Full Paper
IAEA-CN77
Contents  Return  Previous Page  Next Page  Index


Return To: Session EXP4 - Current Drive, Heating, Fuelling, Divertors
Prev Page: Session EXP4 - Current Drive, Heating, Fuelling, Divertors
Next Page: (EXP4/02) ECRH Experiments and Developments for Long Pulses


(EXP4/01) Numerical Modelling of ICRF Physics Experiments in the Alcator C-Mod Tokamak

P. T. Bonoli1), R. L. Boivin1), M. Brambilla2), C. Fiore1), J. A. Goetz1), R. S. Granetz1), M. J. Greenwald1), A. Hubbard1), I. H. Hutchinson1), J. Irby1), B. LaBombard1), W. Davis Lee1), B. Lipschultz1), E. S. Marmar1), A. Mazurenko1), E. Nelson-Melby1), D. Mossessian1), C. K. Phillips3), M. Porkolab1), J. Rice1), G. Schilling3), J. A. Snipes1), J. L. Terry1), S. Wolfe1), S. Wukitch1)
 
1) MIT Plasma Science and Fusion Center, Cambridge, MA (USA)
2) Max Planck Institut für Plasmaphysik, Garching (Germany)
3) Princeton Plasma Physics Laboratory, Princeton, NJ (USA)

Abstract.   A full-wave spectral code (TORIC) has been used to simulate mode converted ion Bernstein wave (IBW) propagation and absorption for the first time at high poloidal mode number ( -80 < m < + 80). Converged wave solutions for the mode converted wave are obtained in this limit and the predicted electron damping of the IBW is found to be consistent with experimental measurements from the Alcator C-Mod tokamak. The TORIC code has also been coupled to a bounce-averaged Fokker Planck module FPPRF and the combined codes are now run within the transport analysis tool TRANSP. This model was used to analyze off-axis hydrogen minority heating experiments in C-Mod where an internal transport barrier was obtained.

Read the full paper in PDF format.

IAEA 2001