(EX4/5) Experimental Studies toward Long-Pulse Steady-state Operations in
LHD
N. Noda1), Y. Nakamura1),
Y. Takeiri1), T. Mutoh1), R. Kumazawa1),
M. Sato1), K. Kawahata1), S. Yamada1),
T. Shimozuma1), Y. Oka1), A. Iiyoshi,
R. Sakamoto1), Y. Kubota1),
S. Masuzaki1), S. Inagaki1),
T. Morisaki1), H. Suzuki1), N. Ohyabu1),
K. Adachi1), K. Akaishi1),
N. Ashikawa2), H. Chikaraishi1),
P. de Vries, M. Emoto1), H. Funaba1),
M. Goto1), S. Hamaguchi1), K. Ida1),
H. Idei1), K. Ikeda1), S. Imagawa1),
N. Inoue1), M. Isobe1), A. Iwamoto1),
S. Kado, O. Kaneko1), S. Kitagawa1),
K. Khlopenkov1), T. Kobuchi2),
A. Komori1), S. Kubo1), Y. Liang2),
R. Maekawa1), T. Minami1), T. Mito1),
J. Miyazawa1), S. Morita1), K. Murai1),
S. Murakami1), S. Muto1), Y. Nagayama1),
H. Nakanishi1), K. Narihara1),
A. Nishimura1), K. Nishimura1),
A. Nishizawa1), T. Notake1),
S. Ohdachi1), M. Okamoto1),
M. Osakabe1), T. Ozaki1),
R. O. Pavlichenko1), B. J. Peterson1),
A. Sagara1), K. Saito3),
S. Sakakibara1), H. Sasao2), M. Sasao1),
K. Sato1), T. Seki1), M. Shoji1),
H. Sugama1), K. Takahata1),
M. Takechi2), H. Tamura1), N. Tamura2),
K. Tanaka1), K. Toi1), T. Tokuzawa1),
Y. Torii3), K. Tsumori1),
K. Y. Watanabe1), T. Watanabe1),
T. Watari1), N. Yanagi1), I. Yamada1),
H. Yamada1), S. Yamaguchi1),
S. Yamamoto3), T. Yamamoto3),
M. Yokoyama1), Y. Yoshimura1),
I. Ohtake1), R. Akiyama1), K. Haba1),
M. Iima1), J. Kodaira1), K. Tsuzuki1),
K. Itoh1), K. Matsuoka1), K. Ohkubo1),
S. Satoh1), T. Satow1), S. Sudo1),
S. Tanahashi1), K. Yamazaki1),
O. Motojima1), Y. Hamada1),
M. Fujiwara1)
1) National Institute for Fusion Science, Toki 509-5292, Japan
2) Department of Fusion Science, The Graduate University for Advanced Studies, Toki 509-5292, Japan
3) Dept. of Energy Engineering and Science, Graduate School of
Engineering, Nagoya University, Nagoya 464, Japan
Abstract. Stable discharges longer than one minute have been obtained in
LHD with all the heating schemes including electron cyclotron heating (ECH).
Plasma is sustained with neutral beam injection (NBI) or with ion cyclotron
resonance frequency (ICRF) with 0.5-1 MW. Central plasma temperature is
higher than 1.5 keV with a density of
1 - 2×1019m-3 until the
end of the pulse. Full installation of the carbon divertor has contributed
to this achievement. This gives a sufficient base for physics and technology
studies from the next campaign. The long pulse operation indicates new
possibilities in diagnostics and in physics studies. Higher accuracy and
reliability is obtained with diagnostics parameter scan, longer integration
of signals or two-dimensional measurement. The mechanism of a slow
oscillation called breathing is discussed. Hydrogen recycling analysis has
been carried out and preliminary results are obtained. Based on these
results, the future program is divided into two categories, that is, i)
physics and technology experiments utilizing long-pulse discharges up to 5
minutes, and ii) extension of the pulse-length toward one hour.
IAEA 2001