(OV1/4) Overview of LHD Experiments
M. Fujiwara1), K. Kawahata1),
N. Ohyabu1), O. Kaneko1), A. Komori1),
H. Yamada1), N. Ashikawa2),
L. R. Baylor8), S. K. Combs8),
P. de Vries1), M. Emoto1), A. Ejiri4),
P. W. Fisher8), H. Funaba1), M. Goto1),
D. Hartmann9), K. Ida1), H. Idei1),
S. Iio5), K. Ikeda1), S. Inagaki1),
N. Inoue1), M. Isobe1), S. Kado4),
K. Khlopenkov1), T. Kobuchi2),
A. V. Krasilnikov10), S. Kubo1),
R. Kumazawa1), F. Leuterer9),
Y. Liang2), J. F. Lyon8), S. Masuzaki1),
T. Minami1), J. Miyajima, T. Morisaki1),
S. Morita1), S. Murakami1), S. Muto1),
T. Mutoh1), Y. Nagayama1),
N. Nakajima1), Y. Nakamura1),
H. Nakanishi1), K. Narihara1),
K. Nishimura1), N. Noda1), T. Notake3),
S. Ohdachi1), Y. Oka1), S. Okajima6),
M. Okamoto1), M. Osakabe1), T. Ozaki1),
R. O. Pavlichenko1), B. J. Peterson1),
A. Sagara1), K. Saito3),
S. Sakakibara1), R. Sakamoto1),
H. Sanuki1), H. Sasao2), M. Sasao1),
K. Sato1), M. Sato1), T. Seki1),
T. Shimozuma1), M. Shoji1), H. Sugama1),
H. Suzuki1), M. Takechi1), Y. Takeiri1),
N. Tamura1), K. Tanaka1), K. Toi1),
T. Tokuzawa1), Y. Torii3), K. Tsumori1),
K. Y. Watanabe1), T. Watanabe1),
T. Wateri1), I. Yamada1),
S. Yamaguchi1), S. Yamamoto3),
M. Yokoyama1), N. Yoshida7),
Y. Yoshimura1), Y. Zhao11),
R. Akiyama1), K. Haba1), M. Iima1),
J. Kodaira1), T. Takita1), T. Tsuzuki1),
K. Yamauchi1), H. Yonezu1),
H. Chikaraishi1), S. Hamaguchi1),
S. Imagawa1), N. Inoue1), A. Iwamoto1),
S. Kitagawa1), Y. Kubota1),
R. Maekawa1), T. Mito1), K. Murai1),
A. Nishimura1), K. Takahata1),
H. Tamura1), S. Yamada1), N. Yanagi1),
K. Itoh1), K. Matsuoka1), K. Ohkubo1),
I. Ohtake1), S. Satoh1), T. Satow1),
S. Sudo1), S. Tanahashi1),
K. Yamazaki1), Y. Hamada1),
O. Motojima1)
1) National Institute for Fusion Science, Oroshi-cho
322-6, Toki 509-5292, Japan
2) Graduate University for Advanced Studies, Hayama 240-0193, Japan
3) Dep. of Energy Eng. and Science, Nagoya University, Nagoya
464-8603, Japan
4) University of Tokyo, Tokyo 113, Japan
5) Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
6) Chubu University, Kasugai-shi 487-8501, Japan
7) Kyushu University, Kasuga-shi 816-8580, Japan
8) Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831-8072
USA
9) Max Plank Institute for Plasma Physics, D-85748, Garching, Germany
10) Troitsk Institute of Nuclear Physics (TRINITI), Troitsk, Russia
11) Institute of Plasma Physics, Academia Scinica, 230031, Hefei,
Anhui, China
Abstract. Experimental studies on the Large Helical Device during the last
two years are reviewed. After the start of LHD experiment in 1998, the
magnetic field has been gradually raised up to 2.89 T. The heating power has
been increased, up to 4.2 MW for NBI, 1.3 MW for ICRF, and 0.9 MW for ECRH.
Upgrading the key hardware systems has led to the extension of the plasma
parameters to (i) higher
Te [
Te(0) = 4.4 keV at
ne = 5.3×1018m- 3 and
Pabs = 1.8MW ], (ii) higher confinement [
= 0.3 s,
Te(0) = 1.1 keV at
ne = 6.5×1019m- 3 and
Pabs = 2.0MW ]
and (iii) higher stored energy
Wpdia = 880kJ. High
performance plasmas have been realized in the inward shifted magnetic axis
configuration (R=3.6m) where the helical symmetry is recovered and the
particle orbit properties are improved by trade off of MHD stability
properties due to the appearance of the magnetic hill. The energy
confinement was systematically higher than that predicted by the
International Stellerator Scaling 95 up to a factor of 1.6 and was
comparable with ELMy H-mode confinement capability in tokamaks. This
confinement improvement is attributed to the configuration control (the
inward shift of magnetic axis) and to the formation of the high edge
temperature. The achieved average beta value reached 2.4 % at B=1.3 T, the
highest beta value ever obtained in helical devices, and so far no
degradation of confinement by MHD phenomenon is observed. The inward shifted
configuration has also led to successful ICRF minority ion heating. ICRF
power up to 1.3 MW was reliably injected into the plasma without significant
impurity contamination and a plasma with a stored energy of 200 kJ was
sustained for 5 sec by ICRF alone. As another important result long pulse
discharges of more than 1 minute were successfully achieved separately with
NBI heating of 0.5 MW and with ICRF heating of 0.85 MW.
IAEA 2001