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Abstract:  Self-organized dynamics of toroidal helical plasma, which is induced by the nonlinear transport
property, is discussed.  Neoclassical ripple diffusion is a dominant mechanism that drives the radial electric field.
The bifurcation nature of the electric field generation gives rise to the electric field domain interface, across which
the electric field changes strongly.  This domain interface is an origin of internal transport barrier in helical
systems.  This nonlinearity gives rise to the self-organized oscillations; the electric field pulsation is one of the
examples.  Based on the model of density limit, in which the competition between the transport loss and
radiation loss is analyzed, dynamics near the density limit of helical systems is also discussed.

1. Introduction
In  "steady-state" plasmas, plasma parameters evolve into self-regulated dynamical

states, often being associated with self-organized oscillations [1].  In long plasma discharges,
plasmas exhibit the features which are controlled by the nonlinear transport property, being free
from the initial conditions.  Such a property is the central issue of the physics of steady state
plasmas.  An example is the self-organized dynamics of the internal transport barrier of high-   β p

tokamaks, in which the toroidal current is almost completely sustained by the Bootstrap current
[2].  The nonlinear transport drives, in one hand, the transition causing the spatial interface
between two different radial domains.  On the other hand, it induces the temporal evolution,
i.e., the self-organized dynamics.  The bifurcation of transport property, which generates the
transport barrier like H-mode, gives rise to the self-organized dynamics like dithering ELMs
[3].  In this article, physics of domain interface, barrier and self-organized dynamics is
discussed for toroidal helical plasmas, from the generic view point of theory and modelling.

2. Model
A simple set of transport equations is taken in order to study the dynamics of helical

plasmas.  The electron density n , temperature T , and radial electric field  Er  are chosen as
parameters that characterize the plasma state.  The dynamical model consists of the particle
balance equation, the equation of momentum or radial electric field, and the equation for
temperature, as

, (1)

, (2)

.  (3)

Transport relations between plasma parameters and fluxes   Γr ,  qr , and   µ⊥∇⊥Er  are nonlinear
function of plasma gradient as shown in, e.g., [1].  The particle sources , radial current ,

energy input source , and radiation loss  Prad  play the role of source terms in this dynamical
system.  The magnetic field is assumed to be constant in time.  This simplification excludes the
self-organized dynamics like the one of ref.[2] in improved confinement state, but is relevant for
low-β  helical plasmas.  The system of these equations allows a variety of dynamical solutions
being associated with transport barrier.

In helical systems, the neoclassical ripple transport could play a dominant role in the

term  Jr Er .  Bifurcations of electric field and transport have been studied.  The electric field



interface, across which radial domains with different electric field polarity touch, has been
predicted as a possibility for the internal transport barrier.

The particle flux associated with the helical-ripple trapped particles is employed after [4]
in order to have an analytic insight as

    (4)

with   and .  Notation is as follows: 

is the inverse aspect ratio,  is the helical ripple,  is the toroidal drift velocity,  is
the pitch-angle collision frequency,  is the minor radius,  is the major radius, a  is the plasma
minor radius, and the prime  denotes the radial derivative , and suffix j denotes species (e,
i).  The coefficient  Ce  is small and is neglected.  Hence the neoclassical electron energy flux is
expressed in the regime of ripple diffusion as

(5)

where coefficients    γe ∼ 5 ,   η 22 ∼ 4.5  and   η 12 ∼ 3.5  are numerical constants.  The total flux is
given as a sum of the neoclassical flux and anomalous flux.  The particle and electron energy
fluxes are put as

(6)

(7)

3. Domain Interface
The bifurcation is studied by solving the stationary solution of Eqs.(1)-(3) for the

circumstance of the ECH plasmas.  Figure 1(a) illustrates the normalized radial electric field
  X = Ci eaEr/Te  and normalized temperature gradient    Y = ± Ci η 22 aTe

′/Te  as a function of the

normalized radial energy flux .  (  In the case of ECH plasma,
density gradient is much weaker than the temperature gradient, and we employ the simplification

of    Y >> an ′/n .)  At critical energy flux, the electric field jumps to a higher branch on which
the neoclassical energy diffusion is much smaller.  The transition between two branches takes
place at the critical heat flux   Qt

* , at which the Maxwell's construction rule is satisfied,

(8)

where  and  are two stable solutions of the equation .
Depending on the magnitude of anomalous transport and the electron-to-ion temperature

ratio, the transition could be a soft transition.  Figure 1(b) illustrates a soft bifurcation.  Figure 2
illustrates the parameter region where the hard transition is possible to occur.

Analyses of Figs.1 and 2 are applied to understand the radial structure.
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Fig.1  Radial electric field X  (solid line) and temperature gradient Y  (dashed line) as a function of the heat flux.

(   Te/Ti = 2 ,   De/Di = 0.26 ,   b = 7/9 ,    χa = χ/η22Deγe = 0.5 ; case (a)) and that for soft transition (   Te/Ti = 3 ,

  De/Di = 1.09 ,   b = 7/9 ,    χa = 3 ; case (b)).
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Fig.2  Region of hard transition is illustrated.  (    χa = χ/η22Deγe  denotes the normalized anomalous thermal

transport coefficient.)  Mass ratio is chosen as   mi/me = 1836 .  Below this critical line, hard transition can take
place.

For a fixed central heating power, the normalized heat flux  Qt  is a function of radius.  The

higher  Qt  denotes the inner region and the lower  Qt  indicates the outer region.  On the magnetic
surface where

  Qt = Qt
* (9)

is satisfied, the domain interface for radial electric field exists.  (Inside of this radius, the electric
field is on the 'electron branch' and outside is on the 'ion branch'.)  Across this domain
interface, the radial electric field changes noticeably, so as to induce a large electric field
inhomogeneity.   The internal transport barrier (ITB) is established if the inhomogeneity is
strong.  This models the ITB formation in CHS [5].  Application to LHD plasma is discussed in
[6].

4. Dynamics of Barrier
The normalized electron energy flux has a dependence .  Therefore, the

normalized heat flux is perturbed in the presence of temperature modulation  as

(10)

Change of temperature  and that of electric field   δX  are related as  through
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Fig.3 Radial electric field X  as a function of the heat flux.  Solid and dashed lines indicate    ∂X/∂t = 0  and

   ∂Qt/∂t = 0 , respectively.  Self-generated oscillation is possible.

the relation of .  Substitution of the approximation  into
Eq.(9) gives an estimate

(11)

where   Qt0  is the unperturbed value.  Figure 3 illustrates the flow diagram in the   X, Qt  space.

The solid line shows the condition   dX/dt = 0  and the dashed line indicates   dQt/dt = 0 .  The
cross-point is a fixed point.  If the heating power is chosen as appropriate value, the fixed point
could be an unstable fixed point.  The limit cycle oscillation is possible to occur.  This is a
model of electric field pulsation which has been found in CHS [5].

The edge transport barrier is also studied.  The self-organized oscillation takes place for
the edge transport barrier for helical plasmas [7].  The 1-D transport equations (2) and (3) are
solved for edge plasma (fixed density).  A simple model of transport coefficient is employed as

   χ = χ0/ 1 + X 2 , in order to model the influence of strong localized electric field.  An edge
transport barrier is established if the heat flux exceeds a critical value.  In the vicinity of the
critical heat flux, the repetitive establishment and decay of the barrier occur, as is illustrated in
Fig.4.  This is attributed to the dithering ELMs of helical systems.
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Fig.4  Temporal evolutions of edge temperature and heat flux across the edge  qout  (left).  Trajectory on the

  T ± qout  is also illustrated (right).



5. Density Limit Oscillation
In impure plasmas, the radiation loss plays an important role in the long time evolution

of confined plasmas.  The dependence of the radiation loss on the temperature and density,
  Prad = nenI LZ T V  with , is known to cause the radiation instability, which

would bound the operational density of toroidal plasmas.  Combinations of transport equations
also predict the self-organized dynamics near the density limit.  By the growth of the symmetry-
breaking perturbations, the rapid loss takes place.  The critical condition for this instability is
given in terms of the density and temperature as

, (12)

where    y = 2/ γ + 3.5  and the parallel transport coefficient is assumed to have a form

.  When this instability occurs, the rapid plasma loss happens.  By the onset of
the reduction of density, the radiation collapse stops to continue, and the high temperature
plasma can be recovered.  This process repeats itself.  This self-generated oscillation of density
and radiation loss is a model of density limit oscillation in W7-AS stellarator [8].

Other possible self-organized dynamics in helical plasmas is the thermoelectric
oscillation.  Under the constant external heating, the absorbed power depends on the plasma
parameter and electromagnetic field.  This dependence causes another self-organized dynamics
in helical plasmas.[9].

6. Summary
'Steady state' plasmas are often considered to be realized in confinement devices, in

which the confining magnetic field is constant in time.  In such plasmas, however, the nonlinear
property of transport is the key for the spatio-temporal structure.  The spatial domain interface is
predicted to appear, being associated with the transport barrier.  This mechanism, at the same
time, induces the self-organized dynamics.  This self-sustained dynamics is the key issue of the
long-time asymptotic nature of the confined plasmas.  Helical plasmas could be associated with
the variety of dynamical phenomena in the absence of violent MHD activities.
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