Role of Low Order Rational q Values on the ITB-events in JT-60U Plasmas

S. V. Neudatchin1), T. Takizuka 2) N. Hayashi 2), H. Shirai 2), T. Fujita 2), A. Isayama 2), Y. Kamada 2), Y. Koide 2), T. Suzuki 2)

1) Nuclear Fusion Inst., RRC Kurchatov Institute, 123182, Kurchatov sq. 1 Moscow Russia
2) JAERI, Naka Fusion Research Est., Naka-machi, Naka-gun, Ibaraki-ken 311-0193, Japan
e-mail contact: neudatchin@nfikiae.u

Abstract

The formation of internal transport barriers (ITBs) near $\mathrm{q}=2,3$ surfaces in normal (NrS) or optimized shear discharges of JT-60U and JET is well known. In reverse shear (RS) JT-60U plasmas, the role of q minimum ($\mathrm{q}_{\text {min }}$) equal to $3.5,3,2.5,2$ is not obvious for ITB formation. ITB-events (non-local confinement bifurcations inside and around ITB in a ms timescale) are found in various JT-60U NrS and RS plasmas. Under sufficient power, ITB-events are seen at rational and not rational values of $\mathrm{q}_{\text {min }}$. The space-time evolution of T_{e} and T_{i} is similar even being strongly varied in space and time, suggesting same mechanism(s) of T_{e} and T_{i} transport. The temporal formation of strong ITB in H-mode under passing of $\mathrm{q}_{\text {min }}=3$ (after periodical improvements and degradations via ITB-events with 8 ms period) in RS mode with $\mathrm{P}_{\text {nbi }}=8 \mathrm{MW}$ is presented. Under smaller power, ITB-events are observed only at rational values of $\mathrm{q}_{\text {min }}$. In a weak RS shot with $P_{n b i}=4 M W$, abrupt rise of T_{e} is seen at $q_{\text {min }}=3.5$, while more cases of T_{i} rise are observed. The difference of the T_{e} and T_{i} evolution seen regularly under the low power, suggests decoupling of T_{e} and T_{i} transport.

1. Introduction

The formation of internal transport barriers (ITBs) near $\mathrm{q}=2,3$ surfaces in normal (NrS) or optimized shear discharges of JT-60U and JET is well known [1,2]. In reverse shear (RS) JT60 U plasmas, the role of q minimum ($\mathrm{q}_{\min }$) equal to $3.5,3,2.5,2$ is not obvious for ITB evolution. The transient processes seen under crossing $\mathrm{q}_{\min }=3$ were first time reported in [3]. Later, non-local confinement bifurcations inside and around ITB (abrupt variations of transport in a ms timescale within $\sim 0.3 \mathrm{r} / \mathrm{a}$) were found in various JT-60U RS and NrS plasmas and called ITB-events [4-6]. The maximum of heat flux variation is located near the position of $\mathrm{q}_{\text {min }}$. The series of ITB-events is able to create the strong ITB in H-mode ($\mathrm{q}_{\min } \sim 2.7$) with nearly doubled energy confinement time [6]. The influence of the radial electric field calculated near ITB foot on wider ITB region was highlighted in [7]. Initially, another type of non-local (in $\sim 90 \%$ of volume) abrupt jumps (bifurcations) of transport at fast "global" L-H-L transitions was found in JET and JT-60U plasmas with NrS [8-9]. At L-H-L transitions in JT-60U plasmas with RS and ITB [5-6], the profile of the heat flux jump follows the position of the safety factor minimum and penetrates into RS region deeper for the weak ITB that for the strong one [6]. ITB-event degradation causes L-H transition [6].

2. ITB-events under sufficient NBI power in RS

Under sufficient power in JT-60U RS plasmas, ITB-events are seen at rational and not rational values of $q_{\text {min }}$ and the space-time evolution of T_{e} and T_{i} is similar [4-6]. In the present paper, we highlight the similarity of T_{e} and T_{i} evolution by detailed comparison $\mathrm{T}_{\mathrm{e}}(\mathrm{r}, \mathrm{t})$ and $\mathrm{T}_{\mathrm{i}}(\mathrm{r}, \mathrm{t})$ behavior (see Fig. 1) during strong ITB creation via series of ITB-eventsimprovements A, C, F and further ITB degradation (shot 32423, 1.5MA/3.7T, L-mode edge, $\mathrm{P}_{\mathrm{nb}}=8 \mathrm{MW}, \mathrm{q}_{\min } \sim 2.7$, see evolution of plasma parameters in [4]). The position and the evolution of T_{e} measured by 12 -channels ECE heterodyne radiometer (data averaged in 0.5 ms interval) at channel $11\left(\mathrm{~T}_{\mathrm{e} 11}\right)$ correspond to the $\mathrm{T}_{\mathrm{i} 13}$ evolution (changes of timetraces at the times A, D, F, K on Fig.1). The T_{i} is measured with 17 ms time resolution and $\sim 0.06 \mathrm{r} /$ a space resolution half width. The $\mathrm{T}_{\mathrm{e} 8-9}$ evolution corresponds to the $\mathrm{T}_{\mathrm{i} 12}$ evolution (changes of slopes at the times C, E, F, H on Fig.1). The $\mathrm{T}_{\mathrm{e} 6}$ position lies near the $\mathrm{T}_{\mathrm{i} 11}$ position (times A, F, K). The $T_{e 1}$ position corresponds to the $T_{i 10}$ position. The evolution and the similarity of T_{e} and T_{i} transport at $\mathrm{t}=6.5-6.68 \mathrm{~s}$ time interval was described in detail [4]. The $\mathrm{T}_{\mathrm{i}, \mathrm{e}}$ evolution

presented on Fig.1, shows the similarity of the transport in a longer time interval, including the formation of double ITBs clearly seen before time G (weak ITB between $\mathrm{T}_{\mathrm{e} 2}$ and $\mathrm{T}_{\mathrm{e} 6}$, and strong ITB between $\mathrm{T}_{\mathrm{e} 10}$ and $\mathrm{T}_{\mathrm{e} 12}$. The same trend is observed for T_{i} profile at $\mathrm{t}=6.75 \mathrm{~s}$ (the difference between $\mathrm{T}_{\mathrm{i} 12}$ and $\mathrm{T}_{\mathrm{i} 13}$ is equal to 1 keV and 2.5 keV for $\mathrm{T}_{\mathrm{i} 13}$ and $\mathrm{T}_{\mathrm{i} 14}$ ($\mathrm{r} / \mathrm{a}=0.73$)). Strong ITB destroys after time G.
The timetraces of shot 32474 (1.5MA/3.7T), the evolution of T_{e} and profiles in H -mode under passing of $\mathrm{q}_{\text {min }}=3$ are presented on Figs 2(a-d). Four cycles of ITBevents (called periodic ITB-events or P-ITB-events) are seen on T_{e} evolution after $t=6.68$ s (see Figs 2(c,d). Each cycle consists of $\sim 4 \mathrm{~ms}$ ITB-event improvement phase ($\mathrm{T}_{\mathrm{e} 3-6}$ rise and $\mathrm{T}_{\mathrm{e9-12}}$ decay) and $\sim 4 \mathrm{~ms}$ ITB-event
Fig. 1. Similarity of T_{i} and T_{e} evolution in shot 32423. $P_{n b i}$ rises from $8 M W$ to 10 MW at $t=6.66 \mathrm{~s}$.

Figure 2(a) Timetraces of $W, P_{n b i}$ and I_{p} in shot 32474. Transitionless H-mode [10] starts from t ~ 5.7 s. P - start of periodical ITB-events at $q_{m i n}=3$. (b) Positions of radiometer channels and $T_{e}(r)$ for $t=6.68,6.9 \mathrm{~s} .(c-d) T_{e}$ timetraces at periodical P-ITB-events and ITB-event-improvement I

Fig. 3. Profiles of $T_{e, i}, n_{e}$, and q before time P at Fig. 2.
Fig . 4 Profiles of $\delta \chi_{e}$ estimated for P, I and D ITB-events

$t=6.9 \mathrm{~s}$ (dotted line) are shown on Fig.3. The inversion radius (region between T_{e} rise and decay at ITB-events on Fig 2(c) lies

Fig. 5 Simulation of P-ITB-events (a) $\delta \chi_{e}$ profile, (b) evolution of χ_{e} in time (c) evolution of δT_{e}.
degradation phase $\left(T_{\text {e2-6 }}\right.$ decay and $\mathrm{T}_{\text {e9-12 }}$ rise). At $\mathrm{t}=6.75 \mathrm{~s} \quad$ confinement improves again via the ITBevent I, and the ITB foot locates at the position of ch. 11 at $\mathrm{t}=6.9 \mathrm{~s}$ (see Fig. 2(b)) instead of position of ch8 before ITB-events. T_{i} evolves similar to T_{e}, as usual.
Profiles of $\mathrm{T}_{\mathrm{e}, \mathrm{i}}$ (rhombus and circles), n_{e} (triangles) q at near the position of $\mathrm{q}_{\mathrm{min}}$, as usual [46]. The $\delta \chi_{e}$ profiles at ITB-events P, I and D (degradation which occurs later and not shown on Fig.2) were calculated from abrupt variations $\partial \mathrm{T}_{\mathrm{e}} / \partial \mathrm{t}$ values at times of ITB-events (see method in [4]).

Fig. 5 presents modelling of periodical ITB-events with the profile of the electron heat diffusivity coefficient variation $\delta \chi_{\mathrm{e}}$ shown in Fig. 5(a). The evolution of χ_{e} and calculated values of $\delta \mathrm{T}_{\mathrm{e}}$ at various radial positions are shown on Figs. 5 (b-c). The calculations reasonably describe the experiments shown on Fig. 2(c-d). We suppose that the periodical "global" L-H-L transitions with 20 ms period (10 ms H -mode phase and 10 ms L-mode phase) found in JET [11] are clear physical analogue to the periodical ITB-events described above.

3. ITB-events under small NBI power in RS

Fig.6. Timetraces of $I_{p}, W, H_{\alpha}, P_{n b i}$ and $q_{\text {min }}$ in shot 36639

Under smaller power, ITBevents (in ~ 20 pulses studied) are connected with some low order rational $\mathrm{q}_{\text {min }}$ values. ITBevents are found at $\mathrm{P}_{\mathrm{nbi}}=2.5 \mathrm{MW}$ in the latest phase
of RS discharge 36639 (1.4MA /3.8T) under $\mathrm{q}_{\min }=2.5$ (see Fig. 6).

Fig. 7 Timetraces of I_{p}, W and $P_{n b i}$ in shot 38976

Moreover, the influence of some low order rational $\mathrm{q}_{\text {min }}$ values is seen clearly for temporal ITB creation on T_{e}. The timetraces of shot 38976 (1.3MA/3.7T) are shown on Fig.7. The abrupt rise of T_{e} is seen only once at $\mathrm{q}_{\min }=3.5$ at
$\mathrm{t}=5.87 \mathrm{~s}$ while more cases of T_{i} rise are observed (after $\mathrm{t}=6.1 \mathrm{~s}$ also). The timetrace of the row heterodyne data is shown on Fig.8. The rise of T_{e} is seen at $\mathrm{t}=5.87 \mathrm{~s}$ ($\mathrm{q}_{\min }=3.5$ at this time)

Fig. 8. Timetrace of T_{e} (0.35), similar behavior seen at $0.2<r / a<0.4$ region in shot 38976

Fig. 9. Profile q at $t=5.9 \mathrm{~s}$ with qmin $=3.42$ in shot 38976
in the wide region $0.18<\mathrm{r} / \mathrm{a}<0.42$. The profile of the electron heat diffusivity variation $\delta \chi_{\mathrm{e}}$ is obtained from abrupt variation of $\partial \mathrm{T}_{\mathrm{e}} / \partial \mathrm{t}$ values at $\mathrm{t}=5.87 \mathrm{~s}$ in the same way like described in

Fig. 10 Timetraces of T_{i} in shot 38976 detail in [4] and is wide in space (in the region over $0.5 \mathrm{r} / \mathrm{a}$). The q profile at $\mathrm{t}=5.9 \mathrm{~s}$ is presented on Fig. 9. The wide region of small shear is observed clearly. In this particular shot 38976 case, T_{i} evolves similar to T_{e} at $q_{m i n}=3.5$ and rises separately from T_{e} at $\mathrm{t}=6.1 \mathrm{~s}$ (see Fig.10). The same behavior of T_{e} and T_{i} is observed in the similar shot 38974. The rise of T_{e} occurs at $\mathrm{t}=5.92 \mathrm{~s}$ (close to $\mathrm{t}=5.86 \mathrm{~s}$ in shot 3896).

The difference of the T_{e} and T_{i} evolution seen regularly under the low power, suggests decoupling of T_{e} and T_{i} transport.

4. Discussion and Conclusions

Besides well-known formation of ITBs near $\mathrm{q}=2,3$ surfaces in NrS or optimized shear discharges of JT-60U and JET [1-2], similar features are sometimes seen in small machines with ECR heating. The existence of the zones with improved transport near low-orderrational q values was reported at RTP [13]. The zone of the improved transport formed by
off-axis ECRH in T-10 (the region with low shear and q near 1 inside $\sim 0.3 \mathrm{r} / \mathrm{a}$) is able to survive at $R / L_{T e}=\operatorname{Rgrad} T_{e} / T_{e}$ up to 23 with $\chi_{\mathrm{e}} \sim 0.1-0.2 \mathrm{~m}^{2} / \mathrm{s}$ [14].

Under sufficient power in RS JT-60U plasmas, the space-time evolution of T_{e} and T_{i} due to series of ITB-events improvements and degradations is similar even being strongly varied in time and space. The same physical mechanism(s) is responsible for T_{e} and T_{i} evolution at ITB-events. ITB-events are observed under various values of $\mathrm{q}_{\text {min }}$. The periodical ITB-events with $\sim 8 \mathrm{~ms}$ period are found in H-mode RS plasmas under crossing $\mathrm{q}_{\text {min }}=3$. Probably the clearest analogues are periodical "global" L-H-L transitions with 20 ms period found in JET [11].

Under smaller power in JT-60U RS plasmas, the space-time evolution of T_{e} and T_{i} could be different from each other. The transport looks different for T_{e} and T_{i}. The influence of some low order rational $q_{\text {min }}$ values is seen clearly for temporal creation of the ITB on T_{e} and for series of small-scale ITB-events on T_{e}. At present, we observe ITB-events at low order rational $\mathrm{q}_{\text {min }}$ values only.

ITB-events triggers could be different in various JT-60U plasmas. The role of MHDactivity as ITB-event improvement trigger should be studied in future. The correlation of the MHD-activity and ITB-event improvement within a millisecond timescale was found sometimes (not frequently). The correlation of the coupled edge-core MHD-activity and ITB formation (unfortunately within $\sim 100 \mathrm{~ms}$ time interval) was reported on JET [11]. A physical mechanism of non-local bifurcations of the core transport at the ITB-events is still unclear. Further study of ITB-events (especially in low power cases) and ITB-events triggers is necessary.

References

[1] KOIDE Y et al 1994 Phys. Rev. Lett. 723662
[2] GORMEZANO C. et al 1999 Plasma Phys. Control. Fus. 41 B367
[3] FUJITA T et al 1997 Fusion Energy 1996, Proc. 16th IAEA Fus. En. Conf. (Montreal, 1996) vol 1 (Vienna: IAEA) p 227
[4] NEUDATCHIN S V, et al 1999 Plasma Phys. Control. Fus. 41 L39 and 2001 Plasma Phys. Control. Fus. 43661
[5] NEUDATCHIN S V, TAKIZUKA T, SHIRAI H et al 2000 Fusion Energy (Proc 18th IAEA Fusion Energy Conf. Sorrento 2000) Vienna (2001) CR-ROM file EXP5/01 www.iaea.org/programmes /ripc/physics/fec2000/html/nodel.htm
[6] NEUDATCHIN S V, TAKIZUKA T, SHIRAI H et. al 2002 Plasma Phys. Control. Fus.
42 A383
[7] SAKAMOTO Y et al 2001 Nuclear Fusion 41865
[8] NEUDATCHIN S V, CORDEY J G AND MUIR D J 1993 20th EPS Conf. on Contr.
Fus. and Pl. Ph. (Lisboa,) vol.I (EPS), p 83 and CORDEY J G, MUIR D J, NEUDATCHIN S V et al 1994 Plasma Phys. Control. Fusion 36 Suppl. A267
[9] NEUDATCHIN S V, TAKIZUKA T, SHIRAI H, et al 1996 Japan J. Appl. Phys. 353595
[10] KIKUCHI M, et al 1993 Proc. 20th EPS Conf. on Controlled Fusion and Plasma
Physics (Lisboa, 1993) vol.I (Geneva:EPS), p 45
[11] Cordey J G et al 1995 Nucl. Fusion 35505
[12] JOFFRIN E., ALPER B, CHALLIS C.D. et al 2000 27th EPS Conf. on Contr. Fus. and Pl. Ph. (Budapest) ECA vol 24B p 237
[13] LOPEZ CARDOZO N J et al 1997 Plasma Phys. Control. Fus. 39 B303
[14] NEUDATCHIN S V et al "Study of electron heat pulse propagation with two frequencies set of gyrotrons on T-10 tokamak" 2002 Strong Microwaves in Plasmas (Int. Workshop in Nyznii Novgorod, Russia) rep. H-19, Nucl. Fus. to be submitted

