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ABSTRACT

     In this paper, a model of sheared flow stabilization on hybrid electron-ion drift mode is proposed.
At first, in the presence of dissipative trapped electrons, there exists an intrinsic oscillation mode in
tokamak plasmas, namely hybrid dissipative trapped electron-ion temperature gradient mode (hereafter,
called as hybrid electron-ion drift mode). This conclusion is in agreement with the observations in the
simulated tokamak experiment on the CLM [1,2]. Then, it is found that the coupling between the
sheared flows and dissipative trapped electrons is proposed as the stabilization mechanism of both
toroidal sheared flow and poloidal sheared flow on the hybrid electron-ion drift mode, that is, similar to
the stabilizing effect of poloidal sheared flow on edge plasmas in tokamaks, in the presence of both
dissipative trapped electrons and toroidal sheared flow, large toroidal sheared flow is always a strong
stabilizing effect on the hybrid electron-ion drift mode in internal transport barrier location, too. This
result is consistent with the experimental observations in JT-60U[3,4].

1. INTRODUCTION

     In the last decade, sheared flow stabilization model in fusion research has successfully explained
the formation of transport barriers in magnetically confined devices. This model was originally
developed to explain the formation of the edge transport barrier in tokamaks for L-H transition [5-7].
Recently, this concept has been applied to study the internal transport barrier (ITB) formed at the
plasma core with large toroidal sheared flow and converse (or weak) magnetic shear [3,8]. The edge
poloidal sheared flow is always a strong stabilizing effects on the instabilities in tokamaks. As pointed
out by Burrell [9], E B×  flow shear stabilization model is of considerable physical significance: it is
not often that a system self-organizes to a higher energy state with reduced turbulence and transport
when an additional source of free energy is applied to it. Oppositely, we notice that, as show in Ref. 10,
if toroidal flow shear is large enough, then the pure Kelvin-Helmhotz instability is excited. It is
necessary to study the E B×  flow shear effects further. In recent experiment on CLM [1], the
transition from the slab to the toroidal branch of the ITG mode was studied by increasing the curvature
drive provided with the mirror ratio and trapped electron fraction, it means that there may be a hybrid
dissipative trapped electron ITG mode. Koide et al. [3] observed the spontaneous  formation of
internal and edge transport barriers in JT-60U high- β P discharges. A large toroidal velocity shear or
jump was observed across the q = 3  surface (the internal transport barrier location) as if momentum
transfer across the internal transport barrier was significantly reduced.

2. HYBRID ELECTRON-ION DRIFT MODE

      Motivated by the experiment in the CLM, we adopt a simple radial inhomogeneous sheared

slab configuration. The magnetic field is given by [ ]B = +B z x L ys0 $ ( ) $ , where ( )L B x Bs y=
−' ( ) 0

1
 is

magnetic shear length. Quasi-neutrality with non-adiabatic electron response, namely, ~ ( )
~

n ie e= −1 δ φ ,

where [ ]δ ω ω ω ν εe e effk( , ) ( ) ( )*≅ − 2 1/2 [11] and electrostatic dynamics are assumed. Obviously, the

non-adiabatic electron response will increase with the increasing of the trapped electron population

fraction f tr ≡ 2ε  and with the decreasing of the effective collision frequency ν ν εeff ei= . A fluid
description of ion temperature gradient-driven turbulence consists of continuity equation for the ion

density ~ni , motion equation of parallel ion velocity 
~
||V i  and evolution equation for ion pressure Pi :
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where VE c B b= × ∇Φ( ) $  and  Vdi i ic eBn b P= × ∇( ) $  are, respectively, electric field drift velocity ( E B×
drift) and ion diamagnetic drift velocity, which describe the perpendicular ion dynamics to the first
order in O ci( )ω ω , ω ci  is the ion cyclotron frequency. In the next order, the generalized ion

polarization drift is given by Vpi
i
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$ $ Φ . Finally, we obtain

a eigenmode equation for ITG mode including non-adiabatic electron response
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This is a Weber equation, where b ks y= 2 , x L Ls s n= Ω , Γ -term is negligible when L Ln s <<1. The

solution of Eq.(16) can be obtained in terms of Hermite polynomials

      ( )~
expφ = 
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
i x x H i x xs n s

2 22 ,                                                 (5)

where n = 0 1 2, , ,L  is the radial eigenmode number. Hn  is Hermite polynomials, ∆  is the radial mode

width and is determined by ∆− −= −2 12Im[( ) ]xs . The eigenmode frequency Ω  is given by the solution
of the linear dispersion relation determined by the WKB eigenvalue condition for the Weber equation
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This is a cubic equation for normalized frequency Ω , the left-hand side is the standard dispersion
relation for the ITG mode, and the right-hand side represents the modification due to dissipative
trapped electrons. it means that in the absence of the nonadiabatic electron response, that is, δ e = 0 ,
the cubic Eq. (6) reduces to usual dispersion relation for the ion temperature gradient mode
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Eq.(7) describes a pair of modes, only one is unstable, that is, ITG mode. Besides the trapped electron-
modified ITG mode, Eq.(6) includes another unstable root yet, that is, a hybrid dissipative trapped
electron-ion temperature gradient. In the case L Ln s <<1, Eq.(6) gives:
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This implied that there exists an intrinsic oscillation mode in tokamak plasmas, that is, a hybrid
dissipative trapped electron ion temperature gradient (ITG) mode. When trapped electron fraction is
sufficient high and the trapped electrons are dissipated strongly, the mode is determined by the
dissipative trapped electron dynamics and propagated in electron diamagnetic direction, namely, the
mode appears to be a hybrid dissipative trapped electron ion temperature gradient (ITG) mode.
Analytical result can reduce to usual predictions of the ion temperature gradient-driven instability in
the absence of the dissipative trapped electron response. Numerical calculation indicates that in the
absence of the dissipative trapped, the hybrid dissipative trapped electron ITG mode reduces to the
usual ITG mode, and that when the electron nonadiabatic electron response is sufficient strong, the
hybrid electron-ion drift mode propagates in electron diamagnetic direction, see Fig. 1. Analytical and
numerical results are agreement with the experimental observations in CLM [1,2].

3. SHEARED FLOWS STABILIZATION ON HYBRID ELECTRON-ION DRIFT MODE

    On the basis of the hybrid electron-ion drift mode above, we further consider the effects of
E B× sheared flows on this hybrid electron-ion drift mode. The equilibrium flow velocity has form
      V V0 0 0 0 00( ) ( ) ( ) $ ( ) $x x L V y z L V zy y z z= + + ,                                          (9)

where L d V dxy y= −( ln )0
1  and L d V dxz z= −( ln )0

1  the scale length of poloidal velocity and toroidal

velocity, respectively. The definition of the convective derivative in Eqs. (1-3) contains the poloidal
and toroidal equilibrium flow velocities, that is,



      ω ω ω− ⋅ = − ⋅ − − ≅ −V k V k0 0 0 0 00( ) ( ) ( ) ( ) ( )x x L V k x L V k x L V ky y y z z z y y y ,               (10)

According to the drift ordering k x L k kz z y y= <<( ) , we ignored all terms of order higher than the

term O x L( )2 2 . Including both dissipative trapped electrons and sheared flows, Eqs. (1-3) become
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where $Ω Ω= − J xz , J V c L Ly y s n y= ( )( )0 and J V c L Lz z s n z= ( )( )0 are, respectively, poloidal and

toroidal sheared flow parameters, which describe the synergistic effect of flow shear and flow
magnitude. Finally, we obtain a single eigenmode equation for 
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Similar to the treatment above, we can obtain the growth rate. First, the dissipative trapped electrons
play a key role for stabilizing effect of the toroidal sheared flow on the hybrid electron-ion drift mode.
If the non-adiabatic electrons are absent in the system, the solution of Eq.(14) reduced to the pure
toroidal sheared flow-enhanced ITG mode which shows that pure toroidal sheared flow is a
destabilizing effect on ITG mode, that is, the pure toroidal sheared flow, acting as a dominant free
energy source, drives a sheared flow-enhanced purely Kelvin-Helmhotz instability, as show in Ref. 10:
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In the absence of sheared flows, that is, Jy = 0 , Jz = 0 , the results reduced to the hybrid dissipative

trapped electron-ion temperature gradient mode, as show above:
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In the presence of both dissipative trapped electrons and toroidal sheared flow, we obtain linear growth
rate for hybrid electron-ion drift mode approximately
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We know it is not often that a system self-organizes to a higher energy state with reduced turbulence
and transport when an additional source of free energy is applied to it. In the presence of both
dissipative trapped electrons and toroidal sheared flow, it is obvious that strong coupling between the
dissipative trapped electrons and the toroidal sheared flow [the second term of Eq.(17)] results in
strong stabilizing effect of the toroidal sheared flow on the hybrid electron-ion drift type mode. That is,
for small toroidal velocity shear (or weak velocity shear), the linear growth rate increases with the
sheared flow parameter Jz ; but for sufficiently large value of parameter Jz , the linear growth rate will
decreases with the increase of parameter Jz . In particular, within the ITB region, the toroidal rotation
velocity, especially its shear is so large that the toroidal sheared flow parameter Jz  is large enough to
suppress the hybrid electron-ion drift mode. In other words, the coupling between the sheared flows
and non-adiabatic electrons is proposed as the stabilization mechanism of toroidal sheared flow on the
hybrid electron-ion drift type mode. Numerical calculation shows same result, see Fig. 2. It is
consistent with the experimental observation in the ITB region where further confinement
improvement is always associated with large toroidal sheared flow [3,4]. Toroidal sheared flow
stabilization appears to offer favorable prospects for high confinement operation for fusion reactor.
   Similarly, in the presence of both dissipative trapped electrons and poloidal sheared flow, we have
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It also showed that for small  poloidal velocity shear parameter Jy  (or weak shear), linear growth

rate increases with shear parameter Jy ; but for sufficiently large value of shear parameter Jy , the

linear growth rate will decreases with increasing shear parameter Jy . We have expanded the

¡ °potential¡ ± function with a polynomial in x . The terms which vary as x3  or higher tend to destroy



the quadratic structure at large value of x , Physically, these terms represent the effects of higher shear
damping when the velocity shear causes the mode to deviate too far from the mode rational surface.
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Fig. 1. Normalized mode growth rateγ ω*e (dotted line)       Fig. 2. Noemalized mode growth rates γ ω*e  of
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trapped electron-modified ηi -mode with wave number       with (solid line) and Jz = 1(dashed line).
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