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Abstract. Shear flow is the most important ingredient governing nonlinear behavior of many types of
plasma instability. Electromagnetic effects on shear flow generation have been studied for an electro-
magnetic drift wave called resistive drift-Alfvén mode (RDAM) and a global MHD mode called resistive
wall mode (RWM). For RDAM it is found that the generated shear flow stabilizes the dominant modes;
however, other modes are destabilized. For RWM Maxwell stress due to magnetic fluctuations has a
tendency to suppress the poloidal flow near the plasma surface, which gives almost same saturation level,
since the shear flow stabilization disappears.

1.Introduction

Recent topics of plasma instabilities and induced anomalous transport in tokamaks
and stellarators are related to the shear flow generation governing nonlinear saturation
of fluctuations[1]. For nonlinear electrostatic drift waves such as resistive drift waves and
ion temperature gradient driven drift modes, the most interesting result is the formation
of zonal flow to suppress turbulent transport [2,3]. Here our concern is in the shear flow
generation and nonlinear saturation of electromagnetic instabilities such as resistive drift-
Alfvén modes (RDAMs) [4,5] and resistive wall modes (RWMs)[6,7,8]. The former is an
electromagnetic drift wave which is considered as a candidate for the edge turbulence in
tokamaks[9]. The latter is considered to limit the beta value in a steady operation of
high bootstrap current tokamak with a negative shear[10]. Nonlinear fluid models are
solved numerically for cylindrical plasmas, and characteristic behavior of both RDAMs
and RWMs is discussed in the following.

2.Nonlinear RDAMs

For studying RDAMs we use the three field equations derived from Braginskii equa-
tions[11], which are composed of vorticity equation
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where j‖ = −(1/µ0)∇2
⊥A, vE = ẑ × ∇φ/B0, Ω = ∇2

⊥φ, ∇‖ = ∂/∂z − (ẑ × ∇A)/B0 ·
∇, ωci = eB0/mi is an ion cyclotron frequency, η is a resistivity. Here cold ions are
assumed and toroidal magnetic curvature is neglected. For simplicity, single helicity is
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Figure 1. Linear growth rates of k = 7 , 8, and 10 modes as a function of velocity shear. The
flow profile is fixed at the time of saturation. The magnitude is changed to control |dVθ/dr|norm.
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Figure 2. Radial profiles of electrostatic potential fluctuations for k = 10 and k = 8 modes, and
poloidal flow shear at the saturation.

assumed in solving Eqs.(1)-(3). In the numerical calculations, mode numbers (m,n) =
(2k, k) are picked up for studying the RWMs destabilized near the q = 2 surface, where
0 ≤ k ≤ 10 is assumed. Here m(n) is a poloidal(toroidal) mode number. The fixed
boundary conditions are assumed. Also a cylindrical tokamak is assumed with B0 =1.0T,
R =1.0m, a=0.2m, Te=200eV, n0(r) = 5× 1020 exp[−4.0(r/a)2], q(0)=1.1 and q(a) =4.2.
In the numerical code, dissipative terms describing diffusion, resistivity and viscosity
are included for obtaining nonlinear saturation of RDAMs. It is noted that the volume
average beta is 0.018. Figure 1 shows the linear growth rates of k =7, 8 and 10 as a
function of the maximum poloidal flow shear normalized by the saturated value. Here
we have used the radial flow shear profiles shown in Fig.2, which are fixed for calculating
the linear growth rates in Fig.1. The linear growth rates of the k = 7 and k = 10 modes
decrease monotonically with the increase of the flow shear, and both modes are completely
stabilized for |V ′

θ |norm & 2. On the other hand, the growth rate of the k = 8 mode increases
with the increase of the flow shear, although the k = 8 mode will be completely stabilized
at |V ′

θ |norm ' 2.5. In Fig.2, the sheared poloidal flow at the saturation (|V ′
θ |norm=1 in

Fig.1) seems sufficient to reduce both the linear growth rate of the most unstable k = 10
mode, and that of the secondary unstable k = 7 mode to about 1/5 and 1/2, respectively.
However, the growth rate of k = 8 mode becomes more than twice by the sheared poloidal
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flow (|V ′
θ |norm = 1 in Fig.1), and this mode keeps growing after the saturation. The

difference between the poloidal shear flow effects on the RDAMs, stabilization on the
k = 7 and 10 modes and destabilization on the k = 8 mode, is related to the radial mode
structure of RDAM. Radial profiles of electrostatic potential φ̃ for the k = 10 and k = 8
modes and the poloidal flow shear V ′

θ are shown in Fig.2. The profile of k = 10 mode has
the largest peak at r/a ' 0.5 which is near the largest peak of the poloidal flow shear.
On the other hand, the largest peak of k = 8 mode is located at r/a ' 0.4 different from
the largest peak of the flow shear. It is also noted that the width of radial mode structure
seems wider than that of the flow shear profile for the k = 8 mode. These facts may
explain the destabilizing effect of flow shear on RDAM.

3.Nonlinear RWMs

The reduced MHD equations for low beta cylindrical plasmas are obtained by neglect-
ing the third term in Eq.(2). For studying nonliner RWMs equations for φ, A and η are
solved. Resistivity is also introduced in the vacuum region to use the pseudo-vacuum
model[12,13]. Time evolution of the resistivity in Eq.(2) is solved here. The equation for
resistivity is assumed as

∂η

∂t
= v · ∇η + κ‖∇2

‖η + κ⊥∇2
⊥η + Q, (4)

where the parallel diffusivity of resistivity κ‖ is normalized with R2/τhp and the perpendic-
ular one κ⊥ with a2/τhp. For numerical calculations κ‖ = 1 and κ⊥ = 10−5 are assumed.
The source term Q is chosen as κ⊥∇2

⊥ηeq(r) + Q = 0, where ηeq(r) is a resistivity at an
equilibrium state. It is possible to include a poloidal rotation in Eqs.(1),(2) and (4) with
φ(r, t), since Vθ = −∂φ/∂r.

The pseudo-vacuum region is surrounded by the resistive wall with a finite thickness.
In the resistive wall, the velocity is zero and the resistivity is independent of time. How-
ever, the poloidal flux may change in this region. It is also assumed that the outside of
resistive wall is covered by a perfect conductor at rc=2 for simplicity. That is, the main
plasma is located in the region r ≤ 1, the pseudo-vacuum in the region 1 < r < rw,
and the resistive wall in the region rw ≤ r ≤ rc, where rw is the boundary between the
pseudo-vacuum and the resistive wall.

The current profile at an equilibrium state is chosen as Jeq(r) = (Ja−Jb)(1−r3.5)2+Jb

for 0 ≤ r ≤ 1, and Jeq(r) = Jb � Ja for 1 < r < rc. The resistivity profile is assumed to
be proportional to 1/Jeq(r) for r < rw. η(r = 0) and the resistivity in the pseudo-vacuum
region ηv are set to be η(0) = 10−5 and ηv = 10−3, respectively. Resistivity of the resistive
wall ηw is assumed to be ηw = 10−4. For numerical calculations, qa=1.85 and rw=1.2 are
assumed, where qa is a safety factor at the plasma surface. The rational surface of q = 2
is located at r = rs ' 1.04 in the pseudo-vacuum region.

When a perfect conducting wall is located at r ≤ 1.27 instead of a resistive wall, the
ideal kink mode can be stabilized perfectly. When a resistive wall is assumed, RWMs
become always unstable. However, RWM can be stabilized by a rigid poloidal rotation.
Figure 5 shows the time evolution of magnetic energy of (m,n) = (2, 1) mode for rw = 1.2.
For ωeq ≥ 1.2×10−2 the nonlinear growth rate is enhanced when the magnetic fluctuation
exceeds a critical level, and the saturated amplitude becomes comparable to that in the
case of ωeq ' 0. It is noted that a rigid poloidal rotation with φ(r) ∝ r2 is assumed
initially.
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Figure 3. Time evolution of magnetic energy of (m,n) = (2 , 1 ) mode for rw = 1 .2 for various
poloidal rotation frequency.
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Figure 4. Radial profiles of each term in
Eq.(10) at t=6000 for ωeq = 1.3×10−2. (a)
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Figure 5. Time evolution of profile of
poloidal velocity for rw = 1 .2 and ωeq =
1 .3 × 10−2 .

From Eq.(1), the time evolution of average poloidal velocity 〈Vθ〉 is given by

∂〈Vθ〉
∂t

= − 1

r2

∂

∂r
r2〈ṼrṼθ〉

+
1

r2

∂

∂r
r2〈B̃rB̃θ〉 − ν

dŨ0

dr
,

(5)

where 〈f〉 =
∫ 2π

0

∫ 2π

0
fdθdz/4π2 and Ũ0 is (m,n) = (0, 0) component of perturbed vortic-

ity. Here the viscous term is added with a viscosity ν. Figure 3 shows each terms in Eq.(5)
at t=6000 for ωeq = Vθ/r = 1.3× 10−2. The left hand side of Eq.(5) give a damping force
in the vicinity of the rational surface (see Fig.4(a)) mainly due to the magnetic Reynolds
stress or Maxwell stress (see Fig.4(c)). The electrostatic Reynolds stress (see Fig.4(b))
has a tendency to generate the poloidal flow. However its contribution is weak. Also the
viscosity affects to generate the poloidal flow near the rational surface (see Fig.4(d)). Fig-
ure 5 shows the time evolution of the profile of poloidal rotation velocity. The slowdown
of poloidal rotation can be clearly seen as shown in Fig.5, as the minimum of poloidal
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rotation velocity decreases to almost zero. Then the stabilizing effect of the poloidal ro-
tation becomes weak. This leads to the enhanced growth rate before the saturation. It is
noted that the RWM is linearly stabilized for ωeq ≥ 1.4 × 10−2.

4.Discussion

It is recognized that the poloidal shear flow or zonal flow is generated by the Reynolds
stress due to the electrostatic drift waves. Here the electromagnetic effect on the shear
flow generation has been studied for the resistive drift Alfvén modes. It is confirmed
that the electromagnetic fluctuations produce Maxwell stress which has a tendency to
suppress the poloidal shear flow. An interesting result is that the poloidal shear flow
destabilizes the resistive drift Alfvén mode, when the radial mode structure is wider than
the flow shear profile, and the peak of the flow shear is shifted from that of the radial
mode structure.

The poloidal shear flow also has stabilizing effects on global MHD modes. Here it is
shown that the resistive wall mode is stabilized linearly; however, the nonlinear saturation
level of RWM does not depend on the poloidal rotation frequency. This result is explained
by the Maxwell stress which has a role to suppress the poloidal shear flow. When the
RWM grows, Maxwell stress is increased and the poloidal flow is decreased to almost zero
in the neighborhood of plasma surface. Then the growth rate is enhanced nonlinearly.

It seems necessary to study electromagnetic effects on the generation or decay of shear
flow for understanding behavior of finite beta plasmas in tokamaks and stellarators.
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