(EX8/4) The Performance of ICRF Heated Plasmas in LHD
T. Watari1), T. Mutoh1),
R. Kumazawa1), T. Seki1), K. Saito2),
Y. Torii2), Y. Zhao3), D. Hartmann4),
H. Idei1), S. Kubo1), K. Ohkubo1),
M. Sato1), T. Shimozuma1),
Y. Yoshimura1), K. Ikeda1), O. Kaneko1),
Y. Oka1), M. Osakabe1), Y. Takeiri1),
K. Tsumori1), N. Ashikawa5),
P. de Vries1), M. Emoto1),
A. Fukuyama6), H. Funaba1), M. Goto1),
K. Ida1), S. Inagaki1), N. Inoue1),
M. Isobe1), K. Itoh1), S. Kado1),
K. Kawahata1), T. Kobuchi1),
K. Khlopenkov1), A. Komori1),
A. V. Krasilnikov7), Y. Liang5),
S. Masuzaki1), K. Matsuoka1),
T. Minami1), J. Miyazawa1),
T. Morisaki1), S. Morita1),
S. Murakami1), S. Muto1), Y. Nagayama1),
Y. Nakamura1), H. Nakanishi1),
K. Narihara1), K. Nishimura1),
N. Noda1), A. T. Notake2), S. Ohdachi1),
N. Ohyabu1), H. Okada6), M. Okamoto1),
T. Ozaki1), R. O. Pavlichenko1),
B. J. Peterson1), A. Sagara1),
S. Sakakibara1), R. Sakamoto1),
H. Sasao1), M. Sasao5), K. Sato1),
S. Satoh1), T. Satow1), M. Shoji1),
S. Sudo1), H. Suzuki1), M. Takechi1),
N. Tamura5), S. Tanahashi1),
K. Tanaka1), K. Toi1), T. Tokuzawa1),
K. Y. Watanabe1), T. Watanabe1),
H. Yamada1), I. Yamada1),
S. Yamaguchi1), S. Yamamoto2),
K. Yamazaki1), M. Yokoyama1),
Y. Hamada1), O. Motojima1),
M. Fujiwara1)
1) National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, 509-5292 Japan
2) Department of Energy Engineering and Science, Nagoya University, 464-8603, Japan
3) Institute of Plasma Physics, Academia Scinica, 230031, Hefei, Anhui, China
4) Max Planck Institute for Plasma Physics, D-85748,Garching, Germany
5) Department of Fusion Science, School of Mathematical and Physical
Science, Graduate University for Advanced Studies, Hayama, 240-0193, Japan
6) Kyoto University, 606-8187, Kyoto, Japan
7) Troisk Institute for Innovating and Fusion Research(TRINITI),
Troisk, Russia
Abstract. An ICRF Heating experiment was conducted in the third campaign
of the LHD in 1999. 1.35 MW of ICRF power was injected into the plasma and
200kJ of stored energy was obtained, which was maintained for 5 sec only by
ICRF power after the termination of the ECH. The impurity problem was so
completely overcome that the pulse length was easily extended to 68 sec at a
power level of 0.7 MW. The utility of a liquid stub tuner in steady state
plasma heating was demonstrated in this shot. The energy confinement time of
the ICRF heated plasma has the same dependences on plasma parameters as the
ISS95 stellarator scaling with a multiplication factor of 1.5, which is a
high efficiency comparable to NBI. Such an improvement in performance was
obtained by applying various measures, including 1)scanning of the magnetic
field intensity and minority concentration, 2)improvement of particle orbit
due to a shift of the magnetic axis, and 3) reduction of impurities by means
of Ti-gettering and the use of carbon divertor plates. In the optimized
heating regime, ion heating turned out to be the dominant heating mechanism,
different from that of in CHS and W7-AS. Due to the high quality of the
heating and the extended parameter range far beyond that of previous
experiments, the experiment can be regarded as the first complete
demonstration of ICRF heating in stellarators.
IAEA 2001