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Abstract. The gyrokinetic particle simulation and the gyro-reduced MHD simulation are executed to
clarify the kinetic modifications of the MHD phenomena in the reversed shear configuration (RSC) of a
tokamak plasma. The kinetic (collisionless) double tearing modes in the RSC, which is induced not by
the resistivity but by the electron inertia, are found to grow up at the Alfvén time scale by the coupling of
two perturbations originated at each resonant surface. It is also found that the internal collapse occurs at
the Alfvén time scale. After the internal collapse, the secondary reconnection is induced by the

flow. As a result of current reconcentration, a reversed shear configuration withis constructed
again.

1 Introduction

In fusion plasma research, the tokamak type device has a great advantage for a candidate of
commercial fusion reactor. However, there are still several physical problems to be clarified
until the construction and the operation of the tokamak reactor. As the plasma temperature is
getting higher, besides the resistivity of plasma, kinetic effects due to the particle properties
of plasma such as the electron inertia, finite Larmor radius effects of ions, and the ion Landau
damping, come to play an important role on MHD modes. In particular, it is pointed out that the
time scale of the magnetic reconnection becomes the order of the Alfvén time which is much
faster than the resistive time scale[1, 2]. To treat the kinetic modification of the MHD modes
found in the experiments, kinetic approaches beyond the resistive MHD model are inevitable.

In these days, high performance discharges with the internal transport barrier are put into
practice by constituting the reversed shear configuration (RSC) in tokamaks such as JT-60U
and DIII-D. However, such discharges are often suspended by the fast disruption at the beta
which is lower than the critical beta predicted by the ideal MHD theory[3]. In order to clar-
ify the kinetic effect on such phenomena, we have extended the previous gyro-kinetic particle
simulation[4, 5, 6, 7] to the RSC of a cylindrical tokamak plasma, and studied the nonlinear dy-
namics of the internal collapses induced by the double tearing modes. We have also employed
the three-field gyro-reduced MHD code [8, 9, 10, 11] for the analysis. The gyrokinetic particle
simulation is more faithful to physical accuracy with the expense of a highest load to computer
resources. The gyro-reduced MHD simulation, which can study thecase with realistic tokamak
parameters, only has a slight load to computer resources by including minimum kinetic effects.
Anyway, several approaches with different orders of physical accuracy are necessary to explore
the physics of the extended MHD phenomena.

This paper is organized as follows. In Section 2, we present simulation models, and describe the
geometric configuration and parameters. In Section 3, the linear stability of the double tearing
modes induced by the electron inertia is analyzed by the gyro-reduced MHD model. In Section
4, the nonlinear dynamics of the double tearing modes is studied by the gyro-kinetic particle
model. A brief summary is given in Section 5.

2 Model and Parameters

The nonlinear gyrokinetic Vlasov-Poisson-Amp´ere system [12] is a basis for the gyrokinetic
particle model and the gyro-reduced MHD model. The applications of the codes based on the



both models to the simulation of the kinetic (collisionless) internal kink mode are
reported in the previous articles [4, 5, 8]. Here,and are the poloidal and the longitudinal
(toroidal) mode numbers, respectively. Both codes successfully simulated the fastfull recon-
nection followed by the second phase in which the configuration of ( is a safety factor
at a magnetic axis) is reconstructed. These studies were limited to the cases of the normal shear
configuration. Here, the modifications of the codes to treat the RSC are described as well as a
brief summarization of the both models. The parameters used in the simulation are listed in this
section.

2.1 Gyro-reduced MHD model

The gyro-reduced MHD model is derived from the moment equations of the gyrokinetic Vlasov
equation. In this study, we use the three field model in the cold ion limit [10] for the electro-
static potential , component of the vector potential , and the electron density . The
longitudinal (toroidal) magnetic field is assumed to be in thedirection as where
is the unit vector in the direction.

The equation for (the conservation law of electrons) is obtained from the zeroth order mo-
ment equation of electrons:

(1)

where is defined by , is an electron charge, is the permeability in
vacuum, and is Laplacian perpendicular to the longitudinal magnetic field. The first term on
the right hand side (RHS) represents the change due to the convection of , while the
second term represents the incompressibility originated from the parallel motion of electrons.
Here, the Amp`ere’s law, ( is the electron current along the magnetic field),
is used to eliminate electron flux along the magnetic field.

The equation for is the generalized Ohm’s law along the magnetic field which is equivalent
to the first order moment equation of electrons:

(2)

where is the convective derivative, with being a
speed of light in vacuum and being the electron plasma angular frequency is the collisionless
electron skin depth, is the electron temperature, and is the average electron density. The
second and third terms on RHS represent the kinetic effects. Without these terms, the above
equation means the complete cancellation of the electrostatic and the induced electric fields
along the magnetic field. The electron diamagnetic effect originates from the third term. The
effect of the electron pressure gradient along the magnetic field is also included in the third
term. The friction term is neglected to see the collisionless limit of the instability.

The equation for is the vortex equation which is derived by taking the convective derivative
of the long wavelength limit of the gyrokinetic poisson equation including the polarization
response of the ion density:

(3)

where is the Alfvén speed and the conservation law of electrons is employed.

The equation for ions are not explicitly included in the three field model although the guiding
centers of ions are assumed to move only by the drift neglecting the parallel motion
along the magnetic field. The above set of equations is found to be the same as a subset of the



four field model of Hazeltine et al. [13] in certain limit [10, 11]. The inclusion of the finite ion
Larmor radius effect to the above three field model is discussed in [11].

The linear stability of the kinetic internal kink mode in RSC (double tearing mode) is analyzed
by using the code, GRM3F-CY, based on the three field gyro-reduced MHD model. The geo-
metric configuration of a cylinder with a minor radius ofand a height of ( is a
major radius) surrounded by a perfectly conducting wall is assumed. A periodic boundary con-
dition is employed in the direction. GRM3F-CY utilizes the nonuniform mesh in the radial
direction.

We selected the parameters close to the present large tokamaks: , ,
, , and . For such a tokamak with deuterium discharge,

and , where is the ion Larmor radius estimated
by the electron temperature. The double tearing mode has the fine mode structure around the
rational surfaces with the characteristic lengths ofand . These fine mode structure are
resolved by accumulating meshes around the rational surfaces with the reasonable number of
the radial mesh.

To simulate the RSC, the hollow current profile is needed. The parallel current profile is as-
sumed to be

(4)

where is the characteristic width of the current component centered at the off-axis position at
. For , the safety factor profile is shown in Fig.1(a).

2.2 Gyro-kinetic Model

We employ a gyrokinetic model[14] to simulate the double tearing modes, because it is efficient
compared with the full kinetic model from a view point of the computation. In the gyrokinetic
model, the characteristic time scale is larger than the ion cyclotron period. Hence, the time step
size can be chosen much larger than the standard particle simulation model in which the time
step size is the order of the electron plasma period.

We adopt a method[15] to reduce the statistical noise drastically. In themethod the total
distribution function is decomposed into equilibrium part and the perturbed part ;

(5)

where denotes the particle species (ion and electron), ( ) is the longi-
tudinal generalized momentum, is the electric charge, and is the mass. The equilibrium
distribution function is assumed to be a shifted Maxwellian as

(6)

where is the equilibrium density profile, is the thermal velocity, is the drift velocity
along the magnetic field. The Amp`ere’s law for the equilibrium part of , , is given by the
following equation:

(7)

It is assumed that ions do not contribute to the longitudinal current; hence, . The
perturbed distribution function is described in terms of a particle weight function as
follows:

(8)



where is a particle shape function.

The dynamics of is computed in a three dimensional rectangular box with the Cartesian
coordinate . Toroidal effects are ignored for simplicity. A periodic boundary condition
is adopted in the direction. A perfect conducting wall is imposed on theand boundary
surfaces. We assume a uniform temperature profile.

The Ampère’s law for the perturbed , , is written as

(9)

where is the averaged density in the whole region, is a plasma angular frequency of
species . The last term on RHS represents contribution from the nonuniform density profile.

The time evolution of the weight function of a particle is determined by the following equa-
tion:

(10)

Here, is the distribution function of the marker particles [15]. The second and third terms in
the curly brackets on RHS represent the effect of the nonuniform equilibrium density.

The electron longitudinal drift velocity is determined to produce which satisfies the
equilibrium safety factor profile shown in Fig.1(b). Note that there are two rational surfaces
for this profile. The parameters used in the simulation are listed on Table 1. The length and
the time are normalized by and the Alfvén time , respectively. The grid
size in the -direction is selected to be 1000 times of the grid size in the poloidal plane.
Because of the limitation of the computer resources, we are forced to use the large value of
as .

Configuration Shape Rectangular Box
Poloidal Mesh Width : 1 ( )
System Size ( )
Number of Total Particles
Electron Thermal Velocity ( )
Time Step : ( )
Skin Depth : ( ) 4 ( )
Toroidal Mode Numbers :

Table 1The parameters used in the gyro-kinetic particle simulation.

3 Linear Analysis of Double Tearing Modes

Linear stability of the double tearing modes in the reversed shear tokamak is analyzed by the
GRM3F-CY code. The growth rate versus the minimum safety factoris displayed in Fig.2.

, and modes are shown for the broad hollow current of , while
modes are depicted for the narrow hollow current of . To vary , the total current is
changed for the same current profile.

In the ideal MHD theory, the double tearing modes are marginally stable in the cylindrical
tokamak. In the presence of the electron inertia, however, these modes are destabilized because
the electron inertia acts as the effective resistivity in the Ohm’s law in Eq.(2). For the (or
) mode, the growth rate has the sharp peak whenis slightly less than (or ). When



is well below (or ), the growth rate reduces drastically but still has a finite value. The eigen
mode structure for the maximum growth rates for and modes with are
shown in Fig.3(a) and (b), respectively. In each case, it is observed that one global mode locates
between two resonant surfaces. This is characteristic of the double tearing mode in which the
coupling of two perturbations originated at each resonant surface is strong. Whenis well
below (or ), the coupling is quite weak and the growth rate is small. The growth rate for

is smaller than that for although the difference is not so large. The growth rate
for is grater than that of because is large at the outer resonant surface.

The maximum growth rates for are ( ) and
(d=0.1). These growth rates are orders of magnitude greater than which is estimated
by the resistive MHD model with corresponding to the same parameter regime of the
present study. In the real time scale, the characteristic time for the growth is of the order of a
few hundred microseconds which is comparable to the time scale of the rapid growth of electron
temperature perturbations observed in the experiment of RSC.

4 Nonlinear Analysis of Double Tearing Modes

4.1 Internal Collapse

The nonlinear behavior of the collisionless double tearing modes is analyzed by the gyro-kinetic
particle simulation. As predicted from the linear theory, the rapid growth rate is also confirmed
with the gyro-kinetic particle simulation for . Figure 4 shows the electrostatic
potential energy of the double tearing mode in the uniform density plasma, which is
decomposed in the longitudinal mode numbers. In the linear phase ( ), it is obvious
that the (so that, ) mode is dominant. It is also found that the growth rate of this
mode is the order of Alf´ven time scale ( ). From the view point of the computa-
tional resource, it is difficult to use the realistic tokamak parameters in the gyro-kinetic particle
simulation. However, from the proportional dependence of the growth rate on the electron skin
depth, the growth rate for is expected to be consistent with that obtained by the
gyro-reduced MHD simulation.

Figure 5 shows the history of the Poincar´e plots of the magnetic field lines for the mode.
In the linear phase, the core plasma has concentric flux surfaces and themagnetic islands
are located at the inner and outer surfaces, as shown in (a) . As the mode grows,
the inner islands are swept out from the central region due to the motion induced by the

mode of the electrostatic potential which grows between the two resonant surfaces.
At the same time, the helical flux is exchanged between two resonant surfaces, but the core
plasma still remains, as shown in Fig.5(b) and(c).

At this time ( ), the mode continues to grow up as shown in Fig.4. Then, the outer
magnetic surfaces are driven into the central region. As a result of the forced reconnection,
the outer magnetic surfaces combine in the central region. Therefore, the internal collapse has
completed, and the equilibrium profiles are flatten inside the outer resonant surfaces. Therefore,
the magnetic structure has nested flux surface, as shown in Fig.5(e). In this simulation, it is
found that the internal collapse in the reversed shear tokamak can be induced at the Alfvén time
scale by the double tearing mode due to the electron inertia.

4.2 Secondary Reconnection

After the internal collapse, the mode does not dissipate rapidly, but keeps dominant until
the end of the simulation, as shown in Fig.4. In the poloidal direction, the mode is
dominant as shown in Fig.6(a) ( ). This mode of the electrostatic potential
determines the nonlinear behavior of the double tearing mode induced by the electron inertia.

Figure 6(b) shows the perturbation of the parallel current after the internal collapse. The plasma
including this current is driven into the central region again by the motion induced by the



mode. At the same time, the magnetic reconnection is forcibly induced, as shown
in Fig.5(f). This is the mechanism of the secondary reconnection in the collisionless plasma.
As a result of the topological change, a new core with the positive perturbation current appears,
as shown in Fig.5(h). Therefore, it is found that a reversed shear configuration with
is constructed again due to the current re-concentration, as shown in Fig.7. If any dissipative
process is induced at this time, the plasma will stay at the secondary equilibrium.

5 Summary

In order to investigate the kinetic effect on the double tearing modes in the collisionless limit,
the gyro-reduced MHD model and the gyrokinetic particle model are employed. The codes
based on these models are modified to treat the RSC of the cylindrical tokamak.

From the linear stability analysis by the gyro-reduced MHD model, it is found that the maxi-
mum growth rates for the mode are of the order of , which is orders of magnitude
grater than estimated by the resistive MHD model with . This is because the
effective resistivity due to the electron inertia is larger than the plasma resistivity in high tem-
perature plasma. In the real time scale, the characteristic time for the growth is found to be of
the order of a few hundred microseconds which is comparable to the time scale of the rapid
growth of electron temperature perturbations observed in the experiment of RSC.

From the nonlinear simulation by the gyro-kinetic particle model, it is clarified that the internal
collapse can be induced at the Alfv´en time scale as a result of the nonlinear evolution of the
kinetic (collisionless) double tearing mode. After the internal collapse, the of the
electrostatic potential mode is still dominant. Then, the secondary magnetic reconnection is
forcibly induced by the motion. As a result of the current re-concentration, it is also
found that a reversed shear configuration with is constructed again. If any dissipative
process is induced at this time, the plasma is expected to stay at the secondary equilibrium.
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