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Abstract:  The revisited transport theory for collisional edge layer with steep radial gradients in the toroidal 
damping time scale is extended to include also the faster poloidal damping time scale. A two-time-scale analysis 
is applied in order to determine the stability behaviour of both poloidal and toroidal rotations of plasma.  It is 
observed, that the rotational spin-up tendencies are strongly controlled by charge exchange interactions, neutral 
beam injection, or a radial current. 

1. Introduction 

As experiments show, transition to the tokamak H-mode from the L-mode, which is connected to a 
drastic change in confinement characteristics, has a close connection to the sudden onset of a poloidal 
rotation, and to rise of a radial electric field. Among mechanisms which drive spin-up tendencies of 
plasma are considered particle, momentum and energy asymmetries among the outer and inner parts of 
the plasma magnetic surface [1-3]. Another observation indicates that the plasma rotation velocity is 
also sensitive to the rise of a transport barrier in the main body of plasma.  

Steep gradients of density and temperature at transport barriers and collisional plasma edge layers 
were considered recently in the revisited neoclassical transport theory [4-6], for shorter radial gradient 
lengths. Included in the new theory were also the Mikhailowskii-Tsypin corrections [7] to the 
Braginskii’s stress tensors. To analyze poloidal or toroidal rotation related phenomena in the edge 
layer, we use the modified fluid equations including mass and momentum sources derived in the 
revisited neoclassical theory for collision dominated toroidal plasma with steep gradients near the 

edge. For example, when the parameter ( ) )rL/Rq(/ 22
ii1 ψΩν≡Λ  is larger than  1/3, the revisited 

theory introduces additional terms into the parallel momentum equation [4-6]. The resulting 
ambipolarity equation is, 
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ii||, Rq/)Nr2(S −χ=  and Jr is radial polarization current, and parallel heat diffusion 

coefficient is iiii||, m/P9.3 ν=χ .  

 
The equation derived in the revisited theory for the poloidal velocity, however, disregards the 
proper time evolution of this velocity component, as an essential term involving the time 
derivative of poloidal velocity was considered small and remained obscure. For tokamak 
plasmas of circular cross section, adding now also the contribution from the time derivative of 
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the poloidal velocity, ( see, for example, [8,9] for such a  projection) we have 
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The superscripts on rotation velocities above indicate their respective orders in the small 
parameter  µ, which was defined in the revisited theory as the ratio µ∼Lψ/r∼r/qR, where Lψ is 
the scale length of radial gradients [4]. The term with the time derivative on l.h.s. was omitted 
in the revisited theory [4,6] as it seems to be of a much smaller order, ε, namely, decay time 
of poloidal damping to the mean toroidal damping time, which depends again on the 
collisionality. However, this term becomes, on a faster time scale, of the zeroth order and thus  
controls, for example, the poloidal spin-up phenomena. Whereas, the toroidal spin-up time 
scale is much longer than the poloidal spin-up time scale [9]. Thus, we have above a coupled 
nonlinear system of partial differential equations which governs the both rotation velocities 
near plasma edge with steep radial gradients. The Pfirsch-Schlüter factor for inertia 
enhancement on the left depends on the collisional regime and should be modified in the 
plateau regime [10]. Transferring to the faster time scale, τ=t/ε which is characteristic for the 
poloidal relaxation, and transforming to a stretched distance from the separatrix as radial 
position variable, ψ−=ξ L/)rr( sep these two equations can be rewritten shortly as,  
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For a uniform asymptotic solution of Eqs. (3,4) we assume the following two time scale 
expansions [11]: 
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Expanding also the time derivatives in Eqs.(3,4) we find 
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and substituting (5) in (6,7), we find from (6) 
  
∂Uϕ(0)/∂τ = 0.  (8) 
 
In other words, Uϕ

(0)  can depend only on ξ, and the slow time t. Using this result, and 
expanding also the r.h.s. of (4) an equation for Uθ

(0)(ξ,τ,t) is found: 
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where ξ, Uϕ

(0)(ξ,t),  ∂Uϕ
(0)(ξ,t)/∂ξ  can be considered as parameters. An implicit solution of 

(9) can be expressed as 
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where g2 and f3 are polynomials of X≡ Uθ

(0) , and K, L, α, β, γ, δ are functions of parameters 
ξ, Uϕ

(0)(ξ,t),  ∂Uϕ
(0)/∂ξ . Hence, integration yields  
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where a, b, c are three real zeros of f3, and coefficients A= g2(a)/f3’ (a), B= g2(b)/f3’ (b) and C= 
g2(c)/f3’ (c) are functions of slow time t. If there is only one real zero, a, and two conjugate 
zeros b=bre ± ibim , then the solution becomes 
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2. Stability Analysis 
 
Now, we can summarize the behaviour of Uθ

(0) for  increasing τ by means of coefficients A, 
B, and C, as follows: 
1) Case of f3 having three real zeros: 

a) if  A+B+C  <0,  then for all initial values Uθ
(0) remains stable. 

b) if A+B+C ≥0, then some initial values will choose an unstable branch, and 
Uθ

(0) will move along this unstable branch. To decide about the stability of a chosen branch, 
one must either look at the branching map, or use a logical classification based on the critical 
points of the branches, as follows: Supposing that the zeros of f3 are ordered as  a<b<c, then 
Uθ

(0) is always stable for  a < Uθ
(0) (0) < c. If,  however, c < Uθ

(0) (0), or Uθ
(0) (0) < a, then one 
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must also look at the zeros of  g2, i.e., s1 and s2.  Supposing these are ordered as  
s1 < s2 , then if 

i) (c, s2) < Uθ
(0) (0),  then Uθ

(0)  is unstable; 
ii) c < Uθ

(0) (0) < s2,  then Uθ
(0)  is stable; 

iii) Uθ
(0) (0) < (a, s1), then Uθ

(0)  is unstable; 
iv) s1 < Uθ

(0) (0) < a,  then Uθ
(0) is stable. 

 
2) Case of f3 having only one real zero: 

a) if A+2Bre<0 , then for all initial values, Uθ
(0) moves on some stable branches. 

b) if A+2Bre≥0 , then stability of Uθ
(0) depends on the chosen initial value. In this 

case we can again determine stability using an analogous scheme as in case 1-b). 
 

Two exemplary branching maps are seen in Fig.1: 
 

  
 
Fig. 1.  A model calculation for Uθ

(0) (ξ,τ,t) for some fixed ξ and t. Solution branches and 
their stability depend on the initial values taken Uθ

(0) (ξ,0,t). a) case of three real zeros; b) 
case of one real and 2 complex conjugates zeros.  Red branches are unstable; green ones are 
stable. 
 
In the above calculation of Uθ

(0), we assumed that Uϕ
(0)(ξ,t) and its radial derivative were just 

parameters. We must, however, now also find the slow time evolution of Uϕ
(0)(ξ,t). For this 

purpose we take in Eq.(6) all terms of the first order: 
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Now, we note in (13) that a consistent solution for Uϕ

(1)(ξ,τ,t) is possible if only  
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holds. This equation can be written explicitly with the effects of charge exchange, neutral 
beam injection and a possible radial current (see Eq. (1)) as 
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For arbitrary η2,i(ξ), Ni(ξ), and initial condition Uϕ
(0)(ξ,0) = Φ(ξ)  (-∞ <ξ<+∞), parabolic 

equation (15) can be solved by numerical methods. It is seen that, even for a zero initial 
velocity distribution along ξ, Uϕ

(0)(ξ,t) can be driven in time by the inhomogeneous terms in 
(15) due to charge exchange, neutral beam injection etc. 
 
A representative case of the steady state solutions of the Eqns. (1,2), calculated by numerical 
means, are seen in Fig. 2. These solutions can now be tested for stability.  
 

 
 
Fig. 2. Steady state solutions of the toroidal and parallel momentum equations yielding 
normalized toroidal and poloidal velocities, Uϕ , Uθ (For details, see [12-14]). 
 
Acknowledgement 

This work was supported in part by the cooperation agreement between the Scientific and Technical 
Research Council of Turkey (TÜBITAK) and the Forschungszentrum Jülich. 

References 

[1] Stringer, T.E., Phys. Rev. Letters, 22, 770 (1969). 
[2] Rosenbluth, M.N., Taylor, J.B., Phys. Rev. Letters, 23, 367 (1969). 
[3] Hassam, A.B., Antonsen, Jr., T.M., Phys. Plasmas, 1, (2), 337 (1994). 
[4] Rogister, A., Phys. Plasmas, 1 (3), 619, (1994). 
[5] Claassen, H.A., Gerhauser, H., Czech. J. Phys. 49, Suppl. S3, 69 (1999). 
[6] Claassen, H.A., et. al., Phys. Plasmas, 7 (9) 3699 (2000). 
[7] Mikhailowsky, A.B., Tsypin, V.S., Beitr. Plasmaphys. 24, 335 (1984). 
[8] Rosenbluth, M.N., Hinton, F.L., Nucl. Fusion, 36, 1, 55, (1996). 
[9] Hirshman, S. P., Nucl. Fusion, 18, 7, 917 (1978). 

[10] Daybelge, U., Yarim, C., Anguelova, M., Proceedings of the 7th European Fusion Theory 
Conference, Jülich, Germany, 1997. 

[11] Kevorkian, J. and Cole, J. D., Multiple Scale and Singular Perturbation Methods, Springer, 
New York, 1996. 

[12] Daybelge, U., Yarim, C., Claassen, H., Rogister, A., 18th IAEA Fusion Energy Conference, 
Sorrento (2000) CD-ROM file THP1/21. 

[13] Daybelge, U., Claassen, H., Rogister, A., Yarim, C., 27th EPS Conference on Controlled 
Fusion and Plasma Physics, Budapest (2000) CD-ROM file P4_074. 

[14] Nicolai, A., Rogister, A., Daybelge, U., Yarim, C., Research Report of Forschungszentrum, 
Jül-3958, Jülich, Germany, February 2002. 

 


