Full Paper
IAEA-CN77
Contents  Return  Previous Page  Next Page  Index


Return To: Session EX4 - Physics Integration, Operation
Prev Page: (EX4/2) Internal Barrier Discharges in JET and their
Next Page: (EX4/4) Performance, Heating, and Current Drive Scenarios of


(EX4/3) Long-Pulse High-Performance Discharges in the DIII-D Tokamak

T. C. Luce1), M. R. Wade2), P. A. Politzer1), S. L. Allen3), M. E. Austin4), D. R. Baker1), B. Bray1), D. P. Brennen5)1), K. H. Burrell1), T. A. Casper3), M. S. Chu1), J. C. DeBoo1), E. J. Doyle6), J. R. Ferron1), A. M. Garofalo7), P. Gohil1), I. A. Gorelov8), C. M. Greenfield1), R. J. Groebner1), W. W. Heidbrink9), C.-L. Hsieh1), A. W. Hyatt1), R. Jayakumar3), J. E. Kinsey10), R. J. La Haye1), L. L. Lao1), C. J. Lasnier3), E. Lazarus2), A. W. Leonard1), Y. R. Lin-Liu1), J. Lohr1), M. A. Mahdavi1), M. A. Makowski3), M. Murakami2), C. C. Petty1), R. I. Pinsker1), R. Prater1), C. L. Rettig6), T. L. Rhodes6), B. W. Rice3), E. J. Strait1), T. S. Taylor1), D. M. Thomas1), A. D. Turnbull1), J. G. Watkins11), W. P. West1), and K. L. Wong8)
 
1) General Atomics, P.O. Box 85608, San Diego, California USA
2) Oak Ridge National Laboratory, Oak Ridge, Tennessee USA
3) Lawrence Livermore National Laboratory, Livermore, California USA
4) University of Texas-Austin, Austin, Texas USA
5) ORISE, Oak Ridge, Tennessee USA
6) University of California-Los Angeles, California USA
7) Columbia University, New York, New York USA
8) Princeton Plasma Physics Laboratory, Princeton, New Jersey USA
9) University of California, Irvine, California USA
10) Lehigh University, Bethlehem, Pennsylvania USA
11) Sandia National Laboratories, Albuquerque, New Mexico USA

Abstract.  Significant progress in obtaining high performance discharges for many energy confinement times in the DIII-D tokamak has been realized since the previous IAEA meeting. In relation to previous discharges, normalized performance $ \sim$ 10 has been sustained for > 5$ \tau_{\mathrm{E}}^{}$ with qmin > 1.5. (The normalized performance is measured by the product $ \beta_{\mathrm{N}}^{}$H89 indicating the proximity to the conventional $ \beta$ limits and energy confinement quality, respectively.) These H-mode discharges have an ELMing edge and $ \beta$ $ \lesssim$ 5%. The limit to increasing $ \beta$ is a resistive wall mode, rather than the tearing modes previously observed. Confinement remains good despite the increase in q. The global parameters were chosen to optimize the potential for fully non-inductive current sustainment at high performance, which is a key program goal for the DIII-D facility in the next two years. Measurement of the current density and loop voltage profiles indicate $ \sim$ 75% of the current in the present discharges is sustained non-inductively. The remaining ohmic current is localized near the half radius. The electron cyclotron heating system is being upgraded to replace this remaining current with ECCD. Density and $ \beta$ control, which are essential for operating advanced tokamak discharges, were demonstrated in ELMing H-mode discharges with $ \beta_{\mathrm{N}}^{}$H89 $ \sim$ 7 for up to 6.3 s or $ \sim$ 34$ \tau_{\mathrm{E}}^{}$. These discharges appear to be in resistive equilibrium with qmin $ \sim$ 1.05, in agreement with the current profile relaxation time of 1.8 s.

Read the full paper in PDF format.

IAEA 2001