IAEA-TECDOC-930

Generic component reliability data for research reactor PSA

INTERNATIONAL ATOMIC ENERGY AGENCY

The IAEA does not normally maintain stocks of reports in this series. However, microfiche copies of these reports can be obtained from

> INIS Clearinghouse International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria

Orders should be accompanied by prepayment of Austrian Schillings 100,in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the INIS Clearinghouse. The originating Section of this publication in the IAEA was:

Safety Assessment Section International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria

.

GENERIC COMPONENT RELIABILITY DATA FOR RESEARCH REACTOR PSA IAEA, VIENNA, 1997 IAEA-TECDOC-930 ISSN 1011-4289

© IAEA, 1997

Printed by the IAEA in Austria February 1997

FOREWORD

Probabilistic safety assessments (PSAs) are increasingly used for safety evaluation of research reactors. PSA methodology and approaches for research reactors are in general similar to those used for power reactors. However, there are some significant differences. The main differences are related to the set of data to be used for quantifying the models.

As component reliability data for research reactors was not available in 1988, the IAEA initiated a co-ordinated research programme on data acquisition for research reactors. The aim of the programme was to develop rules and procedures for data collection (published as IAEA-TECDOC-636) and to conduct a data collection exercise on thirteen reactor facilities in ten participating countries.

The programme lasted for four years. The data collection exercise resulted in a database containing reliability parameters for more than one thousand research reactor components. All the data is based on the operating experience of participating reactors. The database was compiled during the final research co-ordination meeting held in Chalk River, Canada, in 1993.

The report was written by contributors from Austria, Canada and Switzerland and the production was co-ordinated by B. Tomic of the Safety Assessment Section of the Division of Nuclear Safety. It includes data supplied by all the participants in the co-ordinated research programme.

EDITORIAL NOTE

In preparing this publication for press, staff of the IAEA have made up the pages from the original manuscript(s). The views expressed do not necessarily reflect those of the governments of the nominating Member States or of the nominating organizations.

Throughout the text names of Member States are retained as they were when the text was compiled.

The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries.

The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.

CONTENTS

1.	INTRO	DUCTION	•	•	•		•	•		7
	1.1. Ba 1.2. Pu	rpose	•	•	•	•••	•	•	 	7 8
2.	REACT	FOR FACILITIES AND DATA COLLECTION METHOD	•	•	•			•	•••	8
3.	INSIGH	ITS FROM THE DATA COLLECTION PROCESS	•	•	•		•	•		9
4.	USE O	F THE DATABASE	•		•					9
ТА	4.1. Lo 4.2. Ao 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.3. Re 4.3. Re 4.4. Ur	Decation of component reliability data	•	• • • • •	• • • • •	• • • • • •		•	· · ·	9 10 10 11 12 13 13
Ta Ta Ta Ta	ble I. ble II. ble III. ble IV. ble IV.	Alphabetical list of component groups and associated codes Component type descriptions and associated codes	fa	· · on · cil		 y		• • •	· · · ·	15 19 27 29 31
Table VI. Specific information on component types for each facilityTable VII. Component reliability database						•••			•••	41 53
RE	EFEREN	CES	•	•	•		•	•	• •	69
CC	ONTRIB	UTORS TO DRAFTING AND REVIEW								71

1. INTRODUCTION

Information on reliability data for research reactor components was not readily available in the literature in 1988. Similar information for power reactors is widely available for most power reactor types, either on a commercial basis or from open literature sources [1–3]. Component reliability data sources for power reactors should provide the best alternative source of relevant data, in the absence of either site-specific or generic research reactor data. The use of component reliability data for power reactors, as an alternative to site-specific or generic research reactor data, does however have two basic disadvantages. Firstly, design and operational differences in many power reactor components make comparisons difficult. The result is increased uncertainty in the application of a generic reliability data source for power reactors to a specific research reactor application due to differences in component type, size and application. Secondly, there are numerous research reactor components that have no counterpart in power reactors.

To overcome the problem of data availability, the IAEA initiated a Co-ordinated Research Programme (CRP) on Data Acquisition for Probabilistic Safety Analysis (PSA) Studies for Research Reactors, aimed at providing the necessary generic component reliability database. The database, used by most CRP participants, was generated using the DES Data Entry System [4]. The CRP participant from ANSTO developed this system for use in conjunction with the data collection process. DES was made available to other participants for data collection and is available from the IAEA for use as a reliability database. The report provides the user with the generic component reliability database in a summarized spreadsheet format.

While this report focuses primarily on the needs of research reactor PSA, the generic component database also provides a useful reference source of reliability data for other research reactor applications. For example, typical applications would be the comparison of generic data sources for other research reactor types for the purposes of producing annual reactor operating review reports, or for updating reactor safety analysis reports. This type of comparison may assist in providing useful information about both systems and component operation, in light of international experience with similar research reactor types and equipment. For example, fuel failure rate data or regulating system failure rate comparisons could provide valuable input into research reactor upgrades/deterministic safety analysis programmes in order to supplement the decision making process for potential design and/or operational changes.

Ideally, failure data used for safety and reliability analyses should be based on site-specific data. However, the production of accurate site-specific data requires the expenditure of considerable resources to develop and maintain an extensive database. The collection of database source information from the field — i.e. from reactor maintenance and/or operations reports — requires a systematic approach and an ongoing commitment, if the information is to be processed efficiently and if it is to be kept up to date. In addition to the need for operational and maintenance staff to provide raw data input, a software system and analytical personnel to process the raw data are also required. The data processing primarily produces component-reliability-parameter statistics and trend analysis data. The reliability parameter data is often formatted so that information can interface directly with PSA studies. For example, component failure rate data may be linked to a PSA-specific basic event labelling format. The use of generic data by itself will not provide an adequate data source to aid in trend analysis of site-specific system equipment. Generic data can still, however, indicate whether there may be site-specific features or site-specific equipment problems that may be considerably different from that which might be predicted from international generic sources of other research reactors. The component reliability data in this report is applicable across a broad range of research reactor types and sizes.

1.1. BACKGROUND

During 1986-1988 the IAEA undertook a Co-ordinated Research Programme (CRP) on PSA for research reactors which helped to promote and foster an international exchange of information

between national institutes and universities on the subject [5, 6]. During this period, extensive systematic PSA studies on research reactors were also being both contemplated for the first time and initiated. The need for development of a research reactor component reliability database was identified from the research reactor PSA CRP work. This resulted in the setting up of the research reactor data acquisition CRP. The application of PSA and the subsequent relevant database development on research reactors followed similar developments for power reactors [1].

The current document was prepared using the framework of the data acquisition CRP. It is based on the first meeting of the CRP held in Vienna in October 1989. A second meeting was held in Beijing, China, in October 1990 and the final meeting was held in Chalk River, Canada in July 1993. The report was completed in Vienna in December 1993. All members of the CRP contributed component reliability data to the final database.

The CRP project officer was B. Tomic from the IAEA's Safety Assessment Section of the Division of Nuclear Safety. Following the Beijing meeting, IAEA-TECDOC-636 was produced [7]. This document provided the definition of terms to be used in the component data collection, derived specifically to cover research reactors. It also contains all the definitions necessary to classify research reactor equipment, and to identify and group individual component boundary and component failure type definitions. Relevant reliability parameters are also defined and the method of calculation is shown in Ref. [7]. The various definitions are not repeated in the current report since Ref. [7] is intended to be a supporting document for the user of the database. An updated version of the component group listing, the breakdown of component groups into component types, and the associated coding is provided in Tables I and II. The failure mode code definitions of Ref. [7] are listed in Table III.

1.2. PURPOSE

The purpose of this document is to supplement the information in Ref. [7] and to provide reference generic component-reliability information for a variety of research reactor types. As noted in Section 2 and Table IV, component data accumulated over many years is in the database. It is expected that the report should provide representative data which will remain valid for a number of years. The database provides component failure rates on a time and/or demand related basis according to the operational modes of the components.

No update of the database is presently planned. As a result of the implementation of data collection systems in the research reactors represented in these studies, updating of data from individual facilities could be made available by the contributing research reactor facilities themselves.

As noted in Section 1.1, the report does not include a detailed discussion of information regarding component classification and reliability parameter definitions, which is provided in Ref. [7]. The report does provide some insights and discussions regarding the practicalities of the data collection process and some guidelines for database usage.

2. REACTOR FACILITIES AND DATA COLLECTION METHOD

A total of 12 research reactors from 9 participating countries are represented within the CRP. Failure data on components have been submitted from each of these facilities. The data collection period varied according to the facility, ranging from 2 to 28 years. Reactor-power ratings varied from 100 kW(th) to 135 MW(th). The number of components monitored varied from fewer than 20 to about 10 000 per facility. Essentially all participants used component definitions from Ref. [7]. The raw data sources were reactor log books, maintenance records and other documented operational experience. A compilation of the various general features of the reactor facility types and data is summarized in Table IV.

At the start of this programme no formal system for recording component reliability data was in place in most facilities. After 1986 the initiation of PSA studies at most of these facilities provided an impetus for the development of a component reliability database. The database systems in the contributing facilities are subsequently being maintained on a continuing basis for the purpose of longterm trend and equipment monitoring.

As noted in Section 1, the DES data entry system [4], was used by a number of participants to input and record raw data. The component database for this report has been compiled from the DES output information provided by the participants. It is represented in an easy-to-use spreadsheet format in Table VII. A description of the procedure for extracting reliability data from Table VII is provided in Section 4.

A wide variety of component types are referenced in the database coding system. Data is available on most component types. Coding for component types without data is maintained, for reference purposes, to allow for future additions to the database. In general, the data emphasizes major component types and failure rates which are dominated by top-event failure frequencies from PSA studies. Most of these components are of the active type (i.e. they rotate or move), although passive components (i.e. such as the reactor vessel and transformers) are also included.

The systems represented by the majority of the components are listed for each facility in Table IV. In general these are the most important safety systems, safety-related systems and key process systems that are most commonly analyzed in PSAs. The typical function and descriptions of these systems are provided in Ref. [8].

3. INSIGHTS FROM THE DATA COLLECTION PROCESS

The collection of component reliability data is invariably a tedious task unless a system is in place to perform this on a continuous long-term basis. This was rarely the case until relatively recently for research reactor facilities. By contrast, many power reactors have had formalized collection systems for component reliability data for many years. The lack of staff resources at research reactor facilities is one of the main reasons for the absence of a formal system. Another frequent difficulty is the lack of a computerized system for documenting maintenance and operating records. This means that the collection of field data from a variety of hard copy recording systems is time consuming. The quality of failure information also varies; it is primarily determined by the skill of maintenance and operations staff and how useful this type of information is regarded by reactor staff.

The features noted above are also not uncommon for non-nuclear process plants. Many of the contributing facilities utilized students for data collection and analysis.

After the data collection and analysis process, very useful feedback was received on operations and performance of equipment maintenance which led to improvements on equipment test and maintenance procedures and in the failure record keeping process. Identification of potential incipient failures and the trend of decreasing component reliability were other benefits obtained from the process. Generally, only when maintenance and operations staff can see direct usefulness of a reliability data system will improvements be made in the quality of inputting field data.

4. USE OF THE DATABASE

4.1. LOCATION OF COMPONENT RELIABILITY DATA

This section describes the process for use of the reliability database. To locate a specific component in the database, Table I should first be consulted. This list provides an alphabetic ordering by description/name of the different component groups. These component groups are defined as components of a given general component category (Table II column 1) e.g. sensors, which have

different functions (e.g. flow sensors, level sensors). Having identified the two letter component group coding from Table I column 1, Table II is then consulted to locate the description of the closest match for a desired component. Table II, column 6 provides a component type listing which gives the highest level of description for a component. For example, different types of pressure sensors may be identified. The component type coding is a three letter code, given in Table II, column 5. Table II provides a complete listing of the component category, group and type descriptions, and codes in alphabetical order of the component type code. Table II is utilized by first locating the desired two letter component group code, provided in alphabetic ordering in column 3, and then reviewing the associated list of component types in column 6 until the closest match of a desired description is found.

Having identified the most relevant component type by its three letter identification code, Table V can then be used to provide an overview of the number of facilities which have recorded data on that component type. Table V also provides the relevant component type populations for each contributing facility. Table VI summarizes information on component types including manufacturer's information for each contributing facility. The table is presented per facility. A three-character code similar to that used in Table V is associated with each component type. To locate the specific reliability data available for the identified component type, Table VII is used.

Table VII, column 1 lists the three-letter component type codes alphabetically. Having located the component type code, the available data on that component for each facility can then be found. The legend for Table VII provides the necessary explanations for each of the columns. The two basic parameters: failure rate and failure per demand, with associated 90% confidence bounds, are provided. The raw data on component population, operating or calendar time, number of failures or demands are provided for the user as a check on the extent of the raw data.

4.2. ACCURACY OF RELIABILITY DATA

In addition to statistical uncertainty, discussed in Section 4.4, there are a number of causes which contribute to the inaccuracy of reliability data. Those causes influence both generic and facility-specific data. The following sections discuss the various causes.

The causes of differences in reliability data can be grouped in two areas, namely:

- differences in data collection or data processing;
- the actual component reliability is different.

In each of these areas a number of individual factors influencing reliability parameters has been identified. A short discussion of the most important factors is given below. Also, a discussion on data selection is included.

4.2.1. Data collection and processing

The inaccuracy in reliability data caused by data collection or data processing can be significant. Factors related to the following are discussed here:

- data sources;
- the ways the data is collected;
- data processing;
- definitions.

Data sources

The raw data is collected from historical records — i.e. log books, maintenance work records and test records. While the log books are generally considered to be the most accurate, a number of failures, especially on non-safety equipment, may not have been recorded. However, collecting data from the log books is extremely time consuming. Maintenance work orders are considered to be the

most complete records, but the reliability of the information depends on the person completing the report. In many cases these are maintenance staff themselves, therefore the accuracy of the records (usually not computerized in research reactor facilities) varies. The direct consequence of incomplete records is usually an overestimation of component reliability. Therefore the reliability data may be biased.

Events without work request

Sometimes, relatively minor failures (such as mis-positioned valves) are reported during a test without a work request having been prepared. One example is a valve that opens only on second trial during a test (or after a small, local repair). Only a comment on a test sheet is written. There is no formal work order or any other documented evidence. Since some of the failures are not accounted for, reliability could be overestimated.

Failure of supporting equipment

Equipment failures may often be directly related to the failure of auxiliary equipment, support or control systems. Such failures, although effectively disabling the component, are not failures of the component. Some databases do not separate such failures. Since supporting equipment failures could actually dominate overall failure rate, this can cause substantial inaccuracy in the reported failure rate.

Coding errors

Coding errors are a classic problem encountered in every data collection exercise. Coding errors are present in both computerized and manual data collection, and are generally related to differing interpretations of criteria.

Failure rate denominators

The number of failures collected from the log books or maintenance/testing sheets are only one input used for the failure rate calculation. The number of demands, the failure exposure time or the component's running time, are also essential. In the standard failure rate calculation, the denominator is a quantitative measure of the stress that the component was subject to, related to a specific type of failure which may occur (failure mode).

The way the failure rate denominators are determined may produce a sizeable inaccuracy in a component's calculated failure rate. For equipment usually in standby mode, the data sources available today provide separate data on failures to start and failures to run (and sometimes on other failure modes such as leakage/rupture). The denominator for failures to run is a component's actual running time, which is usually estimated (e.g. 1 hour per test) and sometimes recorded.

4.2.2. Component reliability

Component reliability is a function of its design, use and maintenance. Components designed for specific research reactor application (especially safety related) are usually highly reliable and should be maintained as such during their lifetime. The reliability data, however, often show variations which are related to operating conditions and practices, component application and maintenance, and testing practices. A brief discussion of the influence of each of these is given below.

Operating conditions and practices

A facility's operating conditions and practices may greatly influence component reliability. Some of the influence factors are:

- operating mode;
- operating time and demands;
- operating environment.

The operating mode has been recognized as influencing equipment reliability, especially on active components (such as pumps). Some data sources provide separate data for running, alternating and standby categories. In the IAEA survey [9], variations of more than two orders of magnitude have been documented for the failure to run of motor-operated pumps when comparing between alternating pumps, running pumps and pumps where no mode has been specified. This finding supports the view that failure data for similar equipment having differing operating modes should be kept separate.

A component's failure to start may be caused by a demand related stress (e.g. vibration), or stress in standby (e.g. corrosion) or a combination of both. Most data sources disregard these differences and provide data on failure to start either as demand related or time related. When time related data are provided, the failure rate denomination is usually calendar time, or sometimes plant operating time. Since similar components at a different location may have a substantially different test interval, the actual number of demands in a period may vary, which in turn may greatly influence the failure rate. Some data collection systems also systematically collect information on the number of demands; in others the number of demands is estimated on the basis of testing demands owing to the costs of collecting the information.

Operating conditions may also influence component reliability. Examples of this would be ambient temperature, humidity, chemical control, radiation fields and vibration.

Design and application

Design and application of a component will have an important influence on reliability. The application of the component will determine the operating mode and environment. Variations due to these causes has been discussed in previous sections.

Maintenance and testing practices

Significant plant-to-plant variations for otherwise identical components can be identified. These variations are most probably caused by facility-specific maintenance and testing differences. The influence of the testing interval and practice has been extensively investigated. The testing interval has an influence on the failure rate, but it is strongly related to component type. The testing interval has greater influence on components where standby stresses dominate failure probability (usually motor operated valves) and lower on components with higher demand stresses (such as diesel generators and similar).

4.2.3. Data selection

As discussed, a number of factors may influence reliability data. Although it is difficult to quantify these, an order-of-magnitude estimate could be made.

The overall effect of the factors noted below can therefore substantially influence the results.

Since there is the possibility of a considerable variation in reliability data between different facilities, facility-specific data is the best possible source. However, when this data is sparse, other data sources must be used. In this case, their compatibility and applicability should be carefully assessed.

Variability factor	Estimated accuracy
Collection related (comprehensiveness)	2 to 5
Failure severity/failure mode	< 2
Demand/operation attributes	< 2
Failures in shut down taken into account	2
Non-representative samples	2 to 10
Collection of denominators	2 to 5
Site effects (testing, maintenance)	2 to 10

When adopting reliability data from a data source, the definitions and their compatibility are first assessed. The background of a data source, including the ultimate data source, comprehensiveness of the data collection and data processing methods should be considered next. Finally, for reliability data originating at a research reactor, design (including age of design), operation, testing and maintenance practice should be examined for compatibility.

Although even the most careful data selection would not fully exclude the possibility of adopting incompatible data, the fact that the factors contributing to data accuracy have been recognized should ensure that the choice of data is reasonable.

4.3. RELIABILITY DATA ON COMMON CAUSE FAILURE

Quantification of common cause failure (CCF) data, in particular for system designs with redundant components, is an important aspect of PSA studies. CCF is also one of the most difficult areas in principle and in practice to obtain data. Collecting and reporting CCF data is a special aspect of reliability data collection. It is beyond the scope of this report to provide quantified data regarding component CCFs, as defined in Ref. [7], Section 5.2.5. Therefore CCF specific data are not included here. To provide this type of data requires a detailed review of individual failure events. The failure data provided by participants may include some common cause events. Experience with generic CCF data has shown that it is very unlikely that the common cause contribution is a significant percentage of the recorded failure events. It can therefore reasonably be assumed that data uncertainties due to common cause failures are negligible compared with statistical uncertainties, Section 4.4, and the other contributing sources of inaccuracy, Section 4.2, in the data.

4.4. UNCERTAINTY BOUNDS

Following accepted practice in most databases, statistical uncertainty is calculated as discussed in Ref. [7], Appendix D. The 90% confidence range with 5% and 95% limits around the mean value is defined. As noted in Ref. [7], failure rates and failures per demand utilize different expressions for the uncertainty calculations, although the differences between the calculations are not large. The spreadsheet software EXCEL, version 4.0A, used for the production of the Table VII database, provided the necessary chi-square and F function variables needed for the uncertainty calculation.

The uncertainty bound values for the failure rates are provided in the last columns of Table VII. Note that the uncertainty bounds associated with a demand failure are in dimensionless units. For cases with zero failure the numerator is set to 0.693 (taken from the 50% chi-squared value for one failure) for the entry in the "failure rate" column of Table VII and a zero value is entered into the "5%" sub-column of the "90% confidence bounds" column. In all other cases the entry in "failure rate" column is the mean failure rate.

TABLE I. ALPHABETICAL LIST OF COMPONENT GROUPS AND ASSOCIATED CODES

The following list provides component groups in alphabetical order with the associated component group coding. The group coding consists of two capital letters: the first describes the main component type category, the second describes the component group.

Component Group Code	Component Group Description			
AD	Air cooler			
YA	Air filter			
UN	Annunciator			
BT	Battery			
BC	Battery charger			
GB	Beam ports, beam tubes			
QB	Blower fan			
СВ	Bus			
CC	Cable			
КА	Circuit breaker			
KD	Circuit breaker DC			
KI	Circuit breaker indoor			
ĸċ	Circuit breaker molded type			
KR	Circuit breaker, high reliability			
JE	Clutch			
<u></u>	Compressor			
NK	Computational module			
NC	Computer			
<u> </u>	Control rod			
OR	Control rod drive			
UC	Controller			
EC	Converter			
НС	Cooling tower			
	Core structure			
QD	Damper			
DE				
DG	Diesel generator emergency AC			
EX	Liectrical equipment for experiments			
QF	Fan cooler, containment			
KS	reeder (branch, junction)			
YF				
X1	First shaping element			
XH				
	Fuel element handling tool			
×T	Fuse			
	Gas turbine driven generator emergency: AC			
	Gasket			
μγ	Heat exchanger			
FH	Heater electric			
	HVAC unit annulus ventilation			
	Indicating instrument			
NO.	Input/outout device			
	Instrumentation			
	Instrumentation channel analog			
	Instrumentation channel digital			
NI	Interface			
FI	Inverter			
	Irradiation facilities			
	Lube oil cooler			
TE	Main facility transformer			
UM	Manual control device			
MA	Motor			
MG	Motor generator			
MS	Motor servo			
FX	Orifice			
EB	Panelboard			
•				

Component Group Code	Component Group Description		
JP	Penetration containment		
FE	Piping expansion joint		
FN	Piping nozzle		
FS	Piping straight section		
FT	Piping tees		
FW	Piping welds		
GP	Pool, open swimming pool		
EP	Power supply		
ND	Printer		
NP	Programable logic controller		
PD	Pump diesel driven		
PM	Pump motor driven		
PT	Pump turbine driven		
PW	Pump without driver		
	Badiation monitors		
	Beactor scram system		
EP	Bectifier		
	Reflector element, graphite		
	Reflector Berullum		
AB DW/			
	Relay control		
	Relay power		
	Relay protective		
	Relay time delay		
	Rupture diaphragm		
AC			
	Sensor general		
AL	Sensor level		
AP	Sensor pressure		
AS	Sensor speed		
A1			
AU	Sensor water chemistry		
WA	Shielding general		
WF	Shielding irradiated fuel		
WX	Shielding of experiments		
<u>NS</u>	Signal conditioning system		
NM	Signal modifier		
UE	Solid state device		
GS	Storage containers		
YS			
SC	Switch contacts		
SD	Switch digital channel		
SF	Switch flow		
SL	Switch level		
SI	Switch limit		
<u></u>	Switch manual		
SP	Switch pressure		
ST	Switch temperature		
SQ	Switch torque		
SA	Switch, general		
	Tank		
GT	Tank, closed vessel		
TA	Transformer		
TT	Transformer auto		
TI	Transformer instrumentation		
LTV	Transformer regulating		

Component Group Code	Component Group Description				
тх	Transformer for main facility supply				
TU	Transformer substation				
LC	Transmitter core flux				
LF	Transmitter flow				
LA	Transmitter general				
LL	Transmitter level				
LP	Transmitter pressure				
LT	Transmitter temperature				
VA	Valve air operated				
VE	Valve explosive operated				
VH	Valve hydraulic operated				
VX	Valve manual				
VM	Valve motor operated				
VP	Valve piston operated				
VC	Valve self operated				
VD	Valve solenoid operated				
VW	Valve without operator				
CW	Wire				

TABLE II. COMPONENT TYPE DESCRIPTIONS AND ASSOCIATED CODES

This table gives a description of each component category, group and type, in alphabetical order, of the three letter coding system. To find a specific component type, Table I may first have to be consulted as it provides the component group listing in alphabetical order. The coding system is based, to a large extent, on that formulated in Ref. [1].

e	Component Category	e de	Component Group Description	le	Component Type Description
po	Description	ŏ		20	
0	Sansors		Sensor general		Sensor general
~		AC	Sensor sore flux	ACA	Sensor general flux
		AC		ACA	
				ACE	
			· · · · · · · · · · · · · · · · · · ·	ACC	Pission counter
		1.5	2	ACS	Seir powered detector
			Sensor flow		Sensor flow
				AHA	Sensor humidity
L		AL	Sensor level	ALA	Sensor level
				ALR	Sensor pool water level
		AQ	Sensor water chemistry	AQC	Sensor conductivity
		L		AQP	Sensor pH-value
		AP	Sensor pressure	APA	Sensor pressure
				APD	Sensor pressure difference
		AR	Radiation monitors	ARA	Aerosol monitor
				ARG	gamma monitor
				ARN	neutron monitor
				ARO	off-gas monitor
				ARU	radiation monitoring alarm unit
		AS	Sensor speed	ASA	sensor speed
	······	AT	Sensor temperature	ATA	sensor temperature
		<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·
в	Batteries and chargers	BC	Battery charger	BCA	battery charger
Ĕ-	Sectorios una onargaro	F		BCS	battery charger solid state
		RT	Battery	BTA	battery
	[BTI	battery lead acid accumulator
				DTL	battery riskal codmum popumulator
					battery nicker caumum accumulator
		<u></u>	D	CD2	
C	Conductors	CB	Bus	CB2	bus 120Vac , 220Vac sing, phase
		<u> </u>		CB3	bus 220Vac, 380Vac three phase
				CBP	
		[CBA	bus general power distr
				CBD	bus DC
		CC	Cable	CCP	cable power connection
				ccs	cable signal (supervisory)
		CW	Wire	CWA	wire
				cwc	wire control circuit typical circuit, several
					joints
D	Diesel generators, gas	DE	Diesel engine	DEA	diesel engine
	turbine driven generators				
		DG	Diesel generator emergency	DGA	diesel generator emergency AC
[AC		
		DT	Gas turbine driven generator		
			emergency AC		
F	Other electrical	FB	Panelboard	FBA	terminal board
-	equipment, electrical part				
	of experimental				
	Installations				
		FC	Converter	ECM	static converter for reactor main poplant
		EH	Heater electric		air bostor
		<u> </u>			
		┠───	<u> </u>		
		┣_──		CHU	
	<u> </u>			CHI	neat tracing pipe heater
	l		· · · · · · · · · · · · · · · · · · ·	EHW	water heater
ļ		EI	Inverter	EIA	Inverter
<u> </u>				Ell	Inverter instrument
		<u> </u>	l	EIX	Inverter static three phase
		L		EIZ	inverter static single phase
		EP	Power supply	EPA	power supply (instrumentation and control
		I			equipment)
				EPH	high voltage p.s. instrumentation
				EPU	uninterruptible p.s. <1kVA
		ER	Rectifier	ERS	rectifier static

	Component Category		Component Group Description		Component Type Description
ode	Description	Code		Code	
<u>P</u> _		FX	Electric equipment for	EXA	Electric equipment for experiments, general
1			experiments		Lectric equipment for experiments, general
	Pipipa	FF		FFA	
		FN		FNA	
		<u> </u>		ENS	
		FR	Bunture diaphragm	FRA	Bunture diantragm general
—		FS	Piping straight section	ES3	niping medium $1" < diameter < = 3"$
		<u>+</u>	- phily chargin bootion	FSA	piping straight section
		┼───		FSM	piping straight coordin
<u> </u>				FSS	piping small $\leq = 1^{\circ}$ diameter
		FT	Pipipa tees	FTA	piping tres
		FW	Piping welds	FWA	piping welds, general
├	<u> </u>	FX	Orifice	FXA	
├		FY	Gasket	FYA	dasket
				<u> </u>	
	Pool and plate beam	GB	Beam ports, heam tubes	GBC	thermal column
6	porte D20-taok storage		beam ports, beam tubes		
	containers				
		┼──	· · · · · · · · · · · · · · · · · · ·	GBB	beam port radial
⊢		 			
				GBI	beam port, tangential
ļ		IGP	Pool, open swimming pool	GPL	pool liner
				GPS	storage rack for fuel
		GS	Storage containers	GSF	storage and transp cont irrad fuel
				GSH	storage, fresh fuel
		GT	Tank, closed vessel	GTA	tank, reactor vessel
		ļ		GTD	tank, heavy water container
		ļ		GTE	expansion tank
I		I			
<u>H</u>	Heat exchanger	нс	Cooling tower	HCA	cooling tower general
L		нх	Heat exchanger	HXA	heat exchanger
				нхв	heat exch. straight tube horizontal shell and
		ļ			tube
		ļ		HXF	heat exch. fuel storage
				нхн	heat exch. U tube horizontal shell and tube
		ļ			
				нхм	heat exch. straight tube vertical shell and
					tube
		ļ		НХР	heat exch. plate type
L				HXR	heat exch. pond heat removal
 .		ļ		нхт	heat exch. cleaning system
I		<u> </u>		HXV	heat exch. U tube vertical shell and tube
L					
μ	Instrumentation	IA	Instrumentation	IAA	instrumentation
1	(channels, reactor	1		ĺ	
	protection system)	-			
L					control rod position indication
1	1	IIC	Instrumentation channel	ICA	instr. ch. analog general
—			analog		
I		<u> </u>			instr. ch. analog core flux
 	<u> </u>				Instr. ch. analog flow
		<u> </u>	 		Instr. ch. analog level
<u> </u>	<u> </u>	ļ			Instr. ch. analog pressure
┣—		 			Instr. ch. analog seismic
<u> </u>					Instr. ch. analog temperature
1		טון	Instrumentation channel	IDA	instr. ch. digital, general
⊢		<u> </u>		100	
<u> </u>					Instr. ch. digital core flux
	<u> </u>	—			Instr. ch. digital flow
I	· · · ·				Instr. ch. digital level
├		<u> </u>	·····		Instr. ch.digital pressure
		 		וחו	Instr. ch. digital temp
L	<u>L</u>	<u> </u>		1	

le	Component Category	e l	Component Group Description	qe	Component Type Description
ŏ	Description	Ö		ő	
J J	Other mechanical equipment, lifting gear,	JC	Core structure	JCA	core structure, general
	structures, experimental setup				
		L		JCG	grid plate
				JCT	fuel guide tubes
		JE	Clutch	JEE	clutch electrical
				JEM	clutch mechanical
		JI	Irradiation facilities	JIA	irradiation container
				JIH	hydraulic transfer system
		1		JIP	pneumatic transfer system
				JIR	irradiation rig, static
				JIS	rotary specimen rig
		JL	Lube oil cooler	JLC	lube oil cooler
		JP	Penetration	JPE	penetration electrical
				JPP	penetration piping
		JT	Tank	JTF	tank resin flushing
				JTR	tank storage RWST (refueling water storage tank)
<u>_</u>	Circuit breakers	κΔ	Circuit breaker	KAA	circuit breaker, general
ŀ∼−		+```		KAC	circuit breaker AC
	<u> </u>	IKC-	Circuit breaker molded type	KCA	Circuit breaker molded type
			Circuit breaker DC	KDC	circuit breaker DC
<u> </u>			Circuit breaker indoor	KIA	circuit breaker indoor AC application
 			Circuit breaker indoor		circuit breaker indoor DC application
				KIS	circuit breaker isolation, ground fault circuit
				NI5	interrupter
		KR	Circuit breaker, high reliability	KRP	circuit breaker reactor protection system
		KS	Feeder (branch, junction)	KSF	feeder (junction box)
		KT	Fuse	KTA	fuse all voltage levels
<u> </u>		+-		1	
L	Transmitters	LA	Transmitter general	LAA	transmitter general
		LC	Transmitter core flux	LCA	transmitter core flux
		LF	Transmitter flow	LFF	transmitter flow
		LL	Transmitter level	LLL	transmitter level
		LP	Transmitter pressure	LPP	transmitter pressure
		LT	Transmitter temperature	LTT	transmitter temperature
		1		LXR	transmitter pressure difference
				1	
м	Motors	MA	Motor	MAA	motor
r				MAC	motor AC
				MAD	motor DC
-		1		MAI	motor AC induction
		MG	Motor generator	MGX	motor generator
		MS	Motor servo	MSS	motor servo
				<u> </u>	
N	Signal conditioning system, computers	NC	Computer	NCA	signal comparator bistable
L				NCB	personal computer, PC
1	1	-		NCD	data acquisition system
_				NCH	high quality computer
L		1		NCW	workstation computer
I	l	ND	Printer	NDA	printer, general
	1	NI	Interface	NIN	computer network, general
		NK	Computational module	NKA	computational module
1		NM	Signal modifier	NMA	signal modifier
<u> </u>	· · · · · · · · · · · · · · · · · · ·		+		
				NMO	signal modifier voltage-pneumatic transducer
		-		NMO NMP	signal modifier voltage-pneumatic transducer signal modifier current-pneumatic transducer
				NMO NMP NMS	signal modifier voltage-pneumatic transducer signal modifier current-pneumatic transducer signal modifier square root extractor
				NMO NMP NMS NMT	signal modifier voltage-pneumatic transducer signal modifier current-pneumatic transducer signal modifier square root extractor signal modifier current-current transducer

0	Component Category		Component Group Description	e).	Component Type Description
ğ	Description	ğ		pd.	
ŭ		JŬ		ŭ	
		NO	Input/output device	NOA	Input/output device
		NP	Programable logic controller	NPA	Programable logic controller
	· · · · · · · · · · · · · · · · · · ·	NS	Signal conditioning system	NSA	signal conditioning system for core flux
		1.2	Signal conditioning system		
				1100	level, pressure, temperature general
				NSC	sign cond sys core flux
				NSF	sign cond sys flow
				NST	sign cond sys temperature
<u> </u>		+			
	Control rade and drug		Control rod	orc	control rad cruciform baran carbide control
۲V			Control Tod		rede
	mechanisms	+			lous
				OCR	control rod single control rod assembly
-				ocs	control rod clustered silver, indium, cadmium
1					control rod
		OR	Control rod drive	ORA	control rod drive
<u> </u>	8	100	Rump disset drugp		numa diasal dayon
<u>۳</u>	Pumps			PLA	
		PM	Pump motor driven	PMA	pump motor driven
1		PT	Pump turbine driven	PTA	pump turbine driven
		PW	Pump without driver	PWB	pump horiz. 22-820 l/s
t		1		PWC	pump centrifugal
		+	t	PWF	pumpl vert 70-1900 l/s
		-+		PWC	nump
-	10/00	100-		044	
la -	HVAC and air handling		Air cooler	UAA	air cooler
L	equipment	<u> </u>	<u> </u>		
		QB	Blower fan	QBF	blower fan
		QC	Compressor	QCI	compressor instrument air
		aD	Damper	QDA	damper
		+		QDM	damper manual(HVAC)
	<u> </u>	OF	Ean cooler containment	OFH	fan cooler reactor building cooling unit
I		- ["		OEV	fan conteinment ventilation fan
		1			
ł		QV	HVAC unit annulus ventilation	UVA	hvac unit auxiliary building
I					
ł				QVB	hvac unit battery room ventilation
				QVE	hvac unit electric equipment area ventilation
		+		OVB	hvac unit control room ventilation
	······································	+		ovs	byac upit reactor hall
			·	445	
<u> </u>		10			- <u> </u>
н	Relays	RA	Relay auxiliary	KAA	relay auxiliary
				RAS	solid state relay
		RC	Relay control	RCA	relay control AC
				RCD	relay control DC
<u> </u>		-1		RCL	relay control
I		RP	Relay power	RPH	relay power 300-460 A
<u> </u>	······	+		RPI	relay nower 40.60 A
	<u> </u>	00	Relay protective	DDA	
		+		nnA DDC	
I—		+		RHF	relay, frequency protection
		1		RRO	relay, overload protection
				RRV	relay, voltage protection
		RT	Relay time delay	RTA	relay time delay
<u> </u>		1	<u> </u>	RTB	relay time delay bimetallic
<u> </u>	<u>├</u>	-†	<u></u>	RTP	relay time delay pneumatic
	·····	+	f	BIE	relay time delay cold state
┣──	<u> </u>	1014	Balau	04/4	relay time delay solid state
		INVV		HWA	relay, general
I		HX.	Relay contacts	нха	relay contacts
L		RY	Relay coll	RYA	relay coil
S	Switches	SA	Switch, general	SAA	switch, general
		1		SAM	micro switch
├	<u> </u>	Isc	Switch contacts	SCC	switch contacts
	<u> </u>	ten-	Cuutob digitat abagest	604	
I		30	Switch digital channel	JUA	switch digital channel pressure / vacuum,
┣—		+		L	pressure, level
[SF	Switch flow	SFA	switch flow
		SI	Switch limit	SIA	switch limit
		1		SIE	switch limit electronic
-		-	·		

	Component Category	υ	Component Group Description	υ	Component Type Description
18	Description	Po l		8	
U U			Switch lovel		switch level
		JOL I	Switch level	SLA	
		SM	Switch manual	SMA	switch manual
]		SP	Switch pressure	SPA	switch pressure
		sa	Switch torque	SQA	switch torque
		ST	Switch temperature	STA	switch temperature
T	Transformers	TA	Transformer	TA2	transformer 220/120 V
				TA6	transformer 6kV/380V
		1		TAA	transformer, general
		TI	Transformer instrumentation	TIC	transformer (instrument transformer, current
		1		1	transformer)
┞——┤		+		ТІР	transformer instrument notential
			Transformer auto		autotransformer, general
	l	$\frac{1}{4}$		TUA	
<u> </u>			i ransformer substation		
		<u> </u> ₹V	Iransformer regulating	<u>µva</u>	regulating transformer
1		TX	Transformer for main facility	1	
			supply	L	
		Τ			
U	Other I&C equipment	UC	Controller	UCA	controller
۱ آ	Instrumentation for	-	1	1	
1	experimente	1	1	1	1
	on portinion (s	+		LICE	controller electronic
┣i		+	<u> </u>		flow controller
		<u> </u>			
		+			
		UE	Solid state device	UEH	solid state devices high power application
		\bot		UEL	solid state devices low power application
<u> </u>		<u> </u>		UEY	isolating diode assembly
		UI	Indicating instrument	UIA	analog display
	·····	1		UID	digital instrument
┣	l	+		UIE	indicating instrument electronic
┣		+	t	100	Indication lamp
		+	<u> </u>	LIM	CRT screen monitor
	 	+	<u> </u>		recorder
	ļ	+			
		+	L		other indicating instrument
		UM	Manual control device	UMC	manual control device pushbutton
[UN	Annunciator	UNA	annunciator, general
		1		UNS	annunciator module solid state, LED-, LCD-
	1	1	1	1	display
<u> </u>	t	UR	Reactor scram system	URS	reactor scram system
	<u> </u>	+		1	· · · · · · · · · · · · · · · · · · ·
V-	Valves	VA	Valve air operated		valve air operated
├		+		VAP	valve air operated all evetome evenet
				1.00	water return line
		+		ture	
L	ļ		valve self operated		valve self operated check
		VD	Valve solenoid operated	VDA	valve solenoid operated
		VE	Valve explosive operated	VEA	valve explosive operated
		VH	Valve hydraulic operated	VHA	valve hydraulic operated
		VM	Valve motor operated	VMA	valve motor operated
		VP	Valve piston operated	VPA	valve piston operated
<u> </u>		1		VRA	valve relief
<u> </u>	t	+	1	VSA	valve safety
├──	<u>├───</u> ────	1/14/	Valve without operator	1VMA	valve ande valve
	<u>├</u>	+		1040	
	ł		<u> </u>	VVVB	
┣		+	l	VWG	vaive gate
		\downarrow	L	I MM	valve plug valve
Ľ				VWL	valve globe valve
[VWN	valve needle valve
	l	T	T	VWP	valve diaphragm
<u> </u>	1	1		VWT	valve butterfly valve
	t	-+	t	WWIT	
├	ł	1/1	Valve manual		
┣	<u> </u>	+ *^ -		1VAA	
14.	Shielding	1	Shielder	1	
l [₩]	sineloing and related	WA	Suleiding general	WAA	snieiding general
	mechanics	1	<u> </u>	1	
Ĺ		WF	Shielding irradiated fuel	WFA	shielding irradiated fuel

de	Component Category	de	Component Group Description	de	Component Type Description
ပိ		ပိ		ပိ	
		WX	Shielding of experiments	WXA	shielding of experiments
<u>x</u>	Fuel elements, reflector		ruei, general	XAA	tuel elm., general
			· · · · · · · · · · · · · · · · · · ·	XAM	TDICA (
		-		XAI	TRIGA fuel element, general
		TXR	Reflector, Beryllium	XBW	MIR stand refl.element Be metal
				XBN	MTR stand. refl element Be oxid
		xc	Fuel elm handling tool	XCA	fuel element handling tool, gen.
				XCM	fuel element handling tool, manual
				XCR	fuel element handling tool, remote
		XH	Fuel element HEU	XHA	fuel element HEU general
				XHM	fuel element HEU MTR standard
				XHN	fuel element HEU MTR regulating
				хно	fuel element HEU general
				XHP	fuel element HEU general
		+		хнт	fuel element TRIGA, stand, FLIP
		XM	Fuel element MEU	XMM	
-	<u> </u>	+		XMN	
		+	<u></u>	XMO	
	· · · · · · · · · · · · · · · · · · ·	+		XMP	
			<u> </u>	XMR	fuel element rod type MEU
		- VI	Fuel element FU	YLA	
	<u></u>	- <u> ^-</u>		YLM	
		+			
				ALIN	
				XLU	
				XLP	
				XLT	fuel element TRIGA, stand. LEU
				XLU	fuel element TRIGA, instr. LEU
		XP	Fuel element process tubes	XPA	fuel element process tube, gen.
		XR	Reflector element, graphite	XRM	Refl. element graphite, MTR
				XRT	Refl element graphite, TRIGA
		XT	Flux shaping element	ХТМ	Flux shaping element, MTR
				[
Y	Strainers, filters,	YA	Air filter	YAA	aır filter
	demineralizer				
	<u> </u>	YF	Filter	YFD	demineralizer
		1		YFM	filter liquid, mechanical restriction
	<u> </u>	+	<u> </u>	YFX	lon exchanger filter
	+	YS	Strainer	YSE	strainer / filter
			Intake screen	VTS	Intake screep service water system
1	L	111	Luitave scieen	113	THURS SCIECH SCIVICE WALL SYSTEM

TABLE III.	FAILURE	MODE	CODE	DEFINITIONS
------------	---------	------	------	-------------

Failure mode code	Failure mode
В	Degraded
С	Failure to change position
D	Failure to remain in position
Е	Failure to close
0	Failure to open
F	Failure to function
G	Short to ground
Н	Short circuit
Ι	Open circuit
Q	Plugged
K	Spurious function
R	Failure to run
S	Failure to start
Х	Other critical faults
Y	Leakage
J	Rupture
М	Control rod failure

Note: Detailed definitions of each failure mode (with associated examples) are provided in IAEA-TECDOC-636 [7].

	Australia	Austria	Canada	Ch	lina	Czech Rep
				(PRC-M)	(PRC-H)	
Facility Max Power 1st critical	HIFAR Lucas Heights 10 MW 1958	TRIGA Mark-II Vienna 250 kW 1962	NRU Chalk Rıver 135 MW 1957	MTR China Atomic Inst Beijing 3 5 MW 1965	HWRR China Atomic Inst Beijing 15 MW 1980	LVR 15 Rez/Praha 15 MW 1990
Approx Operating Hours/Year	6500	2000	6500	3200	2600	3000
Main Utilization	Isotope Production, Neutron Activation Analysis (NAA) Silicon Doping Basic&Appl Physics Postdoc Studies	University Training, Education Basic & Applied Research	Isotope Production Materials Testing Basic & Applied Physics	Research Training Isotope Production	Basic & Applied Research Isotope Production	Isotope Production Reactor Eng Exp Materials Testing Silicon Doping
Period of Data Collection	1/85 - 6/93	11/81 - 3/93	1970 - 1993	1/65 - 6/93	7/58 - 6/93	1/91 - 3/93
Total Number of Components Investigated	~ 200	~ 200	~ 100	~ 200	~ 500	18
Data Sources	Maintenance Records	Log Books, Maintenance Records, Operating Exp	Log Books, Maintenance Records, Operating Exp	Log Books, Maintenance Records	Log Books, Maintenance Records	Log Books, Operating Exp
Main Systems of the Components Investigated	ECCS, Confinement Heat Removal System, Confinement Isolation System	RCS&RSS, I&C, Reactor, Sec Cooling, Ventilation System, Fuel, Electrical Power Systems	RCS&RSS, I&C, Reactor, Sec Cooling, Service Systems, Electrical Power Systems	RCS&RSS, I&C, Reactor, Sec Cooling, Fuel, ECCS, Ventilation	RCS&RSS, I&C, Reactor, Sec Cooling, Fuel, ECCS, Ventilation	RCS&RSS, I&C, Reactor, Sec Cooling, Power Supply, Electrical Power Systems

.

TABLE IV. FEATURES OF THE CONTRIBUTING RESEARCH REACTOR FACILITIES AND DATA COLLECTION PROCESS

¹ Systems classified as in Ref [8]

		Indonesia		Slovenia	Switzerland	Vietnam
	(IN-S)	(IN-B)	(IN-Y)	(SLO)	(CH)	(VN)
Facility Max Power 1st critical	MPR-30 Serpong 30 MW 1987	TRIGA Mark-II Bandung 1 MW 1965	TRIGA Mark-II Yogjakarta 100 kW 1979	TRIGA Mark-II Ljubljana 250 kW 1966	MTR Würenlingen 10 MW 1957	IVV-9 Dalat 500 kW 1983
Approx Operating Hours/year	1300	1500	1000	3000	6000	1500
Main Utilization	Isotope Production Reactor Engineer Materials Testing	Education & Training Basic & Applied Physics	Education & Training Basic & Applied Physics	Basic & Applied Research Isotope Production Training & Education	Basic & Applied Research Isotope Production	Basic & Applied Research Isotope Production Training & Education NAA, Silicon Doping
Period of Data Collection	7/87 - 4/93	1/71 - 4/93	1/85 - 4/93	1/85 - 3/93	11/91 - 6/93	2/84 - 10/92
Total Number of Components Investigated	~ 10 000	620	940	~ 200	~ 400	~ 80
Data Sources	Log Books Maintenance Records	Log Books Maintenance Records	Log Books Maintenance Records	Log Books Maintenance Records Operating Exp	Log Books Maintenance Records	Log Books Maintenance Records
Main Systems of the Components Investigated	RCS&RSS, I&C, Reactor andRCS&RSS, I&C, Reactor andReac Cooling Systems, Fuel, Ventilation, Electrical Power SupplyReac Cooling System Fuel, Ventilation Electrical Power Supply		RCS&RSS, I&C, Reactor and Reac Cooling Systems, Fuel, Ventilation, Electrical Power Supply	RCS&RSS, I&C, Reactor and Reac Cooling Systems, Ventilation, Radiation Monitoring, Electrical Power Supply	RCS&RSS, I&C, Reactor and Reac Cooling Systems, Ventilation, Radiation Monitoring, Electrical Power Supply	RCS&RSS, I&C, Reactor and Reac Cooling Systems, Ventilation, Electrical Power Supply, Systems

Systems classified as in Ref [8]

TABLE V. OVERVIEW OF COMPONENT TYPES AND POPULATIONS DOCUMENTED FOR EACH FACILITY

•

		AUS	A		PRC-M	PRC-H	CZ	IN-B	IN-Y	IN-S	SLO	СН	VN	TOTAL
Comp Type Code	Component Type Description	HIFAR	TRIGA- Wien	NRU	MTR	HWRR	LVR 15	TRIGA- Band.	TRIGA- Yogya	MPR30- Siwa	TRIGA- Ljubljana	SAPHIR	IVV9- Dalat	all facilities
AAA	sensor general			T					1	1				0
ACA	sensor core flux							4	4	9			9	26
ACI	ionisation chamber		3	3	8 8	3	12	2	1		4	7		42
ACF	fission counter		1							1	1	2		4
ACS	self powered detector		1					1	1	1		1		1
AFA	sensor flow		2	2				3	4	29	13	5	2	58
AHA	sensor humidity						1		+	T				0
ALA	sensor level		4	1	_		1	1	1	3	1	1	1	10
ALR	sensor pool water level	l.	4	i				· · · · · · · · · · · · · · · · · · ·		4	1	3	1	12
AQC	sensor conductivity		4	i		1		1	1	5	1	3	1	14
AQP	sensor pH-value		1					1	1	2	t	0	,†	4
APA	sensor pressure		2	2				2	1	142	+····	0	,	147
APD	sensor pressure difference						-			52	+	0		52
ARA	aerosol monitor		1							10		1		12
ARG	gamma monitor	17	12	>	4			1	6	17		12		75
ARN	neutron monitor		1					1	1		+			3
ARO	off-gas monitor			,				· · · · · ·	+	3	·	2	+	7
	rad, monitoring alarm unit	<u> </u>	1							+ `	1	1	<u>+</u>	+
ASA	sensor speed	-	·	' 						25	<u></u>		<u>+</u>	
ΔΤΔ	sensor temperature	<u> </u>		<u></u>					7	124	A	15		174
1210		·		<u>'</u>			-	- <u>-</u>	' '	127			<u> </u>	
DCA	hattery charger	<u></u>	+					1		. 0			<u> </u>	+
1000	battery charger solid state	·	1					· • · · · · · · · · · · · · · · · · · ·				<u>+</u>	+	+
BTA	battery		<u> </u>						A				+	14
	battery lead acid accumulator	<u> </u>			2 1	·		² <u> </u>	·	· <u> </u>	·		+	
DTA	battery nickel cadmum accumulator	·		+	2	·			+	+	<u> </u>		+	+
	battory monor caamian aboundator	·								+			+	
CB2	bus 120Vac 220Vac sing phase	·		+	-				+	+		+	+	
	bus 220Vac 380Vac three phase	·		+	1				+		·	2	+	1 11
	bue 6kV	·	<u> </u>	+		+				3		2		+'-'
CDA	bus general power distr	•							·+·····				+	
	bus DC	•	+	+	<u>-</u>								<u> </u>	+
	cable power connection	•	+	+						9				12
		·	<u> </u>	+						+			<u> </u>	10
CUS		•	 	+									<u> </u>	+0
CWA	wire control circuit typical circuit		+					-}			·	·}	<u>]</u>	⁰
	whe control circuit typical circuit,				l l									
LCMC		· <u> </u>	<u> </u>	+				· · ··		l	<u> </u>	<u> </u>	───	<u>+<u>0</u></u>
-			<u> </u>	+		ļ		<u> </u>	ļ	┼────	<u> </u>	<u> </u>		<u> </u>
DEA		·	<u> </u>	<u> </u>		+				<u> </u>	ļ	<u> </u>	<u> </u>	0
DGA	ulesel generator emergency AL	· 	<u> 1</u>	<u> 1</u>	<u>'</u>		1	1	11	<u> </u>	 	ļ	2	20
1											1			0

		AUS	AA	CND	PRC-M	PRC-H	CZ	IN-B	IN-Y	IN-S	SLO	СН	VN	TOTA
Comp. Type Code	Component Type Description	HIFAR	TRIGA- Wien	NRU	MTR	HWRR	LVR 15	TRIGA- Band	TRIGA- Yogya	MPR30- Siwa	TRIGA- Ljubljana	SAPHIR	IVV9- Dalat	all fac
	learning the sed				ļ	ļ	·}	ļ	ļ	<u> </u>			ļ	
EBA	static converter for reactor main							4	11	4340		f	<u> </u>	si
ЕСМ	coolant pumps										,			
		1.												
EHA	air heater				L	ļ				11	Ļ	ļ	ļ	
EHP	pressurizer heater	_ <u></u>				l					L			
EHO	oil heater	_ ·								12				
EHT	heat tracing pipe heater				L				<u> </u>					
EHW	water heater						1			3		1		
EIA	Inverter	<u> </u>			2	2	2			_				
EII	inverter instrument								1					
EIX	inverter static three phase	1.1		3										
EIZ	inverter static single phase		1	6						2		1		
	power supply (instrumentation and				1						1			
EPA	control equipment)	1.1	5		1	1	1 12	2	}	ł				
EPH	high voltage p.s. instr.	1.	4	1		1						1	9)
EPU	uninterruptible p.s. <1kVA	1.1		<u> </u>	1	1	1			·/		1		
ERS	rectifier static			2	f					g	1			
EXA	el equip. for exp. general								1					
FEA	piping expansion joint	+	+	26				1		+	+			-{
FNA	piping nozzle	11		<u></u>		1	r		1		1	-	1	
FNS	piping nozzle spray							1	1	· · · · · · · · · · · · · · · · · · ·			1	
53	3"	+			<u> </u>			138	123	2378		<u> </u>		
ESA	piping straight section	-+	+		<u> </u>	+				1 2070	·			
SM I	piping large, > 3" diameter	-+:		<u>+</u>	<u> </u>			29		1220	<u></u>	 		st
222	piping small. $\leq = 1$ " diameter	-+		<u> </u>		+		20	' 	1144	<u>}</u>	+		<u> </u>
TA		+				+		19	22	122	· · · · · · · · · · · · · · · · · · ·		·	+
WA I	piping welds, general	+		407	ł			<u> </u>	105		<u>' </u>		+	+
EYA		++			<u> </u>				130	10	, 	+		
FYA	gasket			148					136	393		+		+
		J												
GBC	thermal column		1	1	Ļ			11	11		L	<u> </u>		
GBR	beam port, radial			3 13	L	<u> </u>		3	3 3	4 4		5	·	
GBT	beam port, tangential	·	1	1 1				1	1	2		2		
GBL	pool liner		1	1				1	1	• 1		1		
GBS	storage rack for fuel			3				2	2			10		
GSF	storage and transp. cont. Irrad. fuel	1.	1	I				1	1	1		2		
3SH	storage, fresh fuel	1.	6	6		1					T	2		

	1	AUS			PRC-M	PRC-H	icz	IN-B	IN-Y	IN-S	SLO	СН	VN	TOTAL
		+									010			
Comp.			TRIGA-					TRIGA-	TRIGA-	MPR30-	TRIGA-		1009-	
Туре	Component Type Description	HIFAR	Wien	NRU	MIR	HWRR	LVR 15	Band.	Yogya	Siwa	Liubliana	SAPHIR	Dalat	all facilities
Code		}									_,,			
GTA	tank, reactor vessel		1	+	3	+					•		1	4
GTE	expansion tank		1	-						3	1	1		4
				1		1					+			0
HCA	cooling tower general		1			-			2	1				2
HXA	heat exchanger	. 6									12	!	1	19
HXF	heat exch. fuel storage		1	1			1		1	3				3
	heat exch. U tube horizontal shell and	1								1	1			
нхн	tube											2	2	2
	heat exch. straight tube vertical shell							1		1				
нхм	and tube	. 3			8 2	2 2	2		2 2	<u> </u>				21
HXP	heat exch. plate type			1										1
HXR	heat exch. pond heat removal									3	3			3
нхт	heat exch. cleaning system	•												0
ł	heat exch. U tube vertical shell and		Ì											
нхv	tube								1 1	<u> </u>		1		3
												<u> </u>		0
IAA	instrumentation	. 7				60)		1 1	1			15	85
IAR	control rod position indication	·		3									6	8
ICA	instr. ch. analog general	·	ļ		4	F 7	'				L	E	;	16
ICC	instr. ch. analog core flux			3		2 3	12	2	2 4	9	<u> </u>	5 7	9 9	57
ICF	instr. ch. analog flow	·		2	6	5 1			3 4	29)	4	·	49
ICL	instr. ch. analog level	. 4				1	<u> </u>	· · · · · ·	1 1	13	9 9	1		30
ICP	instr. ch. analog pressure	·					· · · · · · · · · · · · · · · · · · ·		2 1	47	'			52
ICS	instr. ch. analog seismic	·								11				11
ICT	instr. ch. analog temperature	3		3		<u> </u>			5 6	40) 	15	برایا	130
IDA	instr. cn. digital, gen	·		<u> </u>			12	2						12
IDC	instr. ch. digital core flux	·		┦							3	·	ļ	1
IDF	Instr. cn. digital flow	·	<u> </u>	·		<u> </u>				<u> </u>		1		1
	instr. ch. digital ever	╬────		+		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		+	0
	instr. ch.oigital pressure	· <u> </u>		+		<u> </u>	<u> </u>			<u>}</u>				0
וטו	instr. ch. digital temp.	· <u> </u>	<u>├──</u>	\$ 			·			 	<u> </u>			8
	core structure general	·	<u> </u>	·			+		+	· · · · · · · · · · · · · · · · · · ·	- 			0
JCA	arid plate	· ··· -		·				<u> </u>		·		<u> </u>		2
JCG	fuel quide tubes	·		<u>-</u>		+	+		+	<u> </u>	+	<u> </u>		2
	clutch electrical	·}·	}	+			<u> </u>	+		<u> </u>	+	<u> </u>		
	clutch mechanical	⁺┝────	<u> </u>	+			<u> </u>	+		<u> </u>	<u> </u>		<u> </u>	
	Heater		·····-				<u> </u>				+		·	
	irradiation container	·	<u> </u>						,		<u> </u>			5
	hydraulic transfer system	·	<u> </u>	+				14	4 6	40	' 		<u> </u>	58
	nonimatic transfer system	· 		<u>, _ ·</u>			+	+	<u></u>	+ <u>-</u>	<u> </u>	<u> </u>		
JIF	prieditione nationer system	•1	1 3	31	11	1	1	1	1 1	1 5	1	1 1	I	1 121

		AUS	A	CND	PRC-M	PRC-H	CZ	IN-B	IN-Y	IN-S	SLO	СН	VN	TOTAL
Comp Type Code	Component Type Description	HIFAR	TRIGA- Wien	NRU	MTR	HWRR	LVR 15	TRIGA- Band	TRIGA- Yogya	MPR30- Siwa	TRIGA- Ljubljana	SAPHIR	IVV9 Dalat	all facilities
JIR	irradiation rig, static		6					1	1	2		9		19
JIS	rotary specimen rig					-								0
JLC	lube oil cooler	1.				_								0
JPE	penetration electrical							2	2					4
JPP	penetration piping							5	2	15		6		28
JTF	tank resin flushing].[1	1	3				5
JTR	tank storage RWST (refueling water storage tank)							2		1		1		4
KAA	circuit breaker, general	•												0
KAC		•					1	1	1					2
KDC	circuit breaker DC	.												0
KIA	circuit breaker indoor AC application	1.1	10	t						408	<u> </u>	<u> </u>	13	431
KID	circuit breaker indoor DC application	1.[1	1	92	<u> </u>		1	92
IN IS	circuit breaker isolation, ground fault		1											1
KBP	circuit breaker reactor protection	<u> ·</u>	15	}		+	+	<u> –</u>	<u> </u>		<u> </u>			17
KSE	feeder (unction box)	·		1					2	1 1	<u> </u>	<u>~</u>	{	5
KTA	fuse all voltage levels		20					3	3	178			3	207
	transmitter general									11			1	0
	transmitter core flux	<u>††</u>	4		<u> </u>	+	+		+				9	13
LEE	transmitter flow		2				<u> </u>			13	ł	5	2	22
	transmitter level				<u> </u>			+		12			1	13
LPP	transmitter pressure		4						··	12		<u> </u>	<u> </u>	16
LTT	transmitter temperature	1.1	9						·	25		15	<u> </u>	49
LXR	transmitter pressure difference					1								0
маа	motor	·					<u> </u>			<u> </u>				0
MAC	motor ac		1		4		<u>†</u>	1	1					6
MAD	motor dc	1.1	1	4				·	<u> </u>					4
MAI	motor AC induction	. 18	в	17				13	13				ļ	61
MGX	motor generator			2			·		<u>-</u>	<u> </u>	+			2
MSS	motor servo	·	3					4	3	8				18
NCA	signal comparator bistable	•			2	! 1	<u> </u>	<u> </u>		L		<u> </u>		0
NCB	personal computer, PC						1	3	2					6
NCD	data acquisition system		2											2

		AUS	4	CND	PRC-M	PRC-H	CZ	IN-B	IN-Y	IN-S	SLO	СН	VN	TOTAL
Comp Type Code	Component Type Description	HIFAR	TRIGA- Wien	NRU	MTR	HWRR	LVR 15	TRIGA- Band	TRIGA- Yogya	MPR30- Sıwa	TRIGA- Ljubljana	SAPHIR	IVV9- Dalat	all facilities
NCH	high quality computer	1.1		1				-		2	2	1	1	4
NCW	workstation computer	1.						-						0
NDA	printer, general	11		2				1						2
NIN	computer network, general	1.							-	1 1	1			1
NKA	computational module	f f			1					3	1	1	1	3
NMA	signal modifier	1.1			E	3 1	8		-				<u> </u>	16
	signal modifier voltage-pneumatic								-					
NMO		╉╬┿┷┷╍				<u> </u>			_		+			
hum	signal mounter current-preumatic		1	1	1		l							
NMP													<u> </u>	
INMS_	signal modifier sugrent surrent						_		_				+	
NMT	transducer													0
	signal modifier current-voltage													
NMV	transducer	·			+									0
<u> </u>	<u></u>	<u> </u>				+				_				0
	signal conditioning system for core flux, level, pressure, temperature general								-		, ,			
NSC	sign, cond, sys, core flux	<u>├</u> ┤			+	+					- -	+		1 16
NSE	sign, cond. sys.flow	⊹⊢−−−−		2	<u> </u>	·			<u> </u>		·		· · · · · · · · · · · · · · · · · · ·	2
NST	sign. cond. sys.temperature	 		9		·			_					9
occ	control rod cruciform, boron carbide control rods													0
OCR	assembly	·		3 18	11		1:	2	4		5			/ 60
ocs	control rod clustered silver, indium, cadmium control rod	.			1			_	_					1
ORA	control rod drive			3 18	10	20	o		4	3 8	3 15	5		7 93
PDA	pump diesel driven						-						1	0
PMA	pump motor driven	·	2	1 16	8 8	8	1 .	4		21	7	·	5	i 64
PTA	pump turbine driven	.			L									0
PWB	pump horiz. 22-820 l/s	·	'	1 10	<u> </u>						<u> </u>	2	·	14
PWC	pump centrifugal	.	8	8	11				4	6) 	L	ļ	37
PWE	pumpi vert. 70-1900 l/s	<u>. </u>		2	2	2	2					2	·	8
PWS	pump			2	·									
QAA	air cooler					+	+		2	2 3	 	+	<u> </u>	7

		AUS	A	CND	PRC-M	PRC-H	CZ	IN-B	IN-Y	IN-S	SLO	СН	VN	TOTAL
Comp. Type Code	Component Type Description	HIFAR	TRIGA- Wien	NRU	MTR	HWRR	LVR 15	TRIGA Band	TRIGA- Yogya	MPR30- Siwa	TRIGA- Ljubljana	SAPHIR	IVV9- Dalat	all facilities
QBF	blower fan	. 9						2	2	33			8	54
QCI	compressor instrument air	. 3	2	7	1			1	1	2				16
QDA	damper			5	1			4		86				95
QDM	damper manual (HVAC)							3	3					6
QFH	unit									15	<u> </u>			15
QFV	fan containment ventilation fan		1	E				1		1	11			17
QVA	hvac unit auxiliary building				1	1				[0
QVB	hvac unit battery room ventilation				1			1		1		1		0
	hvac unit electric equipment area	<u> </u>			1			1						
QVE	ventilation	1.1	ł	Ì		Ì	1	{	1	ł	1	1		1
QVR	hvac unit control room ventilation	1.1	1		T		1		†	1	t	1		2
ovs	hvac unit reactor hall	. 3	2		1	1			†	t		2		7
1		[]		1	1	1	+	1	†	1				0
RAA	relay auxiliary			1				1	<u>↓</u>	·†				0
RAS	solid state relay									39				39
BCA	relay control AC	<u>.</u>		1	1		-	1	1			1		2
BCD	relay control DC		<u> </u>	1 ·				12	12		1	1	· · · · · · · · · · · · · · · · · · ·	24
BCI	relay control	<u>[]</u>	<u> </u>	<u> </u>		<u>† </u>		+	<u> </u>	·	1			0
RPH	relay power 300-460 A							8	8	1				16
RPI	relay power 40-60 A	· · · · · · · · · · · · · · · · · · ·	1		1			10	10	1		1		20
BRA	relay protective	<u> </u>	<u> </u>	1	<u>+</u>	+		4	1				<u> </u>	4
BRE	relay, frequency protection	<u> </u>			1		<u> </u>	·'		67				67
RRO	relay, overload protection		<u> </u>	· <u> </u>	1	1	1		+		1			0
BRV	relay, voltage protection	·		<u> </u>	1	-{		1	<u>f</u>	1	<u> </u>	2	<u> </u>	2
RTA	relav time delav				+	+	+	+		152			6	162
BTB	relay time delay bimetallic				1			1	<u> </u>	31				32
RTP	relay time delay pneumatic				+		+	·	1			1		1
BTS	relay time delay solid state		<u> </u>		t			+	<u> '</u>	+		+		· · ·
RWA	relay, general		<u> </u>	<u> </u>	+		17	2	<u> </u>	939				958
RXA	relay contacts	· · · · · · · · · · · · · · · · · · ·	<u> </u>		†	<u> </u>		1	<u> </u>	- 555		+		1
RYA	relay coll	·			<u>†</u>			6	<u> </u>	<u> </u>		+	[6
			<u> </u>	1	ł			°	<u> </u>	<u>+</u>		+		0
SAA	switch, general	· · · · · · · · · · · · · · · · · · ·	<u> </u>			<u> </u>			┝───	+		+		0
SAM	micro switch		9	1				1	<u> </u>	35		<u> </u>	<u> </u>	44
SCC	switch contacts	·	-	·	<u> </u>			26	<u> </u>				<u> </u>	26
	switch digital channel pressure /	 		+	+	<u> </u>	<u> </u>		<u> </u>	+	<u> </u>	+	<u> </u>	20
					1		1	1		J				
SEA	switch flow	·	·		t			<u> </u>	<u> </u>	+	 		A	
	switch limit	Е О	<u> </u>		+		+		┼────	┼────	<u> -</u>		44	4
SIA				+	+		+	8	 		<u> </u>	<u> </u>		00
	switch level	·	9	+	<u> </u>	<u> </u>	+·	<u>+</u>	<u> </u>	+		<u> </u>		9
SLA_	SANICH IEASI	15	L 3	1	1	1		1	1	9	I		2	30

		AUS	A	CND	PRC-M	PRC-H	CZ	IN-B	IN-Y	IN-S	SLO	СН	VN	TOTAL
Comp Type Code	Component Type Description	HIFAR	TRIGA- Wien	NRU	MTR	HWRR	LVR 15	TRIGA- Band	TRIGA- Yogya	MPR30- Siwa	TRIGA- Ljubljana	SAPHIR	IVV9- Dalat	all facilities
SMA	switch manual		10		-	1		25	14	126	<u> </u>		6	183
SPA	switch pressure	. 3		1					2	8		·		13
SQA	switch torque				+				3		[1	-	3
STA	switch temperature		1	1	+	1		1		1	1		2	2 2
					+						<u> </u>			
TAA	transformer				3			1	1	31	-		-	36
TA2	transformer 220/120 V		1	1	1			1	1	1			-	3
TA6	transformer 6kV/380V		3		2	2		1	1	3			1	11
	transformer (instrument transformer,	·		<u> </u>					<u> </u>					C
TIC	current transformer)							8		431		1		447
TIP	transformer instrument potential	<u>]</u>	+	<u> </u>										0
<u> </u>				<u> </u>										0
					1	1								0
				<u> </u>										C
TVA	regulating transformer	•							11		ļ			1
		·				+			<u></u>					0
UCA	controller				+	+	10			+			E	5 16
UCE	controller electronic					1	1	1	1		1			1
UCF	flow controller			<u> </u>		1				1				0
UCP	controller pneumatic							1	1	1			-	3
UEH	solid state devices high power application	-												0
UEL	solid state devices low power application													0
UEY	isolating diode assembly		1			1			t	1		1	1	0
UIA	analog display		20					11	16	147	,	5	5	199
UID	digital instrument	•	10			1					1	e	3 2	18
UIE	indicating instrument electronic		1		1	1		1	1	1			1	0
UIL	indication lamp		30	[1		26	30	247		200		533
UIM	CRT screen, monitor	•	3						2	2				7
UIR	recorder	•	2				1	1	4	2		12	2 5	26
UIX	other ind. instr.		-		6	1							2	8
UMC	manual control device pushbutton				1	1		1	1	1	1	2	13	17
UNA	annunciator				6			1	1	1	_		1	9
	annunciator module solid state, LED-,				1				<u> </u>	1				1
UNS	LCD-display													0
URS	reactor scram system				4	2		4	3	3		1		17
		·											ļ	0
IVA1	valve air operated		1	1 2	21		1	1	1	1	1		4	2

		AUS	A	CND	PRC-M	PRC-H	CZ	IN-B	IN-Y	IN-S	SLO	СН	VN	TOTAL
Comp Type Code	Component Type Description	HIFAR	TRIGA- Wien	NRU	MTR	HWRR	LVR 15	TRIGA- Band	TRIGA- Yogya	MPR30- Sıwa	TRIGA- Ljubljana	SAPHIR	IVV9- Dalat	all facilities
	valve air operated all systems except													
VAR	raw water return line	[.[{					Í			Í	0
VCA	valve self operated check			8	11	3	3						5	27
VDA	valve solenoid operated	. 17	'											17
VEA	valve explosive operated									_				0
VHA	valve hydraulic operated													0
VMA	valve motor operated	. 3	1	22	. 7		3 2			136		2	6	182
VPA	valve piston operated									_				0
VRA	valve relief													0
VSA	valve safety													0
VWA	valve angle valve													0
VWB	valve ball valve	. 2	2							13				15
VWG	valve gate	.			20)								20
VWJ	valve plug valve	<u>. </u>												0
VWL	valve globe valve	l												0
VWN	valve needle valve	.												0
VWP	valve diaphragm	.												0
VWT	valve butterfly valve	. 5								30				35
VWU	valve nozzle valve													0
VXA	valve manual	. 2	30		10) 74	18	31	31			12	21	229
														0
WAA	shielding general		1						1					2
WFA	shielding irrad. fuel		1											1
														0
														0
XAA	fuel elm., general													0
XAM	MTR fuel elm., general	•										120		120
XAT	TRIGA fuel elm., general													0
XBM	MTR stand. refl.elm. Be metal													0
XBN	MTR stand. refl.elm. Be oxid	·												0
														0
XCA	fuel elm. handling tool, gen.													0
XCM	fuel elm. handling tool, manual	·	1					2						3
XCR	fuei elm. handling tool, remote													0
XHA	fuel elm. HEU general	·												0
хнм		·I												0
XHN		•		I										0
хно														0
XHP														0
XHT	Fuel elm. TRIGA, stand. FLIP		9											9
XMM												1		0

		AUS	A	CND	PRC-M	PRC-H	CZ	IN-B	IN-Y	IN-S	SLO	СН	VN	TOTAL
Comp Type Code	Component Type Description	HIFAR	TRIGA- Wien	NRU	MTR	HWRR	LVR 15	TRIGA- Band	TRIGA- Yogya	MPR30- Siwa	TRIGA- Ljubljana	SAPHIR	IVV9- Dalat	all facilities
XMN						· · · · · · · · · · · · · · · · · · ·	-			<u>+</u>		-		0
ХМО		1.							1	1				0
XMP		1.							1	1				0
XMR	fuel elm. rod type MEU	1.			30)							89	119
XLA	fuel elm. LEU, general	1.			1				1					0
XLM		.						1		58				58
XLN									1	1				0
XLO		1.							1	15	1			15
XLP									1	1	1			0
XLT	Fuel elm. TRIGA, stand LEU		85		1			95	143	1				323
XLU	Fuel elm. TRIGA, instr. LEU		4					1	4					9
XPA	fuel elm process tube, gen.													0
XPM	fission products monitoring system						1						_	
XRM	Refl. elm. graphite, MTR													0
XRT	Refl. elm graphite, TRIGA		16						1	1			1	17
XTM	Tail. elm. MTR standard													0
							T							0
YAA	air filter		50											50
YFD	demineralizer							2		4				6
YFM	filter liquid, mechanical restriction		4	•				2	1	12	1			19
YFX	Ion exchanger filter		1					2	1	10			1	15
YSF	strainer / filter		1					2		23			2	28
YTS	intake screen service water system							1		4				5
														0
[Total	193	3 512	79	5 191	24	5 11	6 630	907	14203	91	1 53	4 329	18743

TABLE VI. SPECIFIC INFORMATION ON COMPONENT TYPES FOR EACH FACILITY

This table provides specific information on component type, in alphabetical order, and component type code for each facility. The information is not intended to provide complete descriptions of components, but does provide some information on the component manufacturer, component design specifics and any test or operational features that the contributors consider relevant. It is recognized that this information does not provide complete descriptions but it nevertheless provides information at a more specific level than the component type descriptions of Table II.

- ACI Trip and control ion chambers TQU (6×10^{-14} A/n) 300 Vdc input
- ARG Gamma monitor (1) actuates Emergency Filter System (AEP 5180 type)
- ARG Gamma monitor (3) actuates EFS system (Eberline type)
- BTL 120×2.15 V cells, Gould 2 banks of 60 cells each, discharge tested twice per year 3 hr mission (degraded failure is failure to complete mission test), failure to run is failure to operate on demand
- CBA Bus 600 Vac
- CBD Bus 115 DC
- CB2 Bus 120 Vac
- DGA Emergency diesel generator (10) (125 to 200 kVA) 6 cyl Cummins & GM, tested once per 4 weeks
- DGA Emergency diesel generator (1) (250 kVa) 6 cyl Cummins, tested once per week
- EIZ Inverter (old) CTS sine wave, AC, static switch bypass, 7.5 kW, input 125 Vdc output 115 Vac
- EIZ Inverter (new) SAB NIFE, 120PW7-5-107, input 120 Vdc, 84 amp, 7.5 kW 120 Vac output 60 cps single phase
- ERS Stativolt silicon diode, 150 kW, 600 V, 3 phase, output 120 Vdc, convection cooled
- FEA Steel expansion bellows, 304 st steel (>15 cm diam), main coolant system
- FSL Piping st steel, 142 m length, > 15 cm diam, (<700 kPa service), main coolant system, 270 welds
- FSM Carbon steel secondary system piping, 120 cm diam, 0.95 cm thick, 536 m total length, <700 kPa service
- FSM Carbon steel 46 cm diam process system piping ≈60 m total length
- FSS St steel instrumentation piping, <1 cm diam, total length approx 200 m (<700kPa service)
- FS3 Carbon steel piping 5 cm process water lines, <700kPa service
- FYA Main coolant system stainless steel piping flange joints (gasket and flange assemblies) 25" diam
- GCB graphite thermal column outside calandria (2.4 m \times 3.2 m \times 3.7 m long)
- GBR Calandria beam hole tube (13), re-entrant tube, leaks requiring replacement
- GBT Calandria elliptical through tube (1) (leaks requiring replacement)
- GTD Calandria (3), Alcan 57SASTM 5052 (leak level sufficient for replacement)
- HXM Heat exchanger 304 stainless steel ≈25 MW, single pass countercurrent shell and tube Andale company, vertical
- JI9 Pneumatic transfer system piping installation (in core and out of core)
- MAD Motor generator set, Westinghouse, shunt wound, 75 kW, 125DC supply 1200 rpm, output 600 Vac 60 cps, 1 operational, 1 stand-by
- OCS Shut off rod, mechanical failure to drop, 18 rods

- OCS Shutoff rod magnet failure to release on de-energization, 18 rods
- ORA Control rod (18) weight (211 kg) 12 cm diam, max speed 15 cm/sec motor Diehl induction 200 watt, 115 Vac
- PMA Hydraulic pumps fuelling machine 6 kW Sperry Controller GE motor 11 kW, 700 rpm variable speed VSG pump
- PMA Main pump AC motors (8), 187 kW, 2300 V, 2 speed AC, 1800 rpm, 60 cps, 3 phase
- PMA Main pump DC motors (4), 15 kW, Westinghouse, DC shunt, 690 rpm, 115 Vdc
- PMA Purification system pump motors (2), AC induction, Westinghouse, vertical, 19 kW, 3600 rpm, 550 V
- PWC Main circulating pumps, centrifugal, 230 kg/s, Ingersoll Rand, (57 m head)
- PWS Purification system pumps (2), Allis Chalmers, 21 kg/s, head 64 m, centrifugal
- QCI Worthington (3), reciprocating, 17 m³/m, discharge pressure 700 kPa, 75 kW English Electric motor, 600 V, 3 phase 60 cps
- QCI Joy Manufacturing (1), 3 stage centrifugal 57 m³/m, 700 kPa discharge pressure, 336 kW Reliance electric motor, 2300 V, 3 phase 60, cycles
- QCI Nash Nytor (3), 11 m³/m, rotary vane water seal, 520 kPag, GE, 110 kW motor 600 V, 3 phase, 60 cps
- QDA Fan dampers (6), butterfly double acting electric solenoid for dampers (monthly test) 5.7 m³/s flow
- QDA Emergency filter system dampers (4), 90 cm diam, pneumatic, flow 6m³/s
- QFV Ventilation fans, Canadian Sirocco Company, 12000 cfm, 5.7 m³/s, 56 kW
- QFV El & C controls fan motors 56 kW, 600 V, 395 rpm fan 1800 rpm motor, 3 phase, double vbelt
- TUA Transformer substation English Electric 500 kVa, 2400/600 V 3p 60 cps delta primary star secondary
- TUA Transformer substation English Electric 1000 kVa, 2400/600 V 3p 60 cps delta primary star secondary
- VA1 emergency check valve, pneumatic operation, 30 cm diam
- VCA Pump discharge check valve, horizontal swing 25 cm tilting dist, dominion
- VMA Main isolating electric operated gate valve 30 cm diam
- VMA Main isolating electric operated gate valve 15 cm diam

ACA	Reuter Stokes Reuter Stokes
EPA	ORTEC
IAA	General Atomic
ICC	General Atomic
ICF	General Atomic
ICL	General Atomic
ORA	General Atomic
РМА	General Atomic
PWC	General Atomic
UIR	General Atomic
VMA	General Atomic

Name of Facility: BEIJING MTR, CHINA

- ICF Flow rate measuring system with indicator
- ICT Temperature measuring system with thermo couple sensor and recorder
- PMA Feed water make-up pump, horizontal motor drive, low flow rate
- PWC Pump motor drive centrifugal, horizontal low head
- VMA Motor operated valve, 200 cm diam
- VXA Manually operated valve, 20 to 40 cm diam
- XMR 16 rod fuel element assembly

- ACA Sensor core flux: Type: KNK-15, KNK-3. Number of sensors: 9 Operational mode: in operation. Time period: 22/2/84 - 31/10/92. Operational time: 13348 hr.
- ATA Sensor temperature. Type: TCP-5076, TCM-5071. Number of sensors: 9. Operational mode: in operation. Time period: 22/2/84 31/10/92.
- EPA Power supplies: 5V, 24V and 48V power supplies
- IAA Control and averaging block, type BM-14R. Automatic regulating block type: BUM-21-R
 AR regulating logic block Shim rod control logic block shim rod drive control relay block safety control logic block safety drive control relay block.
- ICC Channel power measurement of source range, type BIK01. Channel power measurement, intermediate range, type BIK02 Channel power measurement, power range, type BIK03.
- KTA Fuse 6kV, type: PK4-10-160/160/-20IZ. Number of fuses: 3 Operational mode: in operation. Time period: 22/2/84-31/10/92
- ORA AR control rod drive. Type ADP-362. AC-motor, end position contactor, position potentiometer, speed generator, steel cable/drum drive with counter weight.

Shim and safety rod drive, type D-500 MF. DC-motor, magnet, position potentiometer, end position contactor, fiction gear, steel cable and drum drive.

- PMA Primary pump, type 4KG-12K-14-2, flow: 90 m³/hr
 Secondary pump type KM-90/25, flow: 90 m³/h
 Purification system pump, of spent fuel storage, type: XM2/25-K-2V
- QBF Cooling tower fan, type 1 VG-25
 - V-1 fan, type CP 7-40-5
 - V-2, type CT-70-8
 - P-3, type CT-70-8
- VIR Recorder, primary coolant flowmeter type KCU 2-004
 Recorder, secondary coolant flowmeter, type KCU 2-004
 Recorder, temperature type KCM2-028, KCM2-021
- VMA V-1 motor operated valves, type IAO 1009
 - V-2 motor operated valves, type IAO 1009
 - P-3 motor operated valves, type IAO 1009
- VXA Manual valve in reactor cooling primary circuit
 - Manual valve in reactor cooling secondary circuit
 - Manual valve in the reactor purification system, manual valve in purification system of spent fuel storage

Name of Facility: KARTINI, INDONESIA

ACA	Reuter Stokes
EPA	ORTEC
IAA	General Atomic
ICC	General Atomic
ICF	General Atomic
ICL	General Atomic
ICT	Leader
ORA	General Atomic
PMA	General Atomic
PWC	General Atomic
UIR	Honeywell

•

- ACA Fission chambers wide-band RJ-1300 for startup channels and fission chambers RWKJ-81c for other (log, lin. and power protection) channels Manufacturer: IBJ Swierk, Poland
- EPA Power supply ZRM-6B3 Manufacturer: IBJ Swierk, Poland
- ICC Startup (TIP-GB2), lin. TPP-6B12, log. TPL-6B12 and power protection channels (linear scale) Manufacturer: IBJ Swierk
- ORA Control electronic unit UR-70 Manufacturer Skoda, Czech Republic
- PMA Main and emergency pumps 150-NHD-250-55-7C-20-09 (META34 YC-AC motor; META 34 DC motor) Manufacturer SIGMA, Czech Rep.
- VMA Gate valve type C23-204-040-200 (DN 200), C23-204-040-300 (DN 300). Manufacturer Skoda, Czech Rep.

Name of Facility: TRIGA LJUBLJANA, SLOVENIA (SLO)

- ICC Compensated ion chamber (LOG channel) sensitivity: 2×10^{-14} amp/nv Manufacturer H&B (Hartman & Brown)
- ICC Uncompensated ion chamber (LIN channel) sensitivity 7.7×10^{-15} amp/nv Manufacturer: H&B (Hartman & Brown)
- ICC Compensated ion chamber (startup) 5×10^{-5} watt to 50 watt Manufacturer: H&B (Hartman & Brown)
- ORA Rod drive mechanism Rod drive mechanism has a selection switch for setting operating mode stationary (continuous) or pulse. The power level in stationary mode is manually by a twelve position switch on the control panel
- PWC Primary coolant pump, flow: 70 m³/h, head: 20 m.
 Centrifugal AC motor driven pump, motion line diameter of 5 cm, discharge line diameter of 4 cm
- PMA Water tower pump, flow: 23 m³/min, discharge line diameter: 10 cm

Name of Facility: SAFIR, SWITZERLAND

- ACA Ionization chamber 20th century RC6EB
- ARA Aerosol monitor LBxxxx Berthold
- EPA Gutdoor 220V 50Hz 10U VA 30 min
- IAA EIR op amp channel
- ICC Merlin, Gerin, transistorized equipment, lin DC-channels
- ICF Fischer & Porter magneto-dynamic flow meter channel, 51/s
- PWC motor driven pump, vertical 201/s, 4 kW
- YFZ mixed bed ion exchanger 1201 Lewatit (M500 + S 100)

Name of Facility: TRIGA VIENNA, AUSTRIA

- ACA Compensated ionization chamber: RC6EB, 20th century
- ARA Hartmann & Braun, GM counter with filter (1975)
- EPA Hartmann & Braun HR Series, (1968)
- IAA Hartmann & Braun HR Series, 5 nuclear channels (1968)
- ICC Hartmann & Braun HR linear channel (1968)
- ICF (1) Flow channel for primary cooling circuit: up to 30 m³/h (2) Flow channel for purification flow: up to 3 m³/h
- ICL Hartmann & Braun HR-Series (1968)
- ICT Hartmann & Braun HR-Series (1968)
- KTA Fuses in each circuit of RSS, IC system
- ORA BODINE Motor, General Atomic, rod drives for shim., reg. and transient rod
- PMA (1) Primary pump: 11 kW, flow up to 30 m³/h
 (2) Purification pump: 2 kW, flow up to 3 m³/h
- UIR AEG (1968), 2 recorders, type CL 20, CL 21
- VMA Motor operated valve to close secondary water supply, pipe diameter 80 mm
- VXA Manual valves in primary and secondary coolant, pipe diameter 80 mm

TABLE VII. COMPONENT RELIABILITY DATABASE

Table VII provides the raw component reliability data and associated calculated reliability parameters. Specific definitions of the information in each column is provided.

Code	3 letter component type code from Table II reference listing
Component type description	A description of the component type
Reactor code	The alphanumeric code of Table IV, row 1, which identifies the reactor facility for the component type
Components	The total number of component types for which data are available for a given facility
Calendar time	The cumulative component (x) calendar time for the specific component type (component calendar hours)
Operating time	The cumulative component (x) operating time for the specific component type (component operating hours)
Demands	The cumulative component (x) demands to operate for the specific component type (component demands)
Failure mode	The failure mode code for the component type from Table III
Failures	The number of failures of a given failure mode, corresponding to either the cumulative calendar time, cumulative operating time or the cumulative number of demands
Failure rate	The number of failures per million hours, the number of failures per cumulative million operating hours or per cumulative million calendar hours. For certain components: piping and piping welds. The failure rate units are quoted in failures per h and failures per m.h and failures per weld.h
Demand failure rate ¹	The failure per cumulative number of demands
Failure rate 90% confidence bounds	The 5% and 95% confidence bounds for either the failure rate or the demand failure rate, based on Ref. [7]. For zero failures only the 95% bound is quoted

¹ For zero failures the corresponding chi-square 50% statistical prediction $\chi^2(0.50,2)/2T$ is used where T is the total time or total number of demands.

code code # Mil.h Mil.h # oric deg # 1e-6/h 1/demand 5% 95% ACA sensor general . A 3 0.227 F B 1 8.3 . 1.2 15.9 ACA			Reactor	Components	Cummulative calendar time	Cummulative operating time	Demands	Failure	modes	Failures	Failure rate	Failure probability	90% Confide	nce bounds
AAA sensor general .	code component type descript	tion	code	#	Mill.h	Mill. h	#	crit	deg	#	1e-6/h	1/demand	5%	95%
ACA sensor core flux I A 3 0.297 F 2 6.7 1.2 15.9 ACA IN-Y 4 0.282 F 1 8.3 2.7 7.48.9 ACA IN-Y 4 0.282 F 1 3.5 0.2 10.6 ACA IN-B 4 0.483 F 10 20.7 11.2 37.4 ACA IN-B 4 0.483 F 10 20.7 11.2 37.4 ACA IN-B 4 0.483 F 10 20.7 11.2 37.4 ACA Choinstain chamber CZ 12 0.076 C 4 52.9 6.6 11.3.8 ACA sensor flow VN 2 0.057 F 3 53.0 56.4 113.8 AFA sensor flow VN 2 0.677 F 8 1.7 0.8 22.5 AFA sensor flow VN 2 0.167 F 8 1.7 0.8 22.5 AFA	AAA sensor general		•											
ACA VN 9 0.120 B 1 8.3 2.7 24.9 ACA IN-S 9 0.603 F 1 3.5 0.2 10.6 ACA IN-S 9 0.603 F 10 0.0 4.3 17.4 ACA IN-S 9 0.076 C 4 52.9 35.4 102.6 ACG Instain chamber C 1 0.076 C 4 52.9 35.4 102.6	ACA sensor core flux		. <u> </u>	3	0.297			F		2	6.7	-	1.2	15.9
ACA IN-Y 4 0.282 F 1 3.5 . 0.2 10.6 ACA IN-8 9 0.603 F 6 10.0 .4.3 17.4 ACA IN-8 4 0.483 F 10 20.7 . 11.2 32.5 ACI ionisation chamber . C 10.6 C 4 52.3	ACA		. <u>VN</u>	9		0.120			В	1	8.3	-	2.7	24.9
IN-S 9 0.603 F 6 10.0 - 4.3 17.4 ACI ionisation chamber .C2 12 0.076 C 4 52.9 .36.4 102.6 ACI ionisation chamber .C2 12 0.076 C 4 52.9 .36.4 102.6 ACF fission counter 	ACA		. IN-Y	4	0.282			F		1	3.5	-	0.2	10.6
ACA . IN-B 4 0.483 F 10 20.7 . 11.2 32.5 ACI ionisation chamber .CZ 12 0.076 C . 45.9 . 36.4 102.6 ACI CN0 8 2.220 F .		!·	. IN-S	9	0.603			F		6	10.0	-	4.3	17.4
ACI Ionisation Chamber CZ 12 0.076 C 4 52.9 36.4 102.6 ACF fission counter .	ACA		. IN-B	4	0.483			F_		10	20.7	· .	11.2	32.5
ACI CND 8 2.220 F 1 0.5 . 0.0 1.3 ACS self powered detector .	ACI ionisation chamber		. CZ	12		0.076		C		4	52.9	· .	36.4	102.6
ACF fission counter .	ACI		CND	8	2.220			F		1	0.5		0.0	1.3
ACS self powered detector CH 3 0.042 X 2 46.0 - 6.5 113.8 AFA sensor flow VN 2 0.057 F 3 53.0 - 36.4 111.2 AFA sensor flow IN-S 70 4.687 F 5 17.7 - 7.0 32.5 AHA sensor level IN-S 70 4.687 F 8 1.7 - 0.8 2.8 ALA sensor level CH 12 0.167 B 1 6.0 - 0.3 18.0 ALA CH 12 0.167 X 1 6.0 - 0.3 18.0 ALA CH 12 0.167 X 1 6.0 - 0.1 12.7 ALA IN+S 38 2.544 F 1 8.3 - 0.4 24.8 ALR sensor polwater level VN 1 0.025 F 0 28.2 - 0.0 121.7 0.02	ACF fission counter		·					L			-	-		-
ArA sensor flow . VN 2 0.057 F 3 53.0 36.4 111.2 ArA . IN-Y 4 0.282 F 5 17.7 . 7.0 32.8 ArA sensor humidity .	ACS self powered detector		CH	3	0.042			<u>×</u>		2	48.0		8.5	113.8
AFA . IN-Y 4 0.282 F 5 17.7 - 7.0 32.5 AHA sensor humidity .	AFA sensor flow	<u> </u> .	<u> VN</u>	2		0.057		F		3	53.0		36.4	111.2
HA Sensor humidity IN-S 70 4.687 F 8 1.7 - 0.8 2.8 ALA sensor level I CH 12 0.167 B 1 6.0 - <		ŀ	IN-Y	4	0.282			F		5	17.7		7.0	32.5
NHA sensor level .			IN-S	70	4.687			F		8	1.7	ļ	0.8	2.8
ALA END 0.167 B 1 6.0 0.3 18.0 ALA . CH 12 0.167 K 7 42.0 . 19.7 71.0 ALA . CH 12 0.167 X 1 6.0 . 0.3 18.0 ALA . IN-S 38 2.544 F 10 3.9 . 2.1 6.2 ALA . IN-S 38 2.544 F 10 3.9 . 0.4 24.8 ALA . IN-S 38 2.544 F 0 28.2 . 0.0 16.0 . 1.1 12.7 ALA Sensor pool water level . IN-S 5 0.335 F 2 16.0 . 1.1 1.1 1.1 2.4 ACP sensor pressure difference . IN-S 142 9.508 F 16 1.7 . 1.1 1.2 4. PD sensor pressure difference 	AHA sensor humidity	!·					L					ļ <u>-</u>	L -	-
ALA CH 12 0.167 K 7 42.0 - 19.7 71.0 ALA . CH 12 0.167 X 1 6.0 - 0.3 18.0 ALA . IN-S 38 2.544 F 10 3.9 - 2.1 6.2 ALA . IN-S 38 2.544 F 10 3.9 - 2.1 6.2 ALA . IN-S 38 2.544 F 0 28.2 . 0.0 121.7 ALA . IN-S 5 0.335 F 2 6.0 . 1.1 14.2 ACC sensor conductivity . IN-S 12 0.134 F 2 16.0 . 1.1 14.2 APD sensor pressure difference . <	ALA sensor level		CH	12	0.167	Ļ			B	<u> 1</u>	6.0		0.3	18.0
ALA CH 12 0.167 X 1 6.0 - 0.3 18.0 IN-8 38 2.544 F 10 3.9 - 2.1 6.2 ALA IN-8 1 0.121 F 1 8.3 - 0.4 24.8 ALA IN-8 1 0.025 F 0 28.2 - 0.0 121.7 ALG sensor pol-value IN-S 2 0.335 F 2 6.0 - 1.1 14.2 ADP sensor pressure IN-S 142 9.508 F 16 1.7 - 1.1 2.4 PD sensor pressure IN-S 142 9.508 F 16 1.7 - 1.1 2.4 RA sensor pressure difference - - - - - - - - 1.2 6.6 47.8 2.0 1.439.3 - 953.8 2006.3 47.8 </td <td></td> <td>!</td> <td></td> <td>12</td> <td>0.167</td> <td></td> <td></td> <td><u> </u></td> <td>ĸ</td> <td>7</td> <td>42.0</td> <td></td> <td>19.7</td> <td>/1.0</td>		!		12	0.167			<u> </u>	ĸ	7	42.0		19.7	/1.0
Im-S 38 2.544 F 10 3.9 - 2.1 6.2 ALA IN-B 1 0.121 F 1 8.3 - 0.4 24.8 ALR sensor conductivity IN-S 5 0.335 F 0 28.2 - 0.00 121.7 ACC sensor conductivity IN-S 2 0.134 F 2 6.0 - 1.1 14.2 APA sensor pressure IN-S 142 9.508 F 16 1.7 - 1.1 2.4 APD sensor pressure difference -		ŀ		12	0.167	···		×	ļ	1	6.0		0.3	18.0
ALA IN-B I 0.12 F I 8.3 - 0.4 24.8 Alk B ensor pool water level IN-S 5 0.335 F 0 28.2 - 0.0 11 14.2 AGC sensor pool water level IN-S 5 0.335 F 2 6.0 - 1.1 14.2 AGC sensor pressure IN-S 2 0.134 F 2 6.0 - 1.1 14.2 ADP sensor pressure IN-S 142 9.508 F 16 1.7 - 1.1 24.8 ADP sensor pressure IN-S 142 9.508 F 16 1.7 - 1.1 24.8 ADP sensor pressure IN-S 142 9.508 F 16 1.7 - 1.1 24.8 ADP sensor pressure IN-S 140.014 F 1 20.0 3.7 215.6 <th< td=""><td></td><td>ŀ</td><td>IN-S</td><td>38</td><td>2.544</td><td></td><td></td><td>F</td><td></td><td>10</td><td>3.9</td><td>Ļ</td><td>2.1</td><td>6.2</td></th<>		ŀ	IN-S	38	2.544			F		10	3.9	Ļ	2.1	6.2
ALT Sensor pool water revel . VN 1 0.025 F 0 28.2 - 0.0 121.7 AGC sensor conductivity . IN-S 5 0.335 F 2 6.0 - 1.1 14.2 AGC sensor pressure . IN-S 2 0.134 F 2 6.0 - 1.1 14.2 AGP sensor pressure . IN-S 142 9.508 F 16 1.7 - 1.1 2.4 ARA sensor pressure difference .				1	0.121			<u>+</u>			8.3		0.4	24.8
AUL sensor conductivity IN-S 5 0.330 F 2 6.0 - 1.1 14.2 ADP sensor pressure IN-S 142 9.508 F 16 1.7 - 1.1 2.42 APA sensor pressure IN-S 142 9.508 F 16 1.7 - 1.1 2.42 APA sensor pressure IM-S 142 9.508 F 16 1.7 - 1.1 2.42 APA sensor pressure difference -	ALR sensor pool water level			1		0.025	·····	F	·· ··	0	28.2		0.0	121.7
Aur sensor pressure IN-S 2 0.134 F 2 14.9 - 2.7 35.4 NPA sensor pressure IN-S 142 9.508 F 16 1.7 - 1.1 2.4 NPD sensor pressure difference -	AUC sensor conductivity	·	IN-S	5	0.335					2	6.0	ļ	1.1	14.2
NPA sensor pressure . IN-S 142 9.08 F 16 1.7 - 1.1 2.4 NPD sensor pressure difference .	AUP sensor pH-value	·		2	0.134					2	14.9		2.7	35.4
NPD sensor pressure arrience -	APA sensor pressure	<u> </u>	114-2	142	9.508			⊢ –		16	1.7		1.1	2.4
ARA aerosol monitor I U.014 F I 72.0 - 3.1 210.5 NRA . CH 1 0.014 R 20 1439.3 - 953.8 2006.3 NRA . A 1 0.099 F 2 20.2 - 3.6 47.8 NRA . SLO 1 0.044 F 2 46.0 - 8.2 109.1 NRA . SLO 1 0.044 K 1 23.0 - 1.2 68.9 NRG . CH 12 0.167 X 5 30.0 - 1.8 54.9 NRG . CH 12 0.167 K 61 365.8 - 292.3 446.1 NRG . CH 12 0.167 F 1 6.0 - 0.3 18.0 NRG . CH 12 0.167 F 1 6.0 - 0.3 18.0 NRG	APU Isensor pressure difference	e .										ļ	-	-
Nnn Curr I Outr R 20 1439.3 - 953.8 2000.3 NRA . A 1 0.099 F 2 20.2 - 3.6 47.8 NRA . SLO 1 0.044 F 2 20.2 - 3.6 47.8 NRA . SLO 1 0.044 F 2 246.0 - 8.2 109.1 NRA . SLO 1 0.044 K 1 23.0 - 1.2 68.9 NRG . CH 12 0.167 X 5 30.0 - 11.8 54.9 NRG . CH 12 0.167 K 61 365.8 - 292.3 446.1 NRG . CH 12 0.167 F 1 6.0 - 0.3 18.0 NRG . A 12 0.167 F 2 1.7 - 0.3 40.9 NRG . <td></td> <td></td> <td></td> <td></td> <td>0.014</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>1420.2</td> <td>-</td> <td>3./</td> <td>213.0</td>					0.014				0		1420.2	-	3./	213.0
NRA N. 1 0.039 r 2 20.2 - 3.6 47.6 NRA SLO 1 0.044 F 2 46.0 8.2 109.1 NRA SLO 1 0.044 K 1 23.0 - 1.2 68.9 NRG gamma monitor CH 12 0.167 X 5 30.0 - 11.8 54.9 NRG CH 12 0.167 K 61 365.8 292.3 446.1 NRG CH 12 0.167 F 1 6.0 - 0.3 18.0 NRG CH 12 0.167 F 2 1.7 - 0.3 40.0 NRG A 12 1.190 F 2 1.7 - 0.3 40.0 NRG AUS 17 1.258 F 10 7.9 4.3 12.5 15.5 <t< td=""><td></td><td> [·</td><td></td><td><u> </u></td><td>0.014</td><td></td><td></td><td></td><td>11</td><td>20</td><td>1439.3</td><td>-</td><td>903.8</td><td>2000.3</td></t<>		[·		<u> </u>	0.014				11	20	1439.3	-	903.8	2000.3
NRA . SLO 1 0.044 F 2 40.0 . 8.2 103.1 NRA . SLO 1 0.044 K 1 23.0 1.2 68.9 NRG gamma monitor . CH 12 0.167 X 5 30.0 11.8 54.9 NRG . CH 12 0.167 X 5 30.0 11.8 54.9 NRG . CH 12 0.167 X 5 30.0 11.8 54.9 NRG . CH 12 0.167 K 61 365.8 292.3 446.1 NRG . CH 12 0.167 F 1 6.0 0.3 18.0 NRG . CH 12 0.167 F 1 6.0 0.3 18.0 NRG . AUS 17 1.258 F 10 7.9 43.3 12.5 NRG . AUS 17 1.258 B 13 10.3 6.1 15.5 NRG . CND 3 0.026		ŀ			0.099					2	20.2	-	3.0	1/10 1
ARG gamma monitor . CH 12 0.167 X 5 30.0 - 11.8 54.9 ARG gamma monitor . CH 12 0.167 X 5 30.0 - 11.8 54.9 ARG . CH 12 0.167 K 61 365.8 - 292.3 446.1 ARG . CH 12 0.167 B 3 18.0 - 4.9 37.8 ARG . CH 12 0.167 F 1 6.0 0.3 18.0 ARG . CH 12 0.167 F 1 6.0 0.3 18.0 ARG . A 12 1.190 F 2 1.7 0.3 4.0 ARG . AUS 17 1.258 F 10 7.9 - 4.3 12.5 RG . AUS 17 1.258 B 13 10.3 - 6.1 15.5 RG <td></td> <td> ŀ</td> <td></td> <td></td> <td>0.044</td> <td></td> <td></td> <td></td> <td>ĸ</td> <td>2</td> <td>40.0</td> <td></td> <td>0.2</td> <td>68 0</td>		ŀ			0.044				ĸ	2	40.0		0.2	68 0
ARG . CH 12 0.167 K 61 365.8 292.3 446.1 ARG . CH 12 0.167 B 3 18.0 4.9 37.8 ARG . CH 12 0.167 B 3 18.0 4.9 37.8 ARG . CH 12 0.167 F 1 6.0 0.3 18.0 ARG . CH 12 0.167 F 1 6.0 0.3 18.0 ARG . A 12 1.190 F 2 1.7 0.3 4.0 NRG . AUS 17 1.258 F 10 7.9 4.3 12.5 NRG . AUS 17 1.258 F 4 114.2 39.0 221.3 RG . CND 3 0.026 O 26.7 0.0 15.2 RG 	ABG Igamma monitor		CH	12	0.044			×	<u> </u>	E E	23.0	L	11.2	54 9
ARG . CH 12 0.107 B 305.0 252.5 405.8 ARG . CH 12 0.167 B 3 18.0 4.9 37.8 ARG . CH 12 0.167 F 1 6.0 0.3 18.0 ARG . CH 12 0.167 F 2 1.7 0.3 4.0 ARG . AUS 17 1.258 F 10 7.9 4.3 12.5 NRG . AUS 17 1.258 F 10 7.9 6.1 15.5 RG . CND 1 0.035 F 4 114.2 39.0 221.3 RG . CND 3 0.026	ABG	¦`	СН	12	0.167				ĸ	61	365.9		292.3	446 1
NRG . <td< td=""><td>ARG</td><td></td><td>СН</td><td>12</td><td>0.167</td><td></td><td></td><td> </td><td>R</td><td>3</td><td>18.0</td><td></td><td>49</td><td>37.8</td></td<>	ARG		СН	12	0.167				R	3	18.0		49	37.8
ARG A 12 1.190 F 2 1.7 0.3 4.0 NRG AUS 17 1.258 F 10 7.9 4.3 12.5 NRG AUS 17 1.258 F 10 7.9 4.3 12.5 NRG AUS 17 1.258 F 10 7.9 4.3 12.5 NRG CND 1 0.035 F 4 114.2 39.0 221.3 RG CND 3 0.026 0 26.7 0.0 115.2 RG AUS 17 1.258 K 13 10.3 6.1 15.5 RG CND 3 0.026 0 26.7 0.0 115.2 RG AUS 17 1.258 K 13 10.3 6.1 15.5 RN neutron monitor Intervention Intervention Intervention Intervention Intervention Intervention RO off-gas monitor Intervention Intervention Interventio	ARG		CH	12	0.167			F		1	6.0		0.3	18.0
NRG . AUS 17 1.258 F 10 7.9 4.3 12.5 NRG . AUS 17 1.258 F 10 7.9 4.3 12.5 NRG . AUS 17 1.258 B 13 10.3 - 6.1 15.5 NRG . CND 1 0.035 F 4 114.2 39.0 221.3 RG . CND 3 0.026	ARG	<u> </u> .		12	1 190			F		2	1 7		0.3	4.0
NRG . AUS 17 1.258 B 13 10.3 - 6.1 15.5 NRG . CND 1 0.035 F 4 114.2 39.0 221.3 RG . CND 3 0.026 0 26.7 0.0 115.2 RG . AUS 17 1.258 K 13 10.3 - 6.1 15.5 RG . CND 3 0.026 0 26.7 0.0 115.2 RG . AUS 17 1.258 K 13 10.3 - 6.1 15.5 RN neutron monitor RO off-gas monitor . </td <td>ARG</td> <td>ł:</td> <td>AUS</td> <td>17</td> <td>1 258</td> <td></td> <td></td> <td>F</td> <td></td> <td>10</td> <td>7 9</td> <td></td> <td>4 3</td> <td>12.5</td>	ARG	ł:	AUS	17	1 258			F		10	7 9		4 3	12.5
Instruction	ARG		AUS	17	1 258			'	R	13	10.3		6.1	15.5
RG CND 3 0.026 0 26.7 0.0 115.2 RG . AUS 17 1.258 K 13 10.3 6.1 15.5 RN neutron monitor . <td< td=""><td>ARG</td><td></td><td>CND</td><td></td><td>0.035</td><td></td><td></td><td>F</td><td></td><td>4</td><td>114 2</td><td></td><td>39.0</td><td>221.3</td></td<>	ARG		CND		0.035			F		4	114 2		39.0	221.3
RG . AUS 17 1.258 K 13 10.3 - 6.1 15.5 RN neutron monitor .	ABG			3	0.026			<u> </u>		- n	26.7		0.0	115.2
Image: Second	ARG		AUS	17	1 258		···	├	<u>к</u>	12	10.7		6.0	15.5
RO off-gas monitor .	ABN neutron monitor	`							<u> </u>					
RU radiation monitoring alarm unit	ABO off-gas monitor	†												
	ARU radiation monitoring alarm	n unit	<u>├──</u>								_			-

		Reactor	Components	Cummulative calendar time	Cummulative operating time	Demands	Failure	e modes	Failures	Failure rate	Failure probability	90% Confide	nce bounds
code	component type description	code	#	Mill.h	Mill. h	#	crit	deg	#	1e-6/h	1/demand	5%	95%
ASA	sensor speed	•					L					•	
ATA	sensor temperature	. SLO	1		0.020			ĸ	1	50.0	-	34.8	149.8
ATA		. VN	9		0.120		F	L	0	5.8	-	0.0	24.9
ATA		. IN-B	6	0.725			F		1	1.4	-	0.1	4.1
ATA		. IN-S	124	8.303			F		13	1.6	·	0.9	2.3
		•					ļ				•	<u> </u>	
BCA	battery charger	•					ļ	<u> </u>	ļ	-	ļ:		-
BCS	battery charger solid state	·				 _		 		-	<u> </u>	-	-
BIA	battery	. CZ	4	0.025			<u> </u>	 		27.5		0.0	118.9
BIA		. IN-S	164	10.981			F	ļ	111	10.1		8.6	11.7
BIL	battery lead acid accumulator	PRC-M	<u> </u> !	0.073			F	ļ	4	54.7	-	18.7	106.1
	battery lead acid accumulator		<u> </u>	0.088		12	<u>В/н</u>	_	0	7.9	0.056	0.0	34.2
BIL	Dattery lead acid accumulator	CND	_	0.219		ļ	F		<u> </u>	4.6	-	0.2	13.7
	hua 1201/aa 2201/aa aina	•					ļ	ļ	ļ	ļ	ļ		<u> </u>
CD 2	bus 120vac , 220vac sing.	·	,	0.014					,	72.0		27	215 6
	phase			0.014			<u> </u>			/2.0		3.7	215.0
CB2	hue 220V/ac 280V/ac three phace			0.300	0.225		E		0	2.3	·	0.0	13.3
CBS	bus 6kV				0.225					3.1		0.0	13.5
CBA	bus onv		<u> </u> 1	0 300					o			- 0.0	10.0
CBD	bus DC		- 2	0.300	0.027	<u> </u>	F	<u> </u>		2.5		0.0	111.4
CCP	cable power connection		10	}	0.027	<u> </u>		·	0	25.0		0.0	4.0
ccs	cable signal (supervisory)	· · · · · ·	<u>+</u>		0.751		·			0.0		- 0.0	4.0
CWA	wire	•							· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	-	
cwc	wire control circuit typical circuit, several joints	•								-	-	-	
		•								-	-	-	-
DEA	diesel engine	·					L			-	-	· .	-
DGA	diesel generator emergency AC	. <u>CZ</u>	1		0.006					110.0	-	0.0	475.5
DGA		<u>. VN</u>	2			1606		ļ	10	·	0.003	0.0	0.0
DGA		. VN	2		0.024	L			17	702.2		641.5	1003.8
DGA				0.201			F		7	34.8	-	16.4	59.0
DGA	125 to 200 kVA				0.00	4250			149		0.004		0.0
DGA	125 to 200 kVA		10		0.004		R		27	6818.2		4000.0	9110.3
DGA	250 KVA		1			1123			8	-	0.007		0.0
DGA			1		0.00068		R	Į	5	7309.9	ļ	5000.0	13382.3
EBA	switchgear panel'	. cz	12		0.076		1		2	26.5	<u> </u>	- 15.4	62.7
EBA		IN-Y	4		0.070		F		5	- 20.0			
EBA		IN-B	4	0 483			F		1	21	+	0.1	
FRA		IN-S	4340	290 606						2.1	<u>↓</u>	0.1	

		Reactor	Components	Cummulative calendar time	Cummulative operating time	Demands	Failure	modes	Failures	Failure rate	Failure probability	90% Confide	nce bounds
code	component type description	code	#	Mill.h	Mill. h	#	crit	deg	#	1e-6/h	1/demand	5%	95%
	static converter for reactor main	· · · · · · · · · · · · · · · · · · ·											
ECM	coolant pumps									•		-	-
EHA	air heater	. IN-S	11	0.737		[F		4	5.4	<u> </u>	1.9	10.5
EHP	pressurizer heater	. <u></u>								-	<u> </u>	•	-
EHO	oil heater	<u></u>	ļ						<u> </u>	-		·	-
EHT	heat tracing pipe heater	<u></u>			1	L				-	<u> </u>	-	-
EHW	water heater	· 			<u>_</u>					-	<u> </u>	•	-
EIA	inverter					[-	<u> </u>	•	
EII	inverter instrument							[-	-	-	-
EIX	inverter static three phase	·	I			1				-	-	·	
EIZ	inverter static single phase (old)	. CND	3	0.122			F		24	196.7	-	135.6	267.1
EIZ	inverter static single phase (new)	CND	3	0.060	·		F		1	16.7	<u> </u>	0.9	49.9
EPA	power supply (instrumentation and	. CH	1	0.006			F		1	181.8	•	9.3	544.7
EPA		. CH	1	0.014	·			В	1	72.0	· · · · · · · · · · · · · · · · · · ·	3.7	215.6
EPA		. CZ	12		0.076			В	4	52.9	<u> </u>	36.4	102.6
EPA		. <u>A</u>	4	0.397			F		2	5.0	· [•	0.9	12.0
EPA	1	. VN	8	L	0.107		F		4	37.5	<u> </u>	24.1	72.6
EPA		. VN	8			7511	F		37	-	0.001		0.0
EPA		. VN	8		0.107			В	1	9.4	-	3.3	28.1
EPH	high voltage p.s. instr.	. VN	9	<u> </u>	<u> </u>	9657	F		2		0.00002	: <u> </u>	0.0
EPH		. VN	9	<u> </u>	0.120			В	2	16.6	Γ	8.0	39.5
EPU	uninterruptible p.s. <1kVA	•								-	-		_
ERS	rectifier static	. CND	2		0.175		F		2	11.4	-	4.6	27.1
EXA	el.equip. for exp. general								Γ	•		·	-
		•		-						•	-	-	-
FEA	piping expansion joint	. IN-Y	2		0.141		Y		2	14.2		6.6	33.7
FEA		CND	26	7.500			Y/J		0	0.09	-	0.0	0.4
FNA	piping nozzle				<u> </u>					-	•	-	•
FNS	piping nozzle spray	•			<u> </u>					•	-	-	•
FRA	bursting disk	. AUS	2	0.148			Y		2	13.5	·	2.4	32.0
FS3	piping medium, 1" < diameter	. IN-Y	10	0.705			Y		1	1.4	-	0.1	4.2
FS3		. IN-S	237	15.870			Y		8	0.5	<u> </u>	0.3	0.8
FS3	carbon steel	CND		0.270					<u> </u>	2.6	-	0.0	11.1
FSA	piping straight section	•								-	-	•	•
	st. steel piping large, 137m, 270	T	-						T				
FSL	welds		L	0.270		ļ		Ļ		2.6	-	0.0	
FSM	piping large, > 3" diameter	<u></u>	9		0.131		Y	l	2	15.3	-	7.3	36.3
FSM	·	IN-B	3	0.363		ļ		ļ	1	2.8	<u> </u>	0.1	8.3
FSM	carbon steel, 120 cm diameter, 536 m	CND		0.290						2.4	-	0.0	10.3
FSM	carbon steel, 46 cm diameter	CND		0.290	<u> </u>					2.4		0.0	10.3

•

		Reactor	Components	Cummulative calendar time	Cummulative operating time	Demands	Failure	e modes	Failures	Failure rate	Failure probability	90% Confide	nce bounds
code	component type description	code	#	Mill.h	Mill. h	#	crit	deg	#	1e-6/h	1/demand	5%	95%
	piping small, < = 2.5 cm	•											
FSS	diameter, 169 welds	CND		0.290			J		I	2.4	•	0.0	10.3
FIA	piping tees	. IN-Y	22	1.551			Y		1	0.6	-	0.0	1.9
FWA	piping welds, general	·								-	•		•
FXA			126	0.596	L						-	- 0.6	-
EVA	gasket		130	9.580			Y		10	1.0	-	0.0	1.0
EVA			149	20.315			Y		4/	1.8	-	1.4	2.2
		CNU	140	22.109			J		·'	0.05	-	0.0	0.1
GBC	thermal column		1	0 184			E			- 38		00	16.3
GBB	heam port radial	CH	1	0.104				<u> </u>	6	431.8		188.0	756.6
GBB			13	2 390	<u> </u>			<u>├</u> ───	0	0.29		0.0	1 3
GBT	beam port_tangential	CND	1	0 184		· · · · ·			1	5.4		0.0	16.3
GBL	nool liner			0.101			·		<u> </u>	- 0.4		- 0.0	
GBS	storage rack for fuel	IN-B	2	0.242		·	F	<u> </u>	1	4.1		0.2	12.4
GSF	storage and transp. cont. irrad.	1			<u>-</u>		<u>{ </u>	{	f	-		-	•
GSH	storage, fresh fuel	1						<u> </u>		•	-		•
GTA	tank. reactor vessel	СН	2	0.028			F		1	36.0	-	1.8	107.8
GTA		IN-B	1	0.121	<u> </u>		???	<u> </u>	2	16.5	-	2.9	39.2
GTA		. CND	3	0.684			Y	 	1	1.5	-	0.1	4.4
GTA		CND	3	0.684			J	<u> </u>	0	1.0		0.0	4.4
GTE	expansion tank									•	<u> </u>	•	-
		.]				I		1		•	-	•	-
HCA	cooling tower general	. IN-Y	2	0.141			0	<u> </u>	4	28.4	-	9.7	55.0
HXA	heat exchanger	. IN-B	4	0.483			J		1	2.1	-	0.1	6.2
HXA		. IN-B	4	0.483			J		1	2.1	-	0.1	6.2
HXA		. IN-S	7	0.469			F		5	10.7	-	4.2	19.5
HXA		. AUS	6	0.444				В	1	2.3	-	0.1	6.7
HXA		нхм	8		0.272		Y		0	2.6	-	0.0	11.0
1	heat exch. straight tube horizontal												
нхв	shell and tube	PRC-M	2	0.145			F		21	144.5	•	96.9	200.0
нхв		PRC-H	2	0.149			F		23	154.2	•	105.4	210.6
HXF	heat exch. fuel storage	·					L			-	·	-	•
	heat exch. U tube horizontal shell	•											
нхн	and tube									-	-	· ·	-
HXM		IN-S	2	0.134			Y		1	7.5		0.4	22.4
нхм			8	2.200			<u> </u>		0	0.3	•	0.0	1.4
	heat exch. straight tube vertical	·											
HXM	shell and tube	IN-B	2	0.242		l	Γ Y		2	8.3	•	1.5	19.6
HXP_	heat exch. plate type	·									-		-
HXR	heat exch. pond heat removal	· [•	-	-	•

		Reactor	Components	Cummulative calendar time	Cummulative operating time	Demands	Failure	e modes	Failures	Failure rate	Failure probability	90% Confide	nce bounds
code	component type description	code	#	Mill.h	Mill, h	#	crit	deg	#	1e-6/h	1/demand	5%	95%
	heat exch. U tube vertical shell	•			1								······
HXV	and tube		l				ļ			• •		-	
	instrumentation	·		0.207			- <u>-</u>			-		- 2.1	- 16.0
			15	0.337	0.200		F		15	74 9		55.2	109.3
IAA		VN	15		0.200	<u> </u>	<u> </u>	В	28	139.8		112.8	186.0
IAA		. IN-S	1	0.067			F		7	104.5	-	49.1	176.9
IAA		. PRC-H	60	3,725	<u>}</u>	<u> </u>	F	<u> </u>	48	12.9	-	10.0	16.1
IAA		. AUS	4	0.296			F		1	3.4	-	0.2	10.1
IAA		. AUS	4	0.296				В	5	16.9	-	6.7	30.9
IAA		. AUS	4	0.296				ĸ	2	6.8	-	1.2	16.0
	instrumentation/2	AUS	3	0.222		- <u></u>	<u> </u>	В	13	58.6		34.6	87.6
142			3	0.222		<u> </u>	r	ĸ	- /	31.5	· ·	14.8	28.4
IAR	control rad position indication	510		0.222	0.020		M	<u> </u>	3	100.0		77.9	237.2
IAR		. VN	5		0.067			В	4	59.9	<u>-</u>	42.3	116.2
ICA	instr. ch. analog general			· ·····						-	-	-	•
ICC	instr. ch. analog core flux	. CH	7	0.097			1	В	25	257.0	-	178.7	347.0
ICC		. CH	7	0.097			F		12	123.4	-	71.2	187.2
ICC		. CH	7	0.097				К	12	123.4	•	71.2	187.2
		<u>. CH</u>	7	0.097					2	20.6	•	3.7	48.8
			7	0.097			X			10.3		0.5	30.8
			12		0.076		F		1	13.2	·	5.9	39.6
					0.076	<u> </u>	<u> </u>	B	8	105.8	•	34.8	1/3.9
licc			9		0.000			B	8	66.6		48.3	104.3
icc			9		0.120		F		5	41.6		27.3	76.2
ICC		. IN-B	2	0.242			F		5	20.7	-	8.2	37.9
ICC		. PRC-M	2	0.146			F		13	88.9	•	52.6	133.0
ICC		. PRC-H	6	0.372			F		4	10.7	-	3.7	20.8
		•								-	•	-	-
ICF	instr. ch. analog flow	. Сн	2	0.028				В	1	36.0	•	1.8	107.8
		. <u>A</u>	2	0.198			F		1	5.0	•	0.3	15.1
			6	0.389			r r		36	92.4		68.0	119.1
	instr ch analog level		12	0.072					2	2/./		4.9	2.0
ICL	instruction analog level	PRC-H	1	0.062			F		3	48.3	-	13.2	101.4
ICL	, ,	AUS	4	0.296		·		В	4	13.5	•	4.6	26.2
ICP	instr. ch. analog pressure	IN-S	47	3.147			F		13	4.1		2.4	6.2
ICP		. PRC-H	2	0.124			F		7	56.4		26.5	95.4
ICS	instr. ch. analog seismic									•	-	-	-
ICT	instr. ch. analog temperature	. A	3	0.297			F		3	10.1	-	2.7	21.2

			Reactor	Components	Cummulative calendar time	Cummulative operating time	Demands	Failure	e modes	Failures	Failure rate	Failure probability	90% Confide	nce bounds
code	component type description		code	#	Mill.h	Mill. h	#	crit	deg	#	1e-6/h	1/demand	5%	95%
ICT			PRC-M	1	0.040			F		13	321.1	-	189.9	480.3
ICT			PRC-H	5	0.310			F		12	38.7	-	22.3	58.7
ICT		•	AUS	3	2.220			F		7	3.2	-	1.5	5.3
IDA	instr. ch. digital, general										-	-	-	-
IDC	instr. ch. digital core flux										-	-	-	-
IDF	instr. ch. digital flow	ŀ									-	-	•	
IDL	instr. ch. digital level	ŀ									-	-	•	-
IDP	instr. ch.digital pressure	Ŀ						1		<u> </u>		•	·	<u> </u>
IDT	instr. ch. digital temp.	Ŀ											•	-
IRC	reactor reg sys.		PRC-M	2	0.127			<u>F</u>		23	181.0		123.7	247.3
		÷		L				ļ	L		•		•	-
JCA	core structure, general	<u> ·</u>		ļ				L		ļ	•	·		
JCG	grid plate	+		l		<u> </u>		 	<u> </u>		-			
JCT	fuel guide tubes	-1-1		l				I	 		ŀ	<u> </u>		
JEE	clutch electrical	++			ļ				ļ	ļ	•	<u> </u>	·	•
JEM	clutch mechanical	÷	ALIC				L	ļ			·		·	•
JHA	heater /	++	AUS	2	0.148	ļ		-	<u> </u>	2	13.5		2.4	32.0
JHZ	neater 2	-1:1	AUS	3	0.222	l			<u> </u>	15	67.6	<u> </u>	41.6	98.6
		+i	AUS	3	0.222			<u> </u>	В		4.5	↓ . <u> </u>	0.2	13.5
JIA	Irradiation container	++	CH	15	0.208			<u> </u>			9.6		1./	22.8
JIH	nydraulic transfer system	++	<u></u>						<u> </u>		·			
JIP	pneumatic transfer system	-1-1			0.014	 					/2.0		3.7	215.6
JIP		┼┼			0.297	<u> </u>			<u> </u>		3.4	-	0.2	10.1
		┼┤		1	0.070			F			14.2	-	0.7	42.5
		++		<u>_</u>	0.300	 		- 	<u> </u>		2.3		0.0	10.0
		-+:	A		0.555	{				<u> </u>	1.7	<u>⊢ ·</u>	0.1	5.0
110	lube eil eeeler	÷									ŀ	<u> </u>		
IDE		┿						<u> </u>	 	 				
100	penetration pipipg	+H			<u>}</u>			<u> </u>						
ITE	tank resin flushing	┿╋							<u> </u>		[<u> </u>	[
5.1	tank storage BWST (refueling	┿				<u>}</u>		<u> </u>		<u>├</u> ────				
ITR	water storage tank)							1	{	}		.	.	_
• ····					<u> </u>			<u> </u>	┣		<u>.</u>	<u> </u>		
KAA	circuit breaker, general	-Ft	Α	10	0.992			F	<u> </u>	2	2.0		0.4	4.8
KAA		11	VN	13					<u> </u>	<u>├</u>		-		
KAC	circuit breaker ac	††			<u> </u>			<u> </u>			-	-	<u>├</u>	-
	1	1.1						<u> </u>	<u> </u>				<u>├</u>	-
KDC	circuit breaker DC								<u> </u>		-	· · ·		·
	· · · · · · · · · · · · · · · · · · ·	\uparrow						<u> </u>	<u> </u>				<u>├-</u>	
	circuit breaker indoor AC	1.1										<u> </u>		
KIA	application				1			}			-	-	-	.]

••

		Reactor	Components	Cummulative calendar time	Cummulative operating time	Demands	Failure	e modes	Failures	Failure rate	Failure probability	90% Confide	nce bounds
code	component type description	code	#	Mill.h	Mill. h	#	crit	deg	#	1e-6/h	1/demand	5%	95%
	circuit breaker indoor DC	•											
KID	application									·	-	·	
	circuit breaker isolation, ground	•							1	1		1	
KIS	fault circuit interrupter			1.107			<u>-</u>			-	ļ	-	
KRP	circuit breaker reactor protection		15	1.487			4	ļ	40	26.9	ļ	20.3	34.2
KTA	feeder (junction box)	. IN-5	20	0.067			r c	ļ	5	74.7	<u> -</u>	29.4	136.7
KTA	ruse all voltage levels		20	1.903					10	5.0		2.7	131
KTA		IN-S	178	11 919	<u> </u>				26	2.0		1.0	
<u> </u>			1/0	11.515	 -	}	<u> - ' </u>	<u>}</u>	20	-	1		2.0
LAA	transmitter general	·				•··		<u> </u>		-			
LCA	transmitter core flux		9		0.120	}	F	<u>}</u>	1	8.3		2.7	24.9
LCA		VN	9			9657		B	2	-	0.00002	0.0	0.0
LFF	transmitter flow	. SLO	1		0.020					34.7	-	0.0	149.8
LFF		. VN	2		0.029		F		8	275.3	-	237.6	452.5
LLL	transmitter level	. SLO	1	0.044			F	<u> </u>	1	23.0	-	1.2	68.9
LLL	1	. VN	1		0.025			В	1	40.6	-	26.5	121.7
LLL		. VN	1		0.025		F		3	121.9	•	96.6	255.8
LPP	transmitter pressure									-	•	•	-
LTT	transmitter temperature	·								-	-	•	·
LXR	transmitter pressure difference	•				· · · · · · · · · · · · · · · · · · ·		L		-			·
		·[-	·	-	•
MAA	motor	. IN-B	14	1.692			S	l	2	1.2	•	0.2	2.8
MAA		. <u> </u>	89	5.959					11	1.8		1.0	2.8
MAC	motor ac				0.120			}		-	} <u> </u>	- 12.1	
MAD	motor dc		10	1 222	0.130		<u></u>	— <u> </u>	3	23.1		13.1	40.4
MAL	motor AC induction		10	1 332			D	0	0	4.5		2.0	1.3
MAL			18	1 332			n G		3	2.3		0.0	4.7
MGX	motor generator		2	1.002	0 1 30		8			7 7	ļ <u>-</u>	2.2	23.0
MSS	motor servo	IN-S		0.536	0.100		F		4	7.5		2.6	14.5
			·				<u> </u>			- 7.0		-	
NCA	signal comparator bistable	. CZ	17		0.107		F		4	37.3	•	24.1	72.4
NCA		PRC-H	1	0.062			F		4	64.4		22.0	124.9
NCB	personal computer, PC	. A	2	0.198				В	2	10.1	-	1.8	23.9
NCD	data acquisition system			······································						•	-	-	-
NCH	high quality computer	СН	2	0.028			F		2	72.0	•	12.8	170.7
NCH	· · · · · · · · · · · · · · · · · · ·	. CZ	1		0.006		F		1	158.7	-	129.9	475.5
NCW	workstation computer									-	•	-	-
NDA	printer, general									-		-	-
NIN	computer network, general	•								•		-	-
NKA T	computational module	. IN-Y	2	0.141			F		1	7.1	-	0.4	21.2

		Rea	octor	Components	Cummulative calendar time	Cummulative operating time	Demands	Failure	e modes	Failures	Failure rate	Failure probability	90% Confide	nce bounds
code	component type description	cc	ode	#	Mill.h	Mill, h	#	crit	deg	#	1e-6/h	1/demand	5%	95%
NMA	signal modifier	. S	LO	1		0.020					34.7	•	0.0	149.8
	signal modifier voltage-pneumatic	[.]						[
NMO	transducer										-	-		
	signal modifier current-pneumatic	.												
NMP	transducer										-	-	•	
	signal modifier square root	 .		}		1	1		{		}	1		
NMS	extractor							L			-	-	•	•
	signal modifier current-current	·									1	1		
NMI	transducer	┨-╎───		·	ļ							·		
	signal modifier current-voltage	·			0.040		}]		
	transducer		-6	2	0.242			F	÷		4.1	<u> </u>	0.2	12.4
	signal conditioning system for	 ∙ −−					· · · -		<u> </u>		<u> -</u>	•		
	core flux level pressure								1					
NSA	temperature general			1						ļ		1.		
NSC	sign, cond, sys, core flux		'N	1		0.013	{		B	17	1273.6	<u> </u>	650.0	1820.6
NSC		I IN	-Y	4	0.282			F			3.5	•	0.2	10.6
NSC	***	. IN	-8	2	0.242	· · · · · · · · · · · · · · · · · · ·		F		3	12.4		3.4	26.0
NSF	sign. cond. sys.flow	. IN	-Y	2	0.141			F	1	1	7.1	•	0.4	21.2
NST	sign. cond. sys.temperature								1		-	-	-	
					-				1	<u> </u>	-	-	-	-
	control rod cruciform, boron		_					1	1	[1		
occ	carbide control rods	IN	-S	8	0.536			м		1	1.9	-	0.1	5.6
	control rod single control rod]	}			
OCR	assembly		٩	3	0.297			M		2	6.7	-	1.2	15.9
OCR		. PRO	<u>C-M</u>	11	0.737			M		14	19.0	-	11.5	28.1
	control rod clustered silver,	· _	_			1								
ocs	indium, cadmium control rod	C	<u>Z</u>	12	· · · · · · · · · · · · · · · · · · ·	0.076		<u> </u>		10	132.3	•	106.5	207.7
OCS		. PH	2-M	1	4 050	0.067			 	1	14.9		6.6	44.7
UCH	electromagnet failure			18	4.250	·	15040	F		0	0.16	-	0.0	0.7
ODA	CRDNA		7	18		0.076	15940				-	0.000003	429.7	0.0
		·	<u>.</u>	12	0 207	0.078			<u> </u>	3/	409.4	<u> </u>	430.7	15.0
		i c	7	12	0.237	0.076				2	26.5		15.4	
ORA			0	1	···	0.070				1	50.0		34.8	149.8
ORA	control rod drive	H v	Ň	7	<u> </u>	0.093	<u> </u>	C C		13	139.1		112.8	208.1
ORA		. IN	•Y	3	0.211			F		2	9.5		1.7	22.4
ORA	1	IN	-В	4	0.483	<u>}</u>	<u> </u>	F	1	4	8.3	· ·	2.8	16.0
ORA		. PRC	С-М	11		0.338		S		2	5.9	-	1.1	14.0
ORA		. PRC	C-M	11		0.338		F	+	8	23.7	-	13.1	38.9
ORA		. PRO	С-Н	12		0.754		F	1	11	14.6	•	6.6	22.5
ORA		. Ch	٩D	18	0.310			F		7	22.6	•	10.6	38.2

		Reactor	Components	Cummulative calendar time	Cummulative operating time	Demands	Failure	modes	Failures	Failure rate	Failure probability	90% Confide	nce bounds
code	component type description	code	#	Mill.h	Mill. h	#	crit	deg	#	1e-6/h	1/demand	5%	95%
PDA	pump diesel driven	•								•	-	•	-
PMA	pump motor driven	. CZ	9		0.057		R		5	88.2	-	67.4	161.4
PMA		. <u>CZ</u>	9		0.057		н		1	17.6	•	8.7	52.8
PMA			9	0.000	0.057				1	17.6		8.7	52.8
PIVIA		· A		0.099	0.020		F		1	<u> </u>	-	24.8	30.2
PMA			5		0.020		R		14	192.7		160.9	284.5
PMA			5		0.073	1712	s	}	9	-	0.001	0.0	0.0
PMA		IN-Y	4	0.282			R		2	7.1	-	1.3	16.8
PMA		. IN-B	21	1.406			F	<u> </u>	20	14.2	-	9.4	19.8
PMA		. PRC-M	2	0.028			R	1	2	70.5	-	12.5	167.2
PMA		. PRC-M	2	0.028			S		0	24.4	-	0.0	105.6
PMA		. AUS	2	0.148				8	5	33.8	-	13.3	61.8
PMA	main pump AC motors		8		0.850		R		27	31.8	-	19.3	42.4
PMA			8			3700	S		8	•	0.0003	0.0	0.0
PMA	main pump DC motors		4		0.140	807		<u> </u>	E	-	0.0003	0.0	65.4
PMA	purification pump motors		2		0.140	60	n S	<u> </u>	1	30.7	- 0.008	22.5	01
PTA	numn turbine driven		E						-		0.000		
PWB	pump horiz, 22-820 l/s	СН	2	0.028			R	<u> </u>	1	36.0	•	1.8	107.8
PW8		. A	1	0.099			R		1	10.1	-	0.5	30.2
PWB		. PRC-M	1	0.001			R		1	2000.0	-	102.6	5991.5
PWC	pump centrifugal	, CH	1	0.014			F		1	72.0	-	3.7	215.6
PWC		. СН	1	0.014			R		1	72.0	-	3.7	215.6
PWC		. SLO	1	~	0.008		F		1	125.0	-	100.2	374.5
PWC		. IN-Y	2	0.141			S	ļ	1	7.1	-	0.4	21.2
PWC		IN P	2	0.141			R R		4	28.4		9.7	55.0
PWC		IN-D	4	0.483			R S			2.1	-	0.1	6.2
PWC		IN-B	4	0.483					1	2.1		0.1	6.2
PWC		PRC-M	4	0.400	0.291		B		39	134.2	•	108.3	171.4
PWC		. PRC-M	4		0.291		S		8	27.5		16.2	45.2
PWC		. AUS	2	0.148				В	1	6.8	-	0.3	20.2
PWC		. AUS	2	0.148			F		1	6.8	-	0.3	20.2
PWC		. AUS	2	0.148			Y		1	6.8	-	0.3	20.2
PWC	main pumps	CND	8		0.850		R		8	9.4	•	3.3	15.5
PW2	centrifugal pump/2	AUS	6	0.444				B	3	6.8	•	1.8	14.2
PW2			6	0.444			Y		2	4.5	·	0.8	10.7
DIALE	pumpi vert. 70-1900 i/s		2	0.028			H		2	/2.0	-	12.8	- 1/0.7
PWE			2	0.028	0.000		3 c		1	120.0	-	1.8	200 1
PWE		PRC-H			0.224		R		30	134.1	-	108.3	176.7

		Reactor	Components	Cummulative calendar time	Cummulative operating time	Demands	Failure	e modes	Failures	Failure rate	Failure probability	90% Confide	nce bounds
code	component type description	code	#	Mill.h	Mill. h	#	crit	deg	#	1e-6/h	1/demand	5%	95%
PWE		. PRC-H	3		0.224		S		6	26.8	-	15.4	47.0
PWS	purification pumps	CND	2		0.140		R		6	42.9	-	28.1	75.1
PWS	purification pumps	CND	2			60	S		1		0.008	0.0	0.1
										-	-	-	•
QAA	air cooler									-	-	•	•
QBF	blower fan	. <u>VN</u>	8		0.173		R		16	92.3	-	70.9	133.2
QBF		. VN	8			6309	S		8	•	-	-	0.0
QBF		. IN-Y	2	0.141			R		4	28.4	-	9.7	55.0
QBF		. IN-B	2	0.242			S		1	4.1	-	0.2	12.4
QBF		. IN-S	33	2.210		L	F	L	59	26.7		21.3	32.7
QBF		. AUS	9	0.666			F	[2	3.0		0.5	7.1
QCI	compressor instrument air	. IN-S	2	0.134		L	F		9	67.2	-	35.1	107.8
QCI		. AUS	3	0.222		L	F	<u> </u>	2	9.0	<u> </u>	1.6	21.4
aci		. AUS	3	0.222			Y	L	3	13.5	·	3.7	28.4
	(Worthington)	CND	3	· · · · · · · · · · · · · · · · · · ·	0.015				2	133.3	·	107.4	316.3
	(Joy)		1		0.035		<u> </u>		16	457.1	·	408.4	659.9
			3	0.211	0.005		н.		1	201.4		169.2	603.2
	damper	IN-T	3	0.211		<u> </u>	<u>۲</u>			4./	<u> </u>	0.2	14.2
		CND	/ 	0.846		210	F	 		1.2	- 0.002	0.1	3.5
ODA			- 0	<u> </u>		210	E/U	 		·	0.002	0.0	0.0
ODM							<u> </u>		<u> </u>	·	0.0007	0.0	0.0
	fan genter regeter building genting	·		}					<u> </u>	<u> </u>			
	har cooler reactor building cooling	. Сн	2	0.028				[,	26.0	_	1.8	107.8
		Сн	2	0.020			<u> </u>	B		36.0		1.0	107.8
OEH		Сн	2	0.028	<u>_</u>		<u> </u>	ĸ	10	350.0	<u> </u>	195.2	565 1
OFH	<u> </u>			0.020	0.020		R		5	250.0	<u>+ -</u>	214.4	457.7
OFV	fan containment ventilation fan		5	<u> </u>	0.620		R			1 5	<u> </u>	0.0	401.1
OFV	fan containment I&C controls		5		0.081	<u></u>	R		18	222.2		188.5	314.8
OFV							<u> </u>	-	<u>-</u>		· ·		
OVA	hyac unit auxiliary building							-		-		-	
QVB	hvac unit battery room ventilation	·			·							•	•
	hvac unit electric equipment area		<u> </u>				<u> </u>	· · ·	<u> </u>				
QVE	ventilation							i		-	-		-
QVR	hvac unit control room ventilation	. A	1	0.099			F		1	10.1	-	0.5	30.2
avs	hvac unit reactor hall		1							•	-	•	-
										-	-		•
RAA	relay auxiliary		1							-	-	- 1	•
RAS	solid state relay									-	-	· 1	-
RCA	relay control AC									•	-	- 1	-
RCD	relay control DC	•								-	•		•
RCL	relay control]	-	-	-	•

			Reactor	Components	Cummulative calendar time	Cummulative operating time	Demands	Failure	e modes	Failures	Failure rate	Failure probability	90% Confide	nce bounds
code	component type description		code	#	Mill.h	Mill. h	#	crit	deg	#	1e-6/h	1/demand	5%	95%
RPH	relay power 300-460 A	1.									-	-	-	-
RPL.	relay power 40-60 A	1.1							1		•	-	-	-
RRA	relay protective	\cdot									-	-	-	-
RRF	relay, frequency protection	Ū									-	-		-
RRO	relay, overload protection											-	-	•
RRV	relay, voltage protection	$\left \cdot \right $										•	-	-
RTA	relay time delay	11	VN	6			6438	C		1		0.000	0.0	0.0
RTB	relay time delay bimetallic	ŀŀ						L			<u>-</u>	-		•
RTP	relay time delay pneumatic	$ \cdot $						L			-	-		
RTS	relay time delay solid state	ŀŀ						L						•
RWA	relay, general	ŀł	IN-B	2	0.242		·····	<u>۲</u>		2	8.3	· · · · · · · · · · · · · · · · · · ·	1.5	19.6
RWA		ŀŀ	IN-S	939	62.875			F	ļ	9	0.1		0.1	0.2
HXA DXA	relay contacts	ŀΙ	IN-B	I	0.121					1	8.3		0.4	24.8
ATA	relay coll	ŀΙ					·	┝───	<u> </u>					· · · · · · · · · · · · · · · · · · ·
SAA	awitch constal	ŀ		· · · · · · · · · · · · · · · · · · ·				┣		 		}		
SAM	micro ewitch	Ĥ									<u>-</u>			
SCC	switch contacts	Ĥ	IN.Y	9	0.634	ļ		E			63		22	12.2
ISCC		Ĥ	IN-B	26	3 142			F	<u> </u>	7	2.2		1.0	3.8
SCC			IN-S	35	2 344	}		F		25	10.7		74	14.4
	switch digital channel pressure /	i i						<u>├─</u> '──	<u> </u>					
SDA			СН	2	0.028				к	1	36.0	-	1.8	107.8
SFA	switch flow		VN	4		-	1624		F	1		0.000	0.0	0.0
SIA	switch limit	ŀ†	AUS	52	3.848			F		23	6.0	-	4.1	8.2
SIA			AUS	52	3.848				K	1	0.3		0.0	0.8
SI2	limit switch		AUS	6	0.444			F		2	4.5		0.8	10.7
SI2			AUS	6	0.444				В	4	9.0	-	3.1	17.5
SIE	switch limit electronic											-	-	-
SLA	switch level		СН	1		0.013			В	3	224.8	-	190.4	471.7
SLA			AUS	9	0.666			C		9	13.5	-	7.0	21.7
SLA	level switch		AUS	6	0.444			E		2	4.5	-	0.8	10.7
SMA	switch manual	•	VN	8		0.107			К	2	18.7	-	9.4	44.4
SMA			IN-B	13	1.571			F		12	7.6	•	4.4	11.6
SMA		•	IN-S	17	1.138			F		7	6.1	•	2.9	10.4
SPA	switch pressure		AUS	3	0.222			۶		2	9.0	-	1.6	21.4
SPA		•	AUS	3	0.222				В	4	18.0	-	6.2	34.9
SPA			AUS	3	0.222				ĸ	2	9.0	-	1.6	21.4
SQA	switch torque	÷							L			•	-	-
STA	switch temperature	·										•	-	_ -
TAT		÷												[
TAA	transformer	÷	CND	2	0.600					0	1.2	-	0.0	5.0
[TA2	transformer 220/120 V										-	-	•	•

		Reactor	Components	Cummulative calendar time	Cummulative operating time	Demands	Failure	e modes	Failures	Failure rate	Failure probability	90% Confide	nce bounds
code	component type description	code	#	Mill.h	Mill, h	#	crit	deg	#	1e-6/h	1/demand	5%	95%
TA6	transformer 6kV/380V	. PRC-M	2	-	0.436		F		6	13.8	-	5.9	24.1
TEA	transformer 1000 kVa	. CND	1	0.300			F	1	0	2.3	-	0.0	10.0
TEA	transformer 500 kVa	CND	2	0.600			F		0	1.2	-	0.0	5.0
	transformer (instrument	•											
TIC	transformer, current transformer)	IN-S	431	28.860			F		2	0.1	-	0.0	0.2
TIP	transformer instrument potential	·						<u> </u>			-	-	-
L		·									•		<u> </u>
		·					ļ	<u> </u>	L	-		<u> </u>	-
TVA_	regulating transformer	·							<u> </u>	-	·	-	
L		·					ļ		<u> </u>		•	· ·	
UCA	controller	·			_		<u> </u>	ļ		<u> </u>	·	-	
UCE	controller electronic	•	ļ					ļ			· · ·	<u> </u>	-
UCF	flow controller	•				ļ	·		¦	-	·		
UCP	controller pneumatic	·					<u> </u>			-			
lucu	solid state devices high power	•	[[[[[[1	[
										•	·	·	
	solid state devices low power	·					1						
	isolation diada assombly							<u> </u>	 	[`	·	ļ	·
	analog display	· IN.Y	46	3 242			E	┨	A	1 2			2.4
	digital instrument			0.242	0.027		F		1	375	+	24.1	112.2
UIE	indicating instrument electronic	IN-B	37	4.472	0.027		F		20	4.5		3.0	6.2
	indication lamp	<u></u>					<u> · · </u>	<u> </u>			-		
UIM	CRT screen, monitor					·		<u> </u>	<u> </u>	-	-	<u> </u>	
UIR	recorder	. VN	5		0.067		F		20	299.7		259.9	417.7
UIR		. IN-S	2	0.134			F	†	3	22.4	-	6.1	47.0
UIR		. IN-B	1	0.121			F	<u> </u>	1	8.3	-	0.4	24.8
UIR		. IN-Y	4	0.282			F	<u> </u>	1	3.5	-	0.2	10.6
UIX	other ind. instr.	. VN	2		0.027			B	30	1123.8	-	900.0	1481.2
UIX		. IN-S	2	0.134			F		14	104.5	-	63.2	154.3
UIX		. PRC-M	6		0.439		F		11	2.3	-	0.1	6.8
										-	-		-
UMC	manual control device pushbutton	. Сн	1	0.014			X	ļ	1	72.0	-	3.7	215.6
UMC		. VN	13		0.174			K	1	5.8	+	1.1	17.3
UNA	annunciator	. СН	1	0.014			<u> </u>	L	4	287.9	-	98.3	558.0
UNA		. <u> N</u>	1		0.013		F	L	1	74.9	·	55.2	224.4
	annunciator module solid state,	·										1	
UNS	LED-, LCD-display					L	L	ļ	·	•	-	<u> </u>	
URS	reactor scram system		1	0.014			K	ļ	1	72.0		3.7	215.6
URS		. Сн	1	0.014			<u> </u>	L	1	72.0	<u> </u>	3.7	215.6
		+						<u> </u>		-	•	-	· · ·
VA1	valve air operated	I CND	2			560	E/O		4	-	0.004	0.0	0.0

		Reactor	Components	Cummulative calendar tíme	Cummulative operating time	Demands	Failure	e modes	Failures	Failure rate	Failure probability	90% Confide	nce bounds
code	component type description	code	#	Mill.h	Mill. h	#	crit	deg	#	1e-6/h	1/demand	5%	95%
VA1		CND	2		0.560		E/O		4	7.1	-	2.2	13.8
	valve air operated all systems	.											
VAR	except raw water return line										•	-	· · · · · · · · · · · · · · · · · · ·
VCA	valve self operated check	. PRC-M	7		0.509		F		2	3.9		0.4	9.3
VCA		. PRC-H	3		0.224		F		5	22.4		12.3	40.9
VCA	· 	CND	8		2.000		E/O		2	1.0	-	0.0	2.4
VCA			0	1 1 10		512	E/0		2	-	0.0005	0.0	0.0
VDA	valve solenoid operated	AUS	15	1.110			F		5	4.5		1.8	8.2
VDA		AUS	15	1.110			~	<u> </u>		0.9		0.0	2./
		AUS	10	0.149					0	1.2		3.0	20.2
VEA	valve explosive operated	1.1 - 203-	·····	0.140	}	}	<u> </u>	 	<u>}'</u>	0.0	<u> </u>	0.3	20.2
VHA	valve explosive operated	f +				<u>├</u>	<u> </u>		├──				
VMA	valve motor operated	A	1	0.099			E		2	20.2	•	3.6	47.8
VMA		. VN	6			1863	E		1		0.0001	0.0	0.0
VMA		. VN	6			5589	0		3		0.0001	0.0	0.0
VMA		. PRC-M	7		0.509	·	0		4	7.9		2.2	15.2
VMA		. PRC-M	7		0.509		1		2	3.9	-	0.4	9.3
VMA		. PRC-M	7		0.509		D		0	1.4	-	0.0	5.9
VMA		. PRC-H	3		0.224		A		0	3.1	-	0.0	13.4
VMA		. AUS	3	0.222				B	3	13.5	-	3.7	28.4
VMA	(30 cm diameter)	CND	16	2.100			F		1	0.5		0.0	1.4
VMA	(15 cm diameter) mech. fail.	CND	6		0.840	190	С		5	6.0	0.004	1.1	10.9
VMA	(15 cm diameter) electrical fail		6		0.840	190	F		3	3.6	0.003	0.4	7.5
VPA	valve piston operated	ŀ ↓			L		·		ŀ			·	•
VRA		·								·			-
VSA		·			L				<u> </u>		-	· · · · · · · · · · · · · · · · · · ·	•
VVVA	Valve angle valve	. AUS	6	0.444						- 	<u> −</u>		- 10.7
VWB			6	0.444						4.0	<u> </u>	0.8	67
VWG	valve gate	. <u>, , , , , , , , , , , , , , , , , , ,</u>	20	0.444	0.126				├;	55.6		39.0	94.0
VWG	Valve gate	CZ	20		0.120		- Y		1	7.9		2.2	23.8
VWG		PRC-M	10		0.142		D		1	7.1		2.2	21.1
VWJ	valve plug valve								·				•
VWL	valve globe valve									•		-	-
VWN	valve needle valve		··							•	-	-	-
VWP	valve diaphragm									•	•	-	-
VWT	valve butterfly valve	. AUS	5	0.370				В	58	156.7	-	124.5	192.1
VWT		. AUS	5	0.370			F		17	45.9	•	29.3	65.7
VWT		. AUS	5	0.370			Y		8	21.6	•	10.8	35.5
VWU	valve nozzle valve										-	-	-
VXA	valve manual	. A	30	2.975			F		1	0.3	-	0.0	1.0

		Reactor	Components	Cummulative calendar time	Cummulative operating time	Demands	Failure	e modes	Failures	Failure rate	Failure probability	90% Confide	nce bounds
code	component type description	code	#	Mill h	Mill h	#	crit	deg	#	1e-6/h	1/demand	5%	95%
VXA		PRC-M	5		0 363			B	2	55	-	11	13 1
VXA		PRC-H	76		5 668		1	B	26	4 6	-	07	6 2
VXA		. AUS	2	0 148			F		2	13.5	-	2 4	32.0
VXA		AUS	2	0 148			Y		2	13 5	-	24	32.0
										·	-	-	•
WAA	shielding general						1	<u> </u>		•	-		•
WFA	shielding irrad. fuel									-	-	-	-
										•	•	-	•
XAA	fuel element, general									-	-	-	-
XAM	MTR fuel element, general	. СН	60	0 834			В		11	13 2	-	74	20 3
XAT	TRIGA fuel element, general									-	-	-	•
XBM	MTR stand. refl.element Be metal									-	-	-	•
XBN	MTR stand. refl.element Be oxid									•	-	-	•
										-	•	-	-
XCA	fuel element handling tool, gen									-	•	-	-
ХСМ	fuel element handling tool, manual	A	1	0 099			X		2	20.2	-	36	47.8
ХСМ		IN-B	2	0 242			F		1	41	-	0 2	12 4
XCR	fuel element handling tool, remote									-	•	-	
XHA	fuel element HEU general		<u> </u>							•	-	-	•
хнм										•	-	-	-
XHN		_								•	-	-	•
хно							[-	-	-	-
XHP										-	-	+	
ХНТ	Fuel element TRIGA, stand. FLIP	<u> </u>	9	0 892		L	Y	l	1	11	<u></u>	01	34
XMM		•								-	·	<u> </u>	
XMN		•							L	-	•	-	
хмо		·							<u> </u>	-	•	-	•
XMP						L				-	· ·	-	•
XMR	fuel element rod type MEU	. PRC-M	195		3 566				0	0.2	-	00	08
XLA	fuel elm. LEU, general								L		· ·	-	•
XLM		·						L		·	<u> </u>	-	-
XLN		·								-	L	-	
XLO		·						L		-		-	•
XLP		·						L		•	-	-	•
XLT	Fuel element TRIGA, stand LEU	· A	85	8 4 2 9			Y	L	4	0,5		02	0.9
		. IN-Y	143	10 080			ĻΥ	ļ	11	0.1		00	0.3
XLU	Fuel element TRIGA, instr. LEU	· ·		l			I		ļ	·		•	
XPA	fuel element process tube, gen	<u>, ркс-н</u>	81 71		6.094		<u> </u>	I	9	1.5	·	0.0	2.4
XRM	Refl. element graphite, MTR	·					l	I				· · · · · · · · · · · · · · · · · · ·	
XRT	Refl. element graphite, TRIGA	·					Ļ	ļ			· · · · · · · · · · · · · · · · · · ·		•
XTM	I all. element MTR standard	·						L		-		-	•
							1	1	i	-	-	-	-

		Reactor	Components	Cummulative calendar time	Cummulative operating time	Demands	Failure	e modes	Failures	Failure rate	Failure probability	90% Confide	nce bounds
code	component type description	code	#	Mill.h	Mill. h	#	crit	deg	#	1e-6/h	1/demand	5%	95%
YAA	air filter									-	-	-	-
YFD	demineralizer	. IN-Y	1	0.070			F		3	42.6	-	11.6	89.3
YFM	filter liquid, mechanical restriction	. IN-Y	1	0.070			a	1	3	42.6	-	11.6	89.3
YFM		. IN-S	12	0.804			a	1	27	33.6	-	23.7	44.9
YFM		. IN-B	2	0.242			Q		4	16.5	-	5.7	32.1
YFX	Ion exchanger filter	. CH	4	0.056		1	Y	[1	18.0	-	0.9	53.9
YFX		. IN-B	2	0.242			F		5	20.7	-	8.2	37.9
YFX		IN-S	10	0.670			Q	[1	1.5	-	0.1	4.5
YSF	strainer / filter	. IN-B	2	0.242			Q	1	1	4.1	-	0.2	12.4
YSF		. IN-S	23	1.540			Q		11	7.1	-	4.0	11.0

REFERENCES

- [1] INTERNATIONAL ATOMIC ENERGY AGENCY, Component Reliability Data for Use in Probabilistic Safety Assessment, IAEA-TECDOC-478, Vienna (1988).
- [2] UNITED STATES NUCLEAR REGULATORY COMMISSION, Nuclear Plant Reliability Data Systems (NPRDS), Annual Report of Cumulative Systems and Component Reliability, NUREG/CR-2232, Washington, DC (1980).
- [3] UNITED STATES NUCLEAR REGULATORY COMMISSION, Data Summaries of Licensee Event Reports of Selected Instrumentation and Control Components at US Commercial Nuclear Power Plants, NUREG/CR-1740, EG&G Idaho Inc. (1984).
- [4] WITT, H.H., BASTINS, S., NGUYEN, V., Data Entry System (DES), Australian Nuclear Science and Technology Organization, ANSTO-ARTS, ARTS/UG-22 (1991).
- [5] INTERNATIONAL ATOMIC ENERGY AGENCY, Probabilistic Safety Assessment for Research Reactors, IAEA-TECDOC-400, Vienna (1986).
- [6] INTERNATIONAL ATOMIC ENERGY AGENCY, Application of Probabilistic Safety Assessment to Research Reactors, IAEA-TECDOC-517, Vienna (1989).
- [7] INTERNATIONAL ATOMIC ENERGY AGENCY, Manual on Reliability Data Collection for Research Reactor PSAs, IAEA-TECDOC-636, Vienna (1992).
- [8] INTERNATIONAL ATOMIC ENERGY AGENCY, Code on the Safety of Nuclear Research Reactors: Design, Safety Series No. 35-S1, IAEA, Vienna (1992).
- [9] INTERNATIONAL ATOMIC ENERGY AGENCY, Survey of Ranges of Component Reliability Data for Use in Probabilistic Safety Assessment, IAEA-TECDOC-508, Vienna (1989).

CONTRIBUTORS TO DRAFTING AND REVIEW

Böck, H.	Atominstitut der Österreichischen Universitäten, Austria
Dušek, J.	Nuclear Research Institute, Czech Republic
Hammer, J.	Paul Scherrer Institute, Switzerland
Li, Z.	China Institute of Atomic Energy, China
Mavko, B.	"Jozef Stefan" Institute, Slovenia
Suprawardhana, M.S.	Yogyakarta Nuclear Research Centre, Indonesia
Tomic, B.	International Atomic Energy Agency
Van Lam, P.	Dalat Nuclear Research Institute, Viet Nam
Winfield, D.	AECL Research, Canada
Witt, H.	Australian Nuclear Science and Technology Organization, Australia