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Abstract Ion temperature gradient (ITG) driven instability is studied with gyrokinetic theory

in an internal transport barrier (ITB) of tokamak plasmas. The stabilization e�ects of a parallel

ve1ocity shear on the modes are investigated. It is found that the mode structures and stability

properties, as well as the e�ects of a velocity shear, in an ITB are signi�cantly di�erent from that

in o�-ITB regions.

1. Introduction

One of the most signi�cant achievements in tokamak experiments in recent years is the dis-
covery of internal transport barrier (ITB).[1-3] An ITB is characterized by steep temperature
and density gradients near the qmin-surface where the magnetic shear approaches zero. A
common understanding for the formation mechanism of an ITB is stabilization of a variety
of micro-instabilities by a negative central magnetic shear and by a perpendicular velocity
shear.[4] However, experimental data clearly show that ITBs are not limited to radial re-
gions with reversed shear, but extend deep into the region of reduced positive shear. In
other words, the location of an ITB coincides with or is close to the qmin-position. There-
fore, the best con�nement is measured precisely in the regions of very weak magnetic shear
(VWS).[1,5]

In addition, toroidal (parallel) ion velocities with nonmonotonous pro�les are often ob-
served in ITBs experimentally. The maximum/minimum of the velocity is mostly located
close to the edge of the ITB.[1,3] Nevertheless, e�ects of velocity shear on instabilities in
plasmas of VWS are rarely studied.

As a part of the e�ort to understand the mechanism for the formation of an ITB, and for
the sake of the completeness of ITG instability theory, in present work, the ITG modes are
reconsidered with the e�ects of a parallel velocity shear included. The gyro-kinetic theory,
with �nite Larmor radius e�ects retained, is employed in a sheared slab of VWS.

The physics model and dispersion equation are given in Section 2. The numerical results
are presented in Section 3, and Section 4 is devoted to conclusions and discussion.

2. Physics Models and Dispersion Equation

In order to describe ion dynamics near a qmin-surface adequately, the second derivative of the
safety factor q with respect to the radial variab1e r has to be taken into account. A sheared



slab model is, then, extended to include the variation of magnetic shear,
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x = r�r0. As is usually understood, equilibrium quantities, such as safety factor q, magnetic
shear s and scale lengths Lj etc., as well as the derivatives all have the values at the surface
of r = r0. The most important change introduced by the gradient of magnetic shear takes
place in the wave-particle interaction argument,
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The parameter s2 introduces a second resonant surface at x1 = �bs=s2, besides the one at
x = 0 and, therefore, new features of the ITG instability.

Gyrokinetic theory is employed for ions. Electrons are adiabatic. Electrostatic perturba-
tions are considered and assumed in the form,

~f(x; y; t) � ~f(x)e�i!t+ikyy

The eigenmode equation is then obtained from the quasi-neutrality condition as [6]
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Z(�i) is the plasma dispersion function, and
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bv00 = (Ln=cs)(dv0=dx) is the normalized parallel velocity shear, Ln LT i are the density
and temperature gradient scale lengths, respectively; k; k0 and ky are normalized to ��1i =
eB=c
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where Ij is the modi�ed Bessel function of order j = (0; 1).



3. Numerical Results

The integral eigenmode equation, Eq. (5), is solved numerically with schemes well docu-
mented.[7] The parameters employed are �i = 4; � = 1; ky = 0:35, unless otherwise stated.
The signs of bs, s2 and bs=s2 do not introduce essential e�ects into the subject. Therefore,bs > 0 (s < 0) and s2 < 0 (bsd > 0) are considered only.

The normalized mode growth rate (a) and real frequency (b) are shown in Fig. 1 as
functions of magnetic shear bs for s2 = �0:01. For a given set of plasma parameters, four
distinct unstable branches emerge in the regime of VWS (bs <� 0:1). The modes are titled as
D (the lines without symbol), D0 (the lines with closed circles), G (the lines with triangles)
and G0 (the lines with open circles) branches, respectively, in this work.

The corresponding eigenfunctions ~�(x) of the four branches are shown in Fig. 2 for bs =
0:01. The lines with open and closed circles are the real and imaginary parts, respectively.
As is pointed out in the last Section, there are two resonant surfaces at x = 0 and x = x1
when the gradient of the magnetic shear, s2, is taken into account. In addition, there are two
unstable modes, with even and odd parities, respectively, centered at each resonant surface.
The modes centered at x = 0 are strongly coupled with that centered at x = x1 when the
magnetic shear is weak enough such that x1 <� wavelength of the modes. The four branches
result from di�erent couplings between the four modes. The D (Fig.2(a)) and G (Fig.2(b))
branches are from the coupling of the two even and two odd modes centered at x = 0 and
x = x1, respectively. Meanwhile, the D0 (Fig.2(c)) and G0 (Fig.2(d)) branches stem from
the coupling between one even and one odd mode, respectively. As a result, the D and G
branches are even, while the D0 and G0 branches are odd.

In Fig. 1, the branches D and D0 merge to one branch at bs >� 0:15 where js2=bsj � 1 and
the mode located at x = x1 = �ŝ=s2 is far away and decoupled from the mode at x = 0.
The merged branch is the lowest even parity mode and, therefore, the continuation of the
branch D. On the other hand, the branch D0 is introduced by s2 and, therefore, disappears
for js2=bsj � 1. The same is true for the branches G and G0 except that the merged branch
has odd parity.

The e�ects of parallel velocity shear bv00 on the modes are presented in Fig. 3. The lines
without symbols and with closed circles are for D and G branches, respectively, while the
lines with open circles and triangles are for D0 and G0, respectively.
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FIG.1. Normalized growth rate (a) and real frequency (b) versus magnetic shear.
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FIG. 2. Eigenfunctions of D (a), D0 (b),
G (c) and G0 (d) branches for ŝ = 0:01 and s2 = �0:01.

It is evident that the growth rate of the modes is sensitive to the sign of bv00. A negativebv00 is destabi1izing while a positive bv00 is stabi1izing. The physics understanding is that a bv00
introduces a position shift, � � bv00=bs, of the mode originally centered at x = 0, that may
enhance or weaken the coup1ing between the modes originally centered at x = 0 and x = x1,
depending on the sign of bv00. This observation is further proven by the fact that the e�ects
of bv00 are reversed when bs and s2 have same sign. As a comparison, the results of the D (the
lines with crosses) and G (the lines with diamonds) branches for bs = :25 are shown to be
independent of the sign of bv00 in Fig. 3.
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FIG. 3. Normalized growth rate (a) and
real frequency (b) of the modes versus bv00 for s2 = �0:01 and bs = 0:01.



4. Conclusions and Discussion

The ion temperature gradient modes are studied in an ITB with a VWS. E�ects of the
gradients of magnetic shear are taken into account. Four distinct branches are found simul-
taneously unstable. The e�ects of a parallel velocity shear v00 on the modes in an ITB with
VWS are found to be signi�cantly di�erent from those in moderate or strong shear regimes.
The growth rates and real frequencies of the modes are sensitive to the sign of bv00 for the
former while they are independent of the sign for the latter. For the former, a negative bv00 is
suppressing while a positive bv00 is driving when the signs of magnetic shear bs and gradient of
the magnetic shear s2 are opposite to each other. The bv00 e�ects are reversed when the signs
of bs and s2 are same.

The results here are in qualitative agreement with the observations on JT-60U which
show that the ITB is located in the region of bv00 > 0 and one of its edges coincides with the
position of bv00 = 0.[1] For quantitative comparison with experiments, non-linear simulations
in a toroidal geometry are needed.
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