8

Hours per week employed in radionuclide production:  $\sim 8$ 

Hours per week machine maintenance:

Additional applications of the cyclotron: Irradiating cardiac stents, Teaching, Target Development

Radiotherapy/Activation Analysis/Radiobiology/Physics: Fast neutron activation analysis

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
^{II} C	¹⁰ B (99.9%)	4	Occassionally	Steady-state
	$N_2$	~ 4	Occasionally	
13 _N	$H_2O + 5\mu M EtOH$	~ 4	0 - 20 per week	
¹⁴ 0	N ₂	100	Occasionally	
⁵² Mn, ⁵⁶ Co	316 Stainless Steel	400 kBq	Occassionally	Radioactive stents
⁶⁰ Cu	naiNi	200 MBq	Occassionally	
	nat Mo	200 MBq	Occassionally	
¹⁸ F	$H_2^{18}O$ (96%)	20 - 60	3 per week	H ₂ ¹⁸ O Recovered

- [6] Radionuclides planned to be produced in the near future:  $^{103}Pd$
- [7] Major radiopharmaceuticals produced:
   ¹³N- Ammonia
   ¹⁸F-FDG, ¹⁸F-DOPA, ¹⁸F-FTHA, ¹⁸F-meta-Tyrosine, ¹⁸F-Fluoromethane, ¹⁸F-MISO, ~ a dozen ¹⁸F-labelled anesthetics
   ^{94m}Tc-BATO, ^{94m}Tc-MIBI, ^{94m}Tc-BSM-194,796
- [8] Do you supply radionuclides/radiopharmaceuticals to other institutions? If yes, which ones and how often?
- Both Is medical research/diagnosis carried out on site/off site? [9] If on site, indicate imaging devices available number * 511 KeV SPET * Gamma camera 3 * Single Photon Tomography (SPET) * Positron Emission Tomography (PET) 1 Are you engaged in nuclear reaction cross-section measurements? Yes [10] a. Which type of nuclear data do you use? b. Reaction cross sections Yes _ Yes _ Thick target yields Decay data Yes -
- [11] Does your institute accept IAEA research fellows for training/experience?

## SAMPLE OF QUESTIONNAIRE

# QUESTIONNAIRE ON CYCLOTRON RADIONUCLIDE PRODUCTION

(Please fill one questionnaire per cyclotron and return by _____)

(1)	INSTITUTE: COUNTRY					
	PostalAddress:					
	Telephone					
(2)	PERSON IN-CHARGE (Title/Position)					
	OTHER SENIOR STAFF					
(3)	Type of Cyclotron					
	Manufacturer					
	Year (i) of installation					
	(ii) of any major reconstruction					
(4)	PARTICLE BEAMS AVAILABLE					
	¹ H ² H ³ He ⁴ He Dual beams					
	Beam energies/Range (MeV)					
	Typical currents int					
	employed ext					
Ho	ours per week machine is in operation (excluding maintenance)					
Ho	Hoursperweekemployed in radionuclide production					
Ho	ours per week machine maintenance					

## Radiotherapy/Activation analysis/Radiobiology/Physics

Others .....

÷

Radionuclide Produced	Target Material (enrichment)	Activity (GBq) per batch	Frequency	Comments
¹⁸ F	H ₂ ¹⁸ O (96%)	50 GBq	4 per week	Enriched water recovery
			·····	

- (6) Radionuclides planned to be produced in the near future.
- (7) Major radiopharmaceuticals produced.

(8) Do you supply radionuclides/radiopharmaceuticals to other institutions? Yes/No. If yes, which ones and how often ?

(9) Is medical research/diagnosis carried out on site/off site

If on site, indicate imaging devices available number (* Delete where not applicable)

* 511 KeV SPET.....
 * Gamma camera.....
 * Positron tomography (PET).....

(10) a. Are you engaged in nuclear reaction cross-section measurements? (Yes/No)

- b. Which type of nuclear data do you use?
  - Reaction cross sections (Yes/No)
  - Thick taret yields (Yes/No)
  - Decay data (Yes/No)

(11) Other comments:

(12) Does your Institute accept IAEA research fellows for training/experience? Yes/No

(13) Name of person completing questionnaire.....

Date.....

PLEASE RETURN THIS FORM TO:

Dr. Hernan Vera Ruiz Head, Industrial Applications and Chemistry Section International Atomic Energy Agency P.O. Box 100 A-1400 Vienna, AUSTRIA [Telephone No. +43 1 2060 21748] [Fax No. +43 1 20607] [E Mail: veraruiz@ripo1.iaea.or.at]