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Abstract. Numerical simulations of ion temperature gradient (ITG) driven turbulence were

carried out to investigate the parametric dependence of the ion thermal transport on the reduced

gyroradius and on the local safety factor. Whereas the simulations show a clear proportionality

of the conductivity to the gyroradius, the dependence on the safety factor cannot be represented

as a simple power law like the one exhibited by the empirical scaling laws.

1. Introduction

In this contribution, the numerical assessment of some of the scaling properties of ion
thermal transport caused by ion temperature gradient (ITG) driven turbulence is pre-
sented. This is, in general, an important area of investigation, given the impact on the
design of future machines. While most of the work is done by statistical analysis of em-
pirical data [1] valuable contribution to the understanding of anomalous transport can
come from the investigations of speci�c theoretical questions. In this respect, the analysis
of the ITG turbulent dynamics is of high priority, given its recognized relevance in the
ion thermal transport.
To this end, the simulation code ETAI3D that solves a 
uid model of ITG turbulence
has been developed [2]. The model equations, which contain the minimal ingredients
necessary to investigate ITG turbulence in a torus, are

dw=dt+ 2�!d(� + Ti) + Arkv + (�n=r) @�� = Dwr
2w � 
pfd�

2
�h�i; (1)

dv=dt+ Ark(� + Ti) = Dvr
2v; (2)

dTi=dt+ �hTiiArkv = �AhTii
1=2jrkjTi +DTr

2Ti; (3)

where, w = (��h�i)=Te� �2�r
2� is the generalized vorticity (e�ectively the ion guiding

center density), � is the electric potential, v the parallel ion velocity, Ti the ion tempera-
ture, d=dt = @t+vE �r the advection operator, !d = (1=r) cos �@�+sin �@r the curvature
operator, rk = (1=q)(q@� + @�) the parallel derivative operator, h�i denotes 
ux surface
average, A = �=��, and � is a constant. Units of Te for the temperature, Te=e for the
potential and cs = (Te=Mi)

1=2 for the velocity are employed. Note also that large scale

units a (the minor radius) for the lengths and a2=(cTe=eB) for the time are used.
Noteworthy features of this code are

1. Globality. The code solves the model equations, in toroidal geometry and in a
domain comprised between two arbitrary circular magnetic surfaces, without using



the local or 
ux tube approximation. This is necessary to answer questions related
to the �� = �s=a scaling, without a priori assumptions about the scale separation.
(�s is the ion sound Larmor radius and a the minor radius.)

2. Flux boundary conditions. The input power is given as a control parameter by speci-
fying either the heat 
ux through the inner boundary or by a given power deposition
pro�le. The (
uctuating) ion temperature is the outcome of the simulations. This is
primarily done to avoid any assumption about the (unknown) time-averaged pro�le
and to allow quite naturally any possible phenomena of intermittency in the pro�le
dynamics.

3. Emphasis on the mesoscale dynamics. As suggested by experiments, as well as by
theoretical considerations, most of the turbulent energy accumulates in the spectral
region around the poloidal and radial wavenumbers k��s � kr�s � 0:1, which is
where the turbulence is suppressed by Landau damping. This allows one to work
with model equations which neglect most �nite Larmor radius terms.

4. Emphasis on long time scales. Simulations are carried out for at least one global

energy con�nement time in most cases. Indeed all the pro�les shown in this contri-
bution are time averages over at least one con�nement time.

The code has been employed to assess the dependence of the e�ective ion conductivity
and on the reduced gyroradius �� and on the local safety factor. All the studies presented
in this communication were carried out in a toroidal annulus comprised between the
magnetic surfaces at r = 0:5 and r = 1.

2. Gyroradius scaling.

The �rst application has been to the problem of the �� scaling. In Bohm units (�B =
cTe=eB) the ion conductivity �i scales like a power of ��. In L-mode tokamak operations
�i=�B seems almost ��-independent (Bohm-scaling), while in H-modes one �nds �i=�B �
�� (gyro-Bohm scaling). In linear theory, radial eigenmode structures typically scale
like ��

1=2, which would give weak or null (Bohm) �� dependence, whereas nonlinear
considerations would suggest a gyro-Bohm scaling. Hence the need for an assessment. The
�nding that the actual ion conductivity scales indeed like gyro-Bohm, has been obtained
by a series of numerical similarity experiments. In these experiments, the input power (in
the form of a given heat 
ux Fin at the inner boundary) and �� are varied proportionally,
down to a value of �� = 1=200, to test whether the pro�les stay the same and the
conductivity varies proportionally to ��. The results of these experiments are summarized
in Fig. 1 which shows the time-averaged temperature pro�le, temperature gradient, local
e�ective conductivity and temperature 
uctuations, obtained at progessively smaller ��
(1=50, 1=100 and 1=200), and proportionally reducing the input power Fin from 3:� 10�2

to 7:5: � 10�3. The pictures show that by reducing �� one needs proportionally less
power to sustain the same gradient, and thus the conductivity is proportional to ��, when
expressed in Bohm units (gyro-Bohm scaling). Consistently with this result, the radial
correlation length and the correlation time were also found to scale like ��. An example
of potential isolines at �� = 1=100 and �� = 1=200 are shown on Fig. 2. Finally, this
result has been found to hold independently of the normalized input power Fin=��, which
in our study was varied by a factor 100, from a minimum of Fin=�� = 5: � 10�2 (which
leaves the gradient very close to the ITG threshold) up to Fin=�� = 5:
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Figure 1: �� similarity runs; solid �� = 1=50, dashed �� = 1=100, dotted �� = 1=200.

3. Current scaling.

As a second application, the question of the plasma current scaling has been addressed. It
is found experimentally that the con�nement time is roughly proportional to the plasma
current, which, when combined with the �� scaling, is roughly equivalent to the conduc-
tivity being proportional to the square of the safety factor q. However, global current
scaling experiments cannot easily distinguish between the dependence on q and on the
magnetic shear, which change at the same time. A numerical assessment of the q scaling
has been carried out for the ITG model using the similarity experiment technique, with
q pro�les of the form q = qar

ŝ, by changing qa and keeping the magnetic shear bs constant
and uniform in space (here bs = 1). The main �nding is that the q dependence cannot be
cast in simple monomial form, as explained below.
At moderate input power, the similarity test consisted in running a simulation at qa = 4
and Fin=�� = 1:5, which we call here the reference case (run 1), and two simulations,
both at qa = 2, with Fin=�� = 0:75 (run 2, to test whether �i � q) and Fin=�� = 0:375
(run 3, to test, as an alternative, �i � q2). The results are shown in Fig. 3, where the
conductivity ratios of the reference run to either test runs are given. It is apparent that
no similarity experiment gives satisfactory results, with �i � q being a too weak scaling
and �i � q2 a too strong scaling. Thus a pure monomial scaling of the form �i � q�

would require 1 < � < 2.
A second study was performed at a stronger normalized input power, with a new reference
run with qa = 4 and Fin=�� = 5: Now the test case qa = 2, Fin=�� = 2:5 shows that �i � q



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2: Potential isolines, �� = 1=100 (left) and �� = 1=200 (right)

is already too strong and thus one would have to take � < 1 at higher forcing (Fig. 4.)
The conclusion is that no simple monomial dependence of the e�ective conductivity on q
can be used to represent all the data.
On the other hand we note that, qualitatively, the numerical �ndings are consistent with
the expression

� � ��q
�(R=LT )


fthrs[(R=LT )� Cth=q
�0

] (4)

where fthrs[�] is a monotonic threshold function. Note the double dependence on q char-
acterized by two positive exponents � and � 0. In general, a reduction of q (larger current)
translates into a reduction of � in two ways, via the factor q� and through the increased
threshold (factor Cth=q

�0

). At smaller input power, when one works closer to threshold,
the latter is more e�ective and gives a stronger apparent scaling than when working farther
from threshold. The fact that the threshold function depend on q is con�rmed by running
the code in linear mode, using a family of pro�les with increasing temperature gradient
and looking for the onset of the instability. The threshold was found to decrease when q
is increased. It is interesting to note that a similar behavior is found experimentally in
Tore Supra [3], where the measured electron conductivity is consistent with � 0 = 1, that
is, an e�ective threshold depending inversely on q.
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Figure 3: Temperature gradient and conductivity ratios for the q scaling study at medium forcing
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Figure 4: Temperature gradient and conductivity ratios for the q scaling study at strong forcing


