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Abstract

Based on three-dimensional simulations of the Braginskii equations, we identify t w o main
parameters which control transport in the edge of tokamaks: the MHD ballooning parameter
and a diamagnetic parameter. The space defined by these parameters delineates regions
where typical L-mode levels of transport arise, where the transport is catastrophically large
(densit ylimit) and where the plasma spontaneously forms a transport barrier (H-mode).
Ton diamagnetic effects allow the edge pedestal to steepen well bey ond the first ideal MHD
stabilit y boundary

1 Introduction

The tok amak edge region vitally controls the plasma disc harge through its role in the L-H
transition[1, 2|, the density limit [3], and the edge temperature pedestal. We suggest here,
based on three-dimensional simulations of the Braginskii equations, that these phenomena are
fundamentally link edto the dependence of the turbulent edge transport on tw odimensionless
parameters: the MHD ballooning parameter « = —Rq?d3/dr and a diamagnetic parameter
ag (defined below). The space spanned by these parameters is sho wnin Fig. (1). In the
w eakdiamagnetic limit (small «y), the simulations show a dramatic rise in the transport with
increasing « that leads to high transport levelsevenat small « values w ellbelow the limit
of ideal ballooning instability[4 ,5]. We associate this behavior with an effective density limit
beyond which stable tok amakoperation is not possible [6]. At higher ay ~ 1, on the other
hand, the o« dependence of the turbulence is reversed, with small but finite values of a leading
to a strong suppression of transport. In this regime a local increase in the plasma pressure
gradient, above a threshold ina, causes a reductionof the transport [6]. Since such a reduction
w ould naturally lead to a further steepening of the edge pressure gradieti, this region of higher
« and g is unstable to the spontaneous formation of a transport barrier. The boundary of
this unstable domain defines the onset condition for the L-H transition in our model. Finally,
the global stability of the edge pedestal and the relative roles of finite &« and E x B shear are
explored in dynamical simulations of the barrier formation process. These simulations confirm
the E x B shear effect can stabilize turbulence during the formation of the barrier [7, 8]. We
also find, ho w ev ethat for small a, £ x B shear alone is not sufficient to trigger a transition
due to the strong positive dependence of transport on the plasma pressure gradient [6].

2 Model

The simulations are based on a shifted-circle magnetic geometry and are carried out in a
poloidally and radially localized, flux-tube domain that winds around the torus [9]. We evolve
six nonlinear equations, summarized in Ref.[6], for the perturbations of the magnetic flux 1,
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electric potential ¢, density n, electron and ion temperatures T., T;, and parallel flow UH For

later reference in the text, we show here only the isothermal limit of the full system (T, T; — 0),
neglecting the (small) contributions of ¥ and magnetic pumping:

(2m)%a (0 + cadyp) = V)| (6 — aair) = J, (1)
Vi DV ($+ Tagh) + Ch— V) J =0, (2)
Dyn + ayﬁg - 6né(ﬁ5 — agn) — agen (1 + T)VHJ =0, (3)

where V|| = 0, + (21)2a 2x V19 - V1, Dy = 0y + 2x V1¢- V1, V2 = (8, + A(2)9,)” + 02,
C = (cos(2mz) + A(2) sin(272) — €)dy + sin(272)dy, A(2) = 27éz — asin (2r2), J = V24 The
time (t), parallel (z) and perpendicular (z,y) normalization scales are ty = (RLy, /2)1/2/05,
L, =2nq,R and Lo = (n||02Lg/(47ert0))1/2, with an associated diffusion rate Dy = L2/ty. The
diamagnetic and MHD parameters are

PsCsto _ 2R87T(pe0 + pio) (4)

M A IeLy ¢ T B,

Unless noted otherwise, w econsider the values§ = 1, 7 = T;/Teo = 1, €, = 2L, /R = 0.02,
e=a/R=0.2,q9,=3,n =L,/L1, =1,n. =1, mj/m, =2.

3 L-H Transition and Density Limit

Fig. (2) sho wsthe normalized, poloidally averaged ion energy flux , ,, ~ —(ﬁi$y> versus a for
various wlues of ag. F or smalley < 0.5 the transport increases strongly with increasing o, while
for larger ag ~ 1, the transport at higher « is suppressed. This rev ersalreflects the fact that
the turbulence in the small and large o4 cases is driven by different mechanisms with contrary
dependences on electromagnetic effects.

In the small a4 case, the turbulence results mainly from the nonlinear development of resistive
ballooning modes [9]. The enhancement of the transport at higher « in this case is due to the
dependence of the turbulence saturation level on magnetic field perturbations, which strengthen
as « is increased[4]. F or v ery smallvy £ 0.3 the transport becomes extremely large even at small

a ~ 0.3. The evolutionof the edge into this regime w ould leadto a large flux of plasma from
the core intothe edge and a possible radiation collapse. Since g < T/+/n while a < nT', the
limit of small a4 and finite « is consistent with larger n and smaller T', and we label in Fig. (1)
the rough boundary of this effectively forbidden zone as a “density limit”. In agreement with
this, evaluating oy and « based on the edge disc harge parameters atthe density limit in AUG
[10] (R = 165¢m, a = 50cm, B = 2.5T, T, = 50ev, n ~ 3 x 103 /em3, Z.;p = 2, q = 4),
w eobtain ag ~ 0.3, a ~ 0.5. The energy diffusion rate predicted by the simulations for these
parameters is immense: D = , , Dy with Dy ~ 60m?/s and (see Fig. (2)) , », ~ 1. This picture
is also consistent with observations on Alcator-C that confinement degrades as the density limit
is approached [3].

In the case ag ~ 1, resistive ballooning modes are weak enedby diamagnetic effects[9], and
the turbulence is predominantly caused by a nonlinear electron drift wave instabiliy [9, 12, 11].
This instability relys on the nonlinear production of poloidal pressure gradients, which (unlike
radial gradients) excite unstable drift w aveev enin the presence of the equilibrium magnetic
shear[12]. The drift w aveshen gro wdue to the convection of the electron pressure across
the magnetic field, which generates a parallel pressure gradient V) p. and an associated parallel
current through Ohm’s law [12]. This process, how ev er, is inhibited p electromagnetic effects at
very smalla. This is because the electrons at higher o convect the magnetic field together with
the electron pressure, leading to a large reduction of V) p, relative to the electrostatic, « = 0
limit. This effect can be illustrated by a linear analysis of a constant ambient density gradient



THP2/01

in the y-direction n = n{y [6]. The resulting drift wave gro wth rate is strongly suppressed with
increasing «, consistent with Fig. (2). A similar effect was also invok ed in Ref. [13].

Returning to the issue of transport barrier formation, in a stable system an increased pres-
sure gradient leads to increased turbulence and enhanced flux, which in turn acts to flatten
the gradient. The gradient therefore evolv esto a state in which the energy flux and the
sources balance. A transport barrier can form spontaneously if the flux de creaseswith in-
creasing gradient. In dimensional units the particle flux (comparable to , ,,) can be written as
, = (Dong/Ly), n(ag,a,€n,...). The dependence on the gradient en tersexplicitly through the
scale length L,, which decreases as the profiles steepen, as w ellas implicitly through the L,,-
dependence of Dy, ayg, a, etc. Excluding the variation of , ,, the flux has a strong positive pow er
dependence , ~ n{. The dependence of , , on n' must therefore reverse this for the system to
be unstable to the formation of a barrier. This dependence, neglecting the w eakvariation of
ag ~ n''/* appears mainly through the parameters o ~ n’ and €, ~ n'~'. Forsmall ag, , p is
insensitive to €, and increases sharply with a (see Fig. (2)), which reinforces the stability of the
system. No barrier formation is therefore possible for small ay.

At higher oy ~ 1, on the other hand, the a-dependence of , ,, (~ , ;) sho wnin Fig. (2) is
rev ersed, allwing the possibility that d, ,,/d|n’| could change sign. The suppression associated
with increasing « in this case must compete with the contrary n'> dependence of the normaliza-
tion, as well as a strong destabilizing trend due to decreasing €, = 2L, /R [9]. T o determine the
net dependence on the scale length, simulations were carried out in the range ¢, ~ 0.01 —0.04 for
various wlues of ag, a. After steady transport levels were established, the profile scale lengths
w eredecreased and the parameters consistently adjusted. These simulations sho wd, ,,/d|n/|
indeed changes sign, pro videda 2 0.4. The parametric boundary along which d, ,/d|n/| = 0

separates the L and H mode regimes in Fig. (1), and represents the L-H transition condition in
our model. This prediction is supported by a study of Alcator C-Mod [14] and AUG [15] edge
parameters at the L-H transition.

P oloidal E x B shear flo ws,generated locally by the turbulence, lead in part to the large
transport reduction with increasing ay seen in Fig. (2). The ordering on which our model is
based, ho w ev eexcludes a contribution to the E, shear that can arise from profile variations
beyond the in trinsic turbulence scale. This possibly understates the importance of E, shear
since suc hprofile shear will reinforce the stability of the system during the steepening process
[7, 8]. T oaddress this issue, w ecarried out simulations of the edge pedestal in the context
of a simple model. The model includes a source and sink (radially periodic) in the density
equation (3), intended to represent neutral particle fueling in the edge. In response to the
source, a modulation of the density profile develops that steepens the gradient in the center of
the simulation domain. The strength of the source is chosen so that for ag ~ 1 and a@ < 1 the
source produces only a slight steepening of the profile before the system comes into equilibrium.
We then slowly increase o with time. With increasing « the transport drops and the source
causes the gradient to steepen, enhancing the turbulence until a new equilibrium is reac hed.
At a critical value of o the region of maximum pressure gradient exceeds the L-H threshold
condition and the profiles spontaneously begin to steepen. The subsequent ev olution depends
on the parameter €,: at €, = 0.02 it is smooth and monotonic, while at €, = 0.01 it is bursty.
Fig. (3a) sho wsthe flux , p,(¢) from a simulation that includes the source in the latter case,
with ag = 1 and (initially) o = 0.05. At ¢ = 1550 the source is turned on and the valueof o
is slowly increased at a rate da/dt = 2.5 x 1073, This causes the transport to drop gradually
until ¢ = 1630 (o ~ 0.25), when a burst of turbulence produces a large E x B poloidal sheared
flo w. This can be seen in Fig. (3b), which sho wsthe time ev olution of the root mean square
poloidal E x B velocity vg, = ((vEyﬁZ)i/ 2 (dotted line), ion diamagnetic velocity v4;, (dashed),
and total ion rotation ¥; = vy, + vaiy (solid). This E x B flo wsharply reduces the flux and
induces a localized transport barrier (muc hsmaller than the box size), which in turn leads
to a steepening of the density profile that is reflected in a slow rise of the ion diamagnetic
flo wfrom 1650 to 1750. At ¢ = 1750 (o =~ 0.5) the barrier is disrupted by a large scale
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resistiv eballooning mode which again produces strong E x B sheared flo wand suppression of
the transport. A similar even tat ¢ ~ 1820 leads finally to the formation of a global transport
barrier at ¢ = 1920. Beyond this, the diamagnetic velocit y in Fig. (3b) increases monotonically
as the profiles contin ue to steepen, while the total ion flox slowly decays due to effect of magnetic
pumping. Since v;y = vy + V4 ~ 0, this forces Uy to increase in proportion to ¥4, as seen in
the figure. The growth of v, reinforces the bifurcation of the system by suppressing turbulence
in the pedestal everywhere except in a small region surrounding the maximum pressure gradient
where E!. ~ 0.

4 Pedestal Stability

The steepening of the profiles follo wingthe transition in our simulations is not limited by the
ideal n — oo stability boundary. This is shown in Fig. (4), which is a plot of the ion pressure
profile at an early time (dashed) and late time (solid, roughly 1000¢y after the transition) in a
simulation with €, = 0.02, ag = 1. The a-value at the cen terof the pedestal, a(x = 0) = 1.6,
is w ellbeyond the first stability limit (o = 0.8 at § = 1). Shortly after the time of Fig. (4),
ho w ev er, the onset of a rapidly gwing global mode with k, = 0.4 (poloidal wavelength equal to
the box-size) in the E/ ~ 0 region leads finally to a complete disruption of the pedestal. F urther
simulations sho wthe onset of this mode occurs when o ~ 1.6 ~ 2q.;; in the cen terof the
pedestal, irrespective of the radially averaged value of @ at the time of the crash. Global mode
activity begins early in the simulation and appears at first in the form of tw ow eaklygro wing
modes. These modes propagate in both the w,, and w,; directions and closely resemble the tw o
dominant linear resistive ballooning modes in our system at k, = 0.4. One of these modes (the
wsi root) even tually transitions to the rapidly graving instability that destroys the pedestal.
The clear violation of the ideal n — oo stability limit in our simulations is consistent with
MHD analyses of data from DIIID [16] and other tok amaks, which sho wthe steep gradient
region of an H-mode edge pedestal may well exceed the first ideal stability boundary. We offer
here an explanation for this based on our analysis of a simple ramp-gradient model (discussed
below). That analysis shows long wavelength ideal modes withk, < 1/L, are stable because the
radial localization of the pedestal gradient greatly w eak enshe drive of suc h modes relatie to
the stabilizing contribution of magnetic line-bending. Shorter wavelength modes withk, 2 1/L,,

on the other hand, are stabilized by a combination of w,; and F x B shear effects.

T oexplore the behavior of ideal modes in the presence of a radially localized gradient, w e
consider a simple isothermal system in which the background density gradient (normally ny = —1
in our normalized units) is finite only in a localized region —0 < z < ¢, and vanishes elsewhere
(ng = 0). T obe consistent with the pedestal simulations discussed above, w eassume the
equilibrium E x B and ion-diamagnetic flows balance: ¢ = —7agn(. As a further simplification
w e eliminate thez-dependence of the configuration by taking C' = —ngd/dy (i. e. bad curvature
ev erywhere) ands"= 0, and in analogy to ballooning modes consider modes varying as exp(vyt +
ikyy + ik,z) with k, = 2x fixed. Finally, w eexclude resistiv emodes by dropping the resistiv e
term (J term) in Ohm’s law (1), and neglect the (small) terms proportional to €,. With these
simplifications, Eqgs. (1,2,3) may be combined to yield

O (1= + 1/0)0: f(2)] = Ky (v + /e +np) f () (5)

where v, = v + (wy, wy = —npkyTaq, f = ¢/7x. The solution for f(x) that is asymptotically
w ell behared at large = and continuousat z = £ is giv enby f = exp(—k,|z — d|) for |z| > &
(nh = 0), and f = cos(kpx)/ cos(ky0) for |z| < & (nfy = —1) (ev ensolutions turn out to be the
most unstable). Substituting this form into Eq. (5) for |z| < § yields

k2 1
Yy
VY = - = (6)
k2+k2  «
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where k, is determined by integrating Eq. (5) across x = +4 as

2 a
kg tan(ky8) = k, (%) . (7)

In the limit kyé > 1, the k; value oflow estorder mode obtained from Eq. (7) is k, = m/(26),
and so Eq. (6) reduces in this limit to the local result vy, ~ ¢ = 1 — 1/a with the usual
stability condition w?; > 4v3. In the long wavelength limit,k,d < 1, on the other hand, Eq. (7)
reduces to k2 ~ k,/d (the righ tside of Eq. (7) approaches unity for k, — 0), and so Eq. (6)
givesy? ~ k,6/(1 + ky0) — 1/a ~ —1/a. That is, for & ~ 1, ideal modes are always stable
for k, < 1/4, independent of w,;. This stabilization is due physically to the contribution of
magnetic line-bending, which (unlike the ballooning drive term o nf) remains strong in the
exterior region out to large distances z ~ 1/ky > 4.

We no w turn tothe case of arbitrary k, and the numerical solution of Egs. (6), (7). These
equations depend only on the quantities k;0, kyd, 7, a, and the normalized ion-diamagnetic
velocit y

A V»ﬁo_ﬁ( T, R

1/2
P _ = !
b= B[ +T62Lp> (Ly = p/Ip')- 8)

Solving Egs. (6), (7) numerically for fixed values of a, 9.;, and maximizing the growth rate over
all k0 yields a universal stability diagram shown in Fig. (5) (generalized to allow an arbitrary
ideal MHD first stability threshold at @ = appir). At late times in the pedestal simulation
discussed earlier, the parameter 0,; ~ 1. Similarly, evaluating 9,; in the H-mode pedestal based
on recent data in DIIID [16] (§ ~ 6p; ~ 0.0075R) we obtain v,; ~ 1. F or sut 9, Fig. (5) shows
diamagnetic effects lead to an up-shift in the stability boundary of the pedestal (solid line) by
more than a factor of tw arelative to the prediction of ideal n — oo theory (dashed line). This
explains why the local maximum value of « in the simulations, and possibly also the experiments
[16], can exceed aqpi;. F urther,the steepening of the pedestal gradient follo wing the transition
in our simulations leads to a trajectory in the o — 0,; space of Fig. (5) that even tually irtersects
the unstable region near o ~ 2a,j;. Thus, Fig. (5) is also consistent with the apparent onset of
an ideal mode in the simulations at such a value of «.

5 Conclusion

We have argued the L-H transition and the density limit in tokamaks are fundamentally linked
to the dependence of the turbulent edge transport on the parameters a and a4 as sho wnin
Fig. (1). While the thresholds shown in the figure are likely to depend on important factors not
discussed here, in particular T;/T,, non-circular geometry, and §, w eexpect the framework on
which they are based to be robust. We also find the steepening of the pedestal gradient follo wing
the L-H transition in our simulations can substantially exceed the stability limit predicted by
ideal MHD for n — oo ballooning modes. This breakdown of ideal MHD theory is due to the
radially localized nature of the pedestal gradient, as well as the contribution of ion diamagnetic
effects.
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FIGURES

FIG. 1. Edge plasma phase space

FIG. 2. , ,,(a) for g = 0.25 (square); og = 0.5 (triangle); ag = 0.75 (ast); aqg = 1 (diam)

FIG. 3. (a) , p; vs. t at €, = 0.01; (b) Ion drifts vs. ¢: v; (solid); v4;, (dash); vg, (dot)

FIG. 4. Early (dash), late (solid) ion pressure profiles.

FIG. 5. Stability boundary for ideal curvature driven modes
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