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Abstract. Anomalous ion heating intrinsic to magnetic fluctuation-induced electron heat transport, the locking of
global modes through wall conditions, and flow generation via the magnetic Reynolds stress all derive from the
global, m=1 tearing modes familiar in the RFP as the dynamo modes. These important processes are investigated
analytically and numerically, yielding new insights and predictions for comparison with experiment.

1. Introduction

The large amplitude, m=1 global tearing modes unstable in the core of reversed field pinch (RFP)
plasmas play a well-established role in the dynamo process that maintains toroidal field reversal.
The amplitude and global extent of these modes also allows them to play a significant role in other
important observed processes in the RFP. Three such processes are examined in this paper. The
first is anomalous ion heating, manifested in the Ohmic equilibrium as an electron-ion temperature
difference that is too small to be consistent with collisional equilibration, and in dramatic two-fold
transient temperature increases during episodes of intense magnetic fluctuation activity associated
with sawtooth events [1]. Sawtooth events, in particular, suggest that anomalous ion heating is
intrinsic to magnetic turbulence, and the energy loss associated with electron motion along turbulent
magnetic fields. The second process is the propensity for dynamo modes to form locked states
involving error fields or eddy currents in resistive walls. The avoidance of locked modes, either
through the reduction of error fields and a conducting boundary, or through plasma rotation, has
been key to achieving optimal confinement.  The third process is the creation of magnetic Reynolds
stresses in sawtooth crashes, as observed in the Madison Symmetric Torus (MST). The magnetic
Reynolds stress drives toroidal momentum, and hence a sheared E×B flow.  The latter can diminish
the intensity of both global magnetic modes and the more localized modes of the edge, both
magnetic and electrostatic [2].

We find that 1) magnetic fluctuation-induced electron heat transport leads to ion heating through the
observed process that slows the electron heat flux from the electron to the ion thermal velocity [3].
This accounts for both the observed ion temperature rise during sawtooth events, and a correlated
decrease of electron temperature; 2) the threshold error field required for mode locking is reduced
by the presence of a thin resistive vacuum vessel like that used in the Reversed Field Experiment
(RFX); 3) the magnetic Reynolds stress during sawtooth events undergoes a large excursion from
its nearly zero equilibrium value.  The calculated radial eigenmode structure of edge tearing modes
in the presence of a seed flow and strong pressure gradients suggests that these modes drive the
observed Reynolds stress when their amplitudes are excited to a high level during a sawtooth crash
by the nonlinear coupling to global modes.

2. Anomalous Ion Heating

Measurement of the field-aligned magnetic fluctuation-driven heat flux in MST is difficult to
interpret in terms of conventional theory. Although there is an appreciable temperature gradient, the
flux Qe is convective. Moreover, if a Rechester-Rosenbluth expression is assumed, Qe =
(δb/Bo)

2l||vtLn
-1(nT), where Ln

-1 is the density gradient scale length and l|| is the parallel correlation
length, it agrees with experiment only if the ion thermal velocity is used for vt, and the fluctuation
level (δb/Bo)

2 is that of the core-resonant tearing modes. If the fluctuation level of edge resonant
modes is used (modes with k|| =0 locally), the Rechester-Rosenbluth flux is too small even if vt is the



electron thermal velocity [4]. However, the experimentally observed flux value agrees with a self-
consistent theory of transport that accounts for the granular structures that form in the distribution
of streaming electrons on scales below the magnetic fluctuation correlation. These structures, long
hypothesized to occur in magnetic turbulence [5], behave like dressed test particles, but of
macroscopic dimension. They are dressed with a dielectric shielding cloud that imposes a drag as
they move along the field. The interaction with the cloud is governed by the collective mode
response of the shielding charges. In the RFP this is dominated by the core-resonant tearing modes,
even for the edge. The drag is mediated by the ions in the shielding cloud, slowing the rate at which
electrons transport heat to the ion thermal velocity. Thus the theory reproduces the key features of
the heat flux measurement.

A natural consequence of this process is the heating of ions as they absorb energy lost by the
electrons due to the drag. In this mechanism, the heating source is the magnetic turbulence, and the
heating rate Hi is tied to the electron heat flux Qe. We present here the Kirchhoff’s law that
expresses the relationship between these two quantities, and then describe the results of a simple
transport model for the evolution of the coupled electron and ion temperatures [6]. Consider the
magnetic fluctuation-induced transport of parallel electron thermal energy. The magnetic part of the
flux is Qe = –∫d3v mev

2v||(2Bo)
-1〈b×∇ A||δfe〉, where the electron distribution function δfe satisfies a

drift-kinetic equation. For simplicity we display only the parts proportional to the fluctuating
magnetic vector potential A||, even though dependence on the electrostatic potential φ is retained in
the calculation. The electron distribution has two components. One is the normal mode response of
conventional theory and hence has a term proportional to each of the fluctuating potentials φ and A||;
the other is the granular component. A description of the latter requires solution of the two-point
drift kinetic equation.  It cannot be expressed as a response to either potential and cannot therefore
be incorporated into the plasma dielectric. It remains in Ampere’s law and the quasineutrality
condition as a source. The normal mode and granular components are introduced into the flux, and
quasineutrality and Ampere’s law are imposed to account for the shielding of the granular
component by the plasma dielectric. The resulting expression for the heat flux can be written, Q||

e =
–vtiD[LTi

-1 + 2/3(1–ω/ω*i)Lni
-1]nTe, where D = 3/2π1/2∆k||

-1(δb/Bo)
2(vti/vte)

2 is a magnetic diffusivity
and ∆k|| is the rms parallel wavenumber  of the magnetic fluctuation spectrum [4]. The dependence
on ion parameters reflects the slowing of electron granular structures by emission of energy into the
shielding cloud, which damps on ions via Landau damping.  

The parallel ion-heating rate is calculated from the correlation of the inductive electric field with the
ion current fluctuation, Hi = 〈E||Ji||〉 = –c-1〈(∂A||/∂t)Ji||〉. Because the ion current fluctuation enters
Ampere’s law, it can be expressed in terms of the electron contributions to Ampere’s law. These are
given by the current moment of the electron distribution δfe, with the normal mode and granular
components described above.  As with the heat flux, the shielding of the granular component by the
normal mode response is incorporated into the expression by imposing quasineutrality and
Ampere’s law. After some algebra we arrive at the expression

where Ωe is the electron gyrofrequency. This equation is the Kirchhoff’s law that describes the
relationship between ion heating and the ambipolar-constrained parallel electron heat loss. The
underlying physical process is the absorption by ions of the energy lost by granular electron
structures as they drag the dielectric shielding cloud. The energy exchange occurs via emission of
radiation from moving test charges. Both the ion-heating rate the and the flux of parallel electron
heat are proportional to the magnetic fluctuation energy. If there is a rise in fluctuation activity the
Kirchhoff’s law predicts a rise in ion temperature correlated with a drop in electron temperature.
Indeed, this is observed in Sawtooth crashes in MST. To assess if the magnitude of ion heating
predicted by this expression is consistent with observations, the ion-heating rate is evaluated for
parameters consistent with a sawtooth event in MST, and used in a simple 0-D transport model for
ion and electron temperatures. This model includes collisional equilibration between ions and
electrons, Ohmic heating of electrons, an anomalous loss rate in the ions, the ion-heating rate
derived above, and electron loss rates due to the magnetic fluctuation-induced fluxes of electron
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energy parallel and perpendicular to the field. The heat flux of parallel energy is given above.  The
flux of perpendicular energy has been calculated in Ref. [3]. In the core, the flux of perpendicular
energy is not ambipolar-constrained and thus represents the dominant energy loss mechanism for
electrons. The anomalous ion loss rate has not been calculated, but is estimated from the steady state
balance prior to the sawtooth crash. This resulting rate is lower than experiment, giving a longer ion
temperature decay time than that observed in experiment. Of interest here is whether the ion heating
rate derived above is able to reproduce the magnitude of the ion temperature rise during a sawtooth
crash. Integrating the heating rate over a crash time, the ion temperature is found to rise by amounts
as large as several hundred eV, consistent with experimental observations. The time histories of ion
and electron temperatures over a sawtooth crash as generated from this model are indicated in fig. 1.
The heating rate depends on the fluctuation frequency, which has been taken from experiment.
Variation of the frequency in a range bounded by the ion and electron diamagnetic frequencies
shows that Hi is quite sensitive to frequency. It also is sensitive to the equilibrium profiles of
temperature and density.
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 Fig. 1. Time evolution of electron and ion temperatures during sawtooth crash.

3. Locking of Dynamo Modes

The dominant MHD modes in the RFP are rotating, m=1 tearing modes, resonant in the plasma
core. These dynamo modes are observed to phase-lock and form a toroidally localized structure in
the perturbed magnetic field known as a slinky mode [7]. The slinky mode degrades plasma
confinement primarily by channeling heat to produce a toroidally localized hot spot at the plasma
edge. There is generally no problem as long as the slinky mode remains rotating.  On the other
hand, if the slinky mode stops rotating, the hot spot hovers over the same point on the plasma facing
surface, causing overheating, impurity influx, and premature termination of the discharge. In the
MST device, the slinky mode generally rotates, and there are no particular edge loading problems.
In the RFX experiment it never rotates, and severe edge loading problems limit the maximum
achievable plasma current. In the TPE-RX device, the slinky mode only rotates at very low plasma
currents, and edge loading problems similar to those observed on RFX limit the maximum
achievable plasma current.

There are two factors that could conceivably convert a slinky mode (and its constituent dynamo
modes) from a rotating mode (which is its natural state) to a stationary mode.  Firstly, static error-
fields, which are generated primarily by the presence of insulating gaps in the thick conducting shell
surrounding the plasma.  The purpose of this shell, which is present in all RFPs, is the stabilization
of dangerous external kink modes. Secondly, the resistive vacuum vessel, which in conventional
RFPs (e.g., RFX, TPE-RX) is located between the plasma and the conducting shell.  Eddy currents
excited in this vessel can generate significant braking torques acting on rotating dynamo modes [8].



Error fields alone cannot account for the observed locked mode problems in RFX and TPE-RX.
Admittedly, the error fields in RFX are slightly larger than those in MST. On the other hand, the
error fields in TPE-RX are significantly smaller. Eddy currents excited in the resistive vacuum
vessels of RFX and TPE-RX undoubtedly contribute to the locked mode problems.  MST does not
suffer from the same problem, since it does not possess a resistive vessel (the conducting shell
plays the role of the vacuum vessel in this device). However, eddy currents alone cannot convert a
rotating mode into a stationary one.  Clearly, to account for the locked mode problems of present-
day RFPs, we need to develop a comprehensive theory of rotation and locking of dynamo modes in
the presence of both error fields and vacuum vessel eddy currents.

We have developed a set of phase evolution equations which govern the rotation and locking of a
typical dynamo mode in the presence of both a resonant error-field and vacuum vessel eddy
currents [9]. These equations are a generalization of the well-known equations of Zohm, et al. [10].
They do not assume the existence of a plasma region of fixed width that co-rotates with the mode.
Instead, the extent of this region is determined self-consistently by plasma viscosity. From these
equations we obtain thresholds for error-field locking, either in the absence or presence of the
resistive shell. The locking threshold can be represented in the parameter space of normalized
dynamo mode amplitude αs and the normalized error-field amplitude αc.
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Fig. 2. Locking thresholds.

The curves labeled 3 and 5 in Fig. 2 represent the error-field locking threshold in the presence of a
vacuum vessel. In the absence of a vacuum vessel the error-field locking threshold is given by the
curve labeled 6. (The remaining curves represent thresholds for unlocking, or for the sudden
slowing down or speeding up of mode rotation due to the braking torque exerted by the vacuum
vessel eddy currents.) It is evident that error field locking occurs at lower dynamo mode amplitude
and field error amplitude in the presence of a vacuum vessel. This indicates that the vacuum vessel
strongly catalyzes locked mode formation. For RFX, we estimate that this effect reduces the error-
field locking threshold by a factor of 5. It seems plausible, therefore, that the locked mode problems
observed in RFX and TPE-RX are caused by a strong reduction in the error-field locking threshold
due to the presence of a resistive vacuum vessel. This reduction renders otherwise innocuous error
fields problematic.

4. Reynolds Stress Flow Shear Generation

The observed transient of the magnetic Reynolds stress from its nearly zero equilibrium value has
been modeled by calculating the quasilinear Reynolds stress from edge resonant diamagnetic
tearing modes in the presence of a seed shear flow. Treating the seed flow perturbatively, matched
inner and outer layer equations are solved for m=0 (low n) and m=1 (high n) tearing modes. The



pressure gradient induces a diamagnetic frequency contribution to the tearing mode dispersion and
an imaginary eigenmode component, allowing the Reynolds stress RM = (4πρm)-1Re〈brbφ〉  =
(4πρm)-1ImΣn(n/R)〈ψ∂ψ/∂r〉 to become nonzero.  The flow shear modifies the eigenmode structure
and introduces an asymmetry in the radial gradient of the Reynolds stress that drives toroidal ion
flow.  Between sawtooth events, this nonzero Reynolds stress and its associated toroidal flow
acceleration are weak because the modes that are localized in the edge where the pressure gradient is
strong are typically only weakly excited. During a sawtooth event the fluctuation spectrum broadens
and the edge resonant modes become strongly excited. The Reynolds stress tracks the burst of
fluctuation activity associated with the sawtooth event, increasing first and then decaying to pre-
sawtooth values as the spectrum relaxes. The radial localization of the Reynolds stress is determined
by the radial eigenmode structure of the edge modes and the spectral energy distribution of
cascaded energy, which maps via the q-profile to a spatial function.  The importance of the m=0
mode in the cascade favors flow drive in proximity of the reversal layer, but m=1 modes localized
away from the reversal layer also play a role. The mean toroidal flow is described by the toroidal ion
momentum equation ∂〈Vφ,i〉/∂t  = –µ〈Vφ,i〉 – (miR)-1 (Γin+Γex) – ∂/∂r[〈vr,ivφ,i〉  – (4πρm)-1〈brbφ〉].
In this equation magnetic torques are represented by the Reynolds stress, which is dominated by
edge resonant diamagnetic modes; by Γex, which represents the interaction with external field errors
as described above; and by Γin, which describes the internal torque exerted by core resonant global
tearing modes. The latter attempts to force a three-wave resonant condition on the dominant
interaction of two m=1 modes (with n=6 and n=7 for MST) and the m=0, n=1 mode, so that the
plasma rotates as a rigid rotor at the phase velocity of the m=0 mode. In a sawtooth crash, the core
modes are observed to decelerate first, with a subsequent slowing down at the edge induced by the
internal torque. The Reynolds stress opposes the deceleration producing a localized flow shear.
Measurements of ∂〈Vφ,i〉/∂t  and the Reynolds stress indicate that the latter significantly exceeds the
former, implying that the internal torque is also large and nearly in balance with the Reynolds stress.
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