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Abstract. A nonlinear instability due to zonal flows and magnetic islands has been found. The instability has the

character of a dissipative drift instability due to an anomalous resistivity. The anomalous resistivity is typically

two orders of magnitude larger than the classical at the edge.

1. Introduction

Although fluid models now give drift wave transport coefficients that grow towards the edge in
the bulk plasma region [1, 2], linearly unstable drift waves can still not explain the continued
growth of transport coefficients close to the edge in L mode. Because of this the interest is
now focused on nonlinear drift wave type instabilities [3, 4]. These may be due to nonlinear
electromagnetic effects on the electron motion along the field lines [3] or due to streamers that
twist the density gradient into the poloidal direction [4]. Very far out in the edge, where the
plasma is very strongly collisional, linear excitation may again be important due to resistive
ballooning modes. The nonlinear electromagnetic effects considered in the present work can,
in fact, widen this regime somewhat. We here consider the destabilizing effect of zonal flows
and nonlinear magnetic islands, which may be stronger than the stabilizing shearing effects of
zonal flows.

2. Formulation

We will here consider the equation of electron motion along a magnetic field
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just in order to see how different nonlinear effects can be added to the resistive friction term.
We then consider examples of such terms and finally derive an anomalous resistive instability
in a simple case as an illustration.

Perturbations of the magnetic field that are parallel to the background field are ignored through-
out the paper. ThusA = A||ê|| and δB⊥ = ∇ × A = ∇A|| × ê||. Using Ampere’s law
µ0j|| = ∆A||, ignoring the parallel ion current and also using that electron inertia is small and
will be included only for electron ion collisions, equation (1) can be written
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wherevE = 1
B
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, v∗e = 1
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ê|| ×∇P

)
are theE×B and diamagnetic drift veloci-

ties,vA is the Alfvén velocity andρs is the ion gyroradius at the electron temperature. We have
also here neglected the effect of background current velocityv0 which gives a perpendicular
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drift v0δB⊥/B.

The parts of main interest of the terme (vE + v∗e) · ∇A|| arevE
(0) · ∇A|| and−ikyφ/B0 ·

∂A
(0)
|| /∂x wherevE

(0) andA(0)
|| are generated nonlinearly. We here consider zonal flows of the

form vE
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∂φ̂
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0
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ŷ and magnetic islandsA(2)

||0 .

Using the reductive perturbation method [5], whereφ
(1)
1 = φ (x, ξ, τ) ei(kyy−ωt), ξ = ε (y − λt),

τ = ε2t andε is a small parameter and̂φ = eφ
Te
∼ ε, gives
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Hereφ(1)
1 = fA

(1)
||1 was used. From the low frequency relation∇ · j = 0, Ampere’s law, using

v⊥ = vE + vp + v0δB⊥/B and∇ · vE = 0 we obtain a relation betweenφ(1)
1 andA(1)

||1 as:
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kyv0 (κ+ η) Ωci + k2
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2
sk||vA

k2ω2

, ω2 = ω1 − kyv0y, (4)

whereκ = − (d/dx) lnn0, v0 is an electron background velocity along B andη = − (d/dx) lnv0.
For reference we note that fork|| = 0, the magnetic perturbations lead to the magnetic drift
mode with dispersion relation [6,7].
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The linear effects ofv0 are generally small as shown by the dispersion relation (5).

Equation (2) can now be written in the form:
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where
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We note that thisωE×B corresponds to a homogeneous rotation with mode numberky and is
thus usually larger than the shearing rate.

The flow potentialφ(2)
0 can be calculated by the reductive perturbation method as was done

in [8,9]. The solution for̂φ(2)
0 as a driven mode in the edge region(ε� 1) is:
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For the magnetic islands including electron inertia we get from [7], which also is based upon
the reductive perturbation method, that

Â
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whereλ2 = ∂ω2/∂ky.

Multiplying equations (7) bysin kmx and integrating over one period in x we arrive at
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Thus we may rewrite (7) as
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The renormalized collision frequencyνan is now independent of background parallel velocity
v0, although the amplitude of nonlinear magnetic islandsA

(2)
||0 is. We note that the two contribu-

tions usually are comparable in magnitude except for the caseλ ≈ ω∗e, i.e. ω ≈ ω∗e whereC

has a resonance. Note that
(
kmLn − C

k2
yρ

2
sTf

)
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(2)
0 in general is complex andνan will have both

real and imaginary parts. A real part requires an imaginary part of the group velocityλ. Thus,
we now need to consider a particular dispersion relation.

We will here just pick a simple case of a resistive drift interchange mode as an example and
for simplicity take the limitωDe � ω∗e and ignore temperature perturbations and gradients.
Combining continuity and parallel momentum equations and ignoring parallel ion motion gives
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Using the Ballooning mode formalismk2
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where
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where we usedω ≈ ω∗e in equation (18).

Equation (16) has the asymptotic solutionφ = ei
√
κω(θ−θb), whereθb is theθ where this so-

lution starts to be valid. Equation (16) has the same form as part of the averaged equation for
MHD ballooning modes in [10]. There it was found that the inner solution could be approxi-
mated by a constant and thatθb = ŝ/4 was a good choice. We now multiply equation (16) by
φ∗ and integrate from0 to∞. Then∫ ŝ+ε
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Since we take the constant inner value equal to 1. In the other region∂2φ
∂θ2 and−κωφ cancel

exactly. Since we consider small growthrates(γ � ωr) the asymptotic solution is varying more
slowly than the last part of equation equation (16). We thus approximate∫ ∞
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The dispersion relation can then be written
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The growthrate can be simplified by averaging equation (8) over x and usingγ � ωr ≈ ω∗e and
λ ≈ V∗e, which gives
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whereωA = vA
qR

. AlthoughG is formally of the order of the root of our small parameter, it is

typically of order1. Thus at the edge where|φ(1)
1 | is not much smaller than1, γ can become of

the order ofω∗e.

The saturation of the instability will most likely be outside of the present ordering. However,
one can make an estimate from the dispersion relation (equation (14)). For a usual resistive
drift instability with k2

||De > ω, the dispersion relation can be expanded with an imaginary part
proportional to the resistivity. The anomalous resistivity then grows with amplitude and the
dispersion relation can eventually be expanded fork2

||De ≤ ω resulting in an imaginary part,
which decreases with the amplitude. We would thus get saturation roughly when

|〈k2
||De〉| = ω∗e =

∣∣∣∣√κωq2R2
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∣∣∣∣ , (23)
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since in this case the averagedk2
|| enters only at the matching point between the interior and

exterior solutions according to equation (19). Combining equations (23), (8),(13),(17) and (18)
one gets

|φ̂(1)
1 |2 =
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V 2
∗e
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AlthoughN is formally of orderε, it is numerically rather large.(ωA/ω∗e) is of orderεn/βe,
which is of the order10. Thus|φ(1)

1 | can be of order 1 as has been observed in the tokamak
edge.

3. Conclusions

We have in this work shown that although nonlinear flows can have a stabilizing effect on tur-
bulence due to their shearing rate, they can be destabilizing due to the generation of anomalous
resistivity under certain conditions. We expect this to be important near the edge where the
zonal flow amplitude is large, due to smallεn. Thus at the edge the resonance from the ion
temperature dynamics [9] is less important. In this case we also expect to be close to the res-
onance for magnetic islands, i.e.ω ≈ ω∗e. The growthrate, of the nonlinearly driven modes,
which here has been assumed to be in the regular drift wave regime, could become at least of the
order of the diamagnetic drift frequency. This makes the present instability a strong candidate
for explaining the transport in the edge outer region where linear driftwaves are not sufficient
to explain the transport while the temperature is still too high for resistive ballooning modes.
Since saturation occurs whenk2

||De ∼ ω∗e we can not get a stronger instability by a further
increase in the amplitudes of the nonlinear structures.
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