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Abstract Nonlinearly generated zonal flows are obtained from ion temperature
gradient driven (ITG) modes and electromagnetic drift interchange modes. It is found
that in general the flow is not important at the correlation lengths but gives an absorbing
boundary for long wavelengths. For ITG modes, however, resonant excitation is found
close to marginal stability. This may explain the strong effects of zonal flows seen in
some nonlinear gyrokinetic simulations.

1 Introduction

Recent experimental [1,2] and theoretical [3–6] results show that effects of background
flows in tokamak often are important. In particular it seems that flows will always
be important for the longest wavelengths in the plasma, effectively generating an ab-
sorbing boundary for these. When background flows stabilize the turbulence at the
correlation length we get an internal transport barrier. If nonlinearly generated zonal
flows stabilize the linear eigenmodes at the correlation length we either get complete
stabilization in the collisionless case [3, 4] or a transport which is proportional to the
collision frequency. In the present work we have found a resonant excitation of zonal
flows close to marginal stability of ITG modes. We suggest this as the reason for the
complete stabilization of ITG modes near linear marginal stability (nonlinear upshift)
found in the Cyclone simulations [4].

2 Formulation

We have studied nonlinearly driven zonal flows in two cases, first due to ion temper-
ature gradient driven modes in the electrostatic limit and then due to electromagnetic
interchange modes. We use the reductive perturbative method [7] with the ansatzf =P
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where� = �(y � ut),

� = �2t and� � e�=Te = �̂� 1. For the x variation we assume a standing wave with
wave numberkm.

To order�, we obtain the linear dispersion relation. For ITG modes, it agrees
with that in Ref. [8]. We include the nonlocal properties first derived in Ref. [9]. For
electromagnetic drift interchange modes we ignore ion temperature effects. The linear
dispersion relation then agrees with that in Ref. [10] if we ignore ion temperature
effects. To order�2 we find in both cases thatu = @!=@ky i.e., the group velocity.



To order�3, we find that zonal flow potential̂�(2)
0 . We here write it as
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This is a general form valid for both ITG and electromagnetic drift interchange modes.
We here include the Reynolds stress for both modes, the convective ion temperature
nonlinearity for the ITG modes and the nonlinearity of density convection and electron
temperature convection (due to line bending) and the nonlinear kink term for the elec-
tromagnetic interchange mode. We note that�̂

(2)
0 haskx = 2km i.e., faster variation in

x than the drift wave. This increases the shearing rate.
For the ITG mode, we obtain
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Strong Resonance
As it turns out, there will be a rather wide resonance for the real part of!(1+k2ya

2
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and it will then depend on the imaginary part how strong the resonance will be. We
will now explore the limit when we need to solve the time dependent problem for�

(2)
0 .

For that, we extract the resonant denominator!̂(1 + k2ya
2
s)� !̂L from T and multiply

Eq.(1) by it. On transforming to the time domaini.e., !̂ ! (!̂L=(1 + k2ya
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we obtain a resonant growth rate of�
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it turns out the resonance in the real part of! is quite wide so the resonance condition
typically reduces to
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Thus
d acts as an additional threshold for resonant excitation.
The electromagnetic result is similar but does not include ion temperature effects.

This makes an important difference since ion temperature effects give a resonance
close to marginal stability.

To the first order in� we obtain in the electromagnetic case:
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HereTe is the normalized electron temperature perturbation,Â is the normalized
(by e=Te) magnetic vector potential,!n = kyVn is the diamagnetic frequency,!d =
kyVd is the magnetic drift frequency and!A = kkVA is the Alfvén frequency.
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and the dispersion relation
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Herek̂2? = (k2m + l2k2y)a
2
s To cubic order we find the denominator:
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We have found that resonances coming from N are quite unlikely. Other possible
resonances come from the denominator of�. This resonance can become important at
high� i.e. of the order of the MHD� limit.

We can now write the shearing rate as:
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In the case, when shear flow is able to provide an absorbing boundary for the long
wavelengths, the drift waves are saturated by the mode coupling leading to the satura-
tion level [8]
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wherekr > 2�=a anda is the minor radius of the torus.
Using the above estimate of� and the fact that the nonlinearities isotropize the

drift wave turbulence (i.e.,kr � km � k�), the magnitude of the flow shear rate in the
nonresonant case can be estimated as:
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Here, we usesin 2kmx � 1 and only the poloidal component of the flow is considered.
With L � Ln and
 � !n, the expression of shear flow rate further simplifies as
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At the correlation length withkmas < 1 , the flow shear rate is less than the growth
rate. It essentially means that flow is not stabilizing the modes at the correlation length.



However, at long wavelengths, we expect that the Waltz’s condition for the stability
of the mode due to shear flow would be satisfied. With
 = k�Vn, the condition for the
stability is

k�Vn � 4k2ma
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where the quantities on the right hand side of the above expression are evaluated at
the correlation length (main drive for�(2)

0 ). Thus, we expect stabilization of the long
wavelength modes for which
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Here, subscriptc indicates the correlation length. Since the flow will tend to tear
apart vortices larger than the shear scale length, energy will go to modes with shorter
wavelengths.

Eq.(9) further indicates that the wavelengths on which the flow has a stabilizing
effect is longer than the correlation length, or

k�s < k�c (10)

where subscripts represent the flow stabilized critical length.
The above result also indicates that modes at the correlation length are not affected

by the flow. Withk2ma
2
s � 0:1, the typical magnitude ofk�s turns out to be approxi-

matelyk�s=2 which means that the longer wavelengths in the system will be stabilized
by the flow. This further confirms that the flow can provide an absorbing boundary for
long wavelength modes as assumed in Eq.(6).

3 Discussion

In the nonresonant case we find that typically!̂rot < 0:5
̂ at the correlation length.
This means that the stabilizing effects are small at the correlation length. When we
consider the influence of zonal flow, generated at the correlation length, on longer
wavelength modes, we find that the stabilization sets in at about twice the correla-
tion length. This means that zonal flows can give an absorbing boundary for long
wavelengths. The nonresonant case is the most typical. For the electromagnetic case
without ion temperature effects, resonance seems to be quite unlikely and sets in only
close to the MHD� limit. For the ITG modes, however, we find resonance close to
marginal stability. This is in agreement with the particle code results in the Cyclone
project [4]. We have also found that magnetic shear damping can detune the reso-
nance. This may be the reason for the difference between global and flux tube results
in the Cyclone simulations [4] since global simulations have a space dependent drift



frequency which leads to an enhanced magnetic shear damping [11]. To fully explore
the resonance, however, we need to study the time dependent problem for the zonal
flow.
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