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Abstract

Based on three-dimensional simulations of the Braginskii equations, we identify tw o main
parameters which control transport in the edge of tokamaks: the MHD ballooning parameter
and a diamagnetic parameter. The space de�ned by these parameters delineates regions
where typical L-mode levels of transport arise, where the transport is catastrophically large
(densit ylimit) and where the plasma spontaneously forms a transport barrier (H-mode).
Ion diamagnetic e�ects allow the edge pedestal to steepen well bey ond the �rst ideal MHD
stabilit y boundary.

1 Introduction

The tok amak edge region vitally controls the plasma disc harge through its role in the L-H
transition[1, 2], the density limit [3], and the edge temperature pedestal. We suggest here,
based on three-dimensional simulations of the Braginskii equations, that these phenomena are
fundamentally link edto the dependence of the turbulent edge transport on tw odimensionless
parameters: the MHD ballooning parameter � = �Rq2d�=dr and a diamagnetic parameter
�d (de�ned below). The space spanned b y these parameters is sho wnin Fig. (1). In the
w eakdiamagnetic limit (small �d), the simulations show a dramatic rise in the transport with
increasing � that leads to high transport lev els ev en at small � values w ellbelow the limit
of ideal ballooning instability[4 ,5]. We associate this behavior with an e�ective density limit
beyond which stable tok amakoperation is not possible [6]. At higher �d � 1, on the other
hand, the � dependence of the turbulence is reversed, with small but �nite values of � leading
to a strong suppression of transport. In this regime a local increase in the plasma pressure
gradient, above a threshold in�, causes a reduction of the transport [6]. Since such a reduction
w ould naturally lead to a further steepening of the edge pressure gradient, this region of higher
� and �d is unstable to the spontaneous formation of a transport barrier. The boundary of
this unstable domain de�nes the onset condition for the L-H transition in our model. Finally,
the global stability of the edge pedestal and the relative roles of �nite � and E � B shear are
explored in dynamical simulations of the barrier formation process. These simulations con�rm
the E � B shear e�ect can stabilize turbulence during the formation of the barrier [7, 8]. We
also �nd, ho w ev er,that for small �, E � B shear alone is not su�cient to trigger a transition
due to the strong positive dependence of transport on the plasma pressure gradient [6].

2 Model

The simulations are based on a shifted-circle magnetic geometry and are carried out in a
poloidally and radially localized, 
ux-tube domain that winds around the torus [9]. We ev olv e
six nonlinear equations, summarized in Ref.[6], for the perturbations of the magnetic 
ux ~ ,
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electric potential ~�, density ~n, electron and ion temperatures ~Te, ~Ti, and parallel 
ow ~vk. F or

later reference in the text, we show here only the isothermal limit of the full system ( ~Te; ~Ti ! 0),
neglecting the (small) contributions of ~vk and magnetic pumping:

(2�)2�
�
@t ~ + �d@y ~ 

�
�rk

�
~�� �d~n

�
= ~J; (1)

r? �Dtr?(~�+ ��d~n) + Ĉ~n�rk
~J = 0; (2)

Dt~n+ @y ~�� �nĈ(~�� �d~n)� �d�n(1 + �)rk
~J = 0; (3)

where rk = @z + (2�)2� ~z� r?
~ � r?, Dt = @t + ~z� r?

~� � r?, r2

? = (@x +�(z)@y)
2 + @2y ,

Ĉ = (cos(2�z) + �(z) sin(2�z) � �)@y + sin(2�z)@x, �(z) = 2�ŝz � � sin (2�z), ~J = r2

?
~ . The

time (t), parallel (z) and perpendicular (x; y) normalization scales are t0 = (RLn=2)
1=2=cs,

Lz = 2�qaR and L0 = (�kc
2L2

z=(4�V
2

At0))
1=2, with an associated di�usion rate D0 = L2

0=t0. The
diamagnetic and MHD parameters are

�d =
�scst0

(1 + �)LnL0

; � = q2aR
8�(pe0 + pi0)

B2Lp
: (4)

Unless noted otherwise, w econsider the values ŝ = 1, � = Ti0=Te0 = 1, �n = 2Ln=R = 0:02,
� = a=R = 0:2, qa = 3, �i = Ln=LTi = 1, �e = 1, mi=mp = 2.

3 L-H Transition and Density Limit

Fig. (2) sho wsthe normalized, poloidally averaged ion energy 
ux �pi ' �h ~pi ~�yi versus � for
various values of �d. F or small�d < 0:5 the transport increases strongly with increasing �, while
for larger �d � 1, the transport at higher � is suppressed. This rev ersalre
ects the fact that
the turbulence in the small and large �d cases is driven by di�erent mechanisms with contrary
dependences on electromagnetic e�ects.

In the small �d case, the turbulence results mainly from the nonlinear development of resistive
ballooning modes [9]. The enhancement of the transport at higher � in this case is due to the
dependence of the turbulence saturation level on magnetic �eld perturbations, which strengthen
as � is increased[4]. F or v ery small�d <

�
0:3 the transport becomes extremely large even at small

� � 0:3. The ev olutionof the edge in to this regime w ould leadto a large 
ux of plasma from
the core in to the edge and a possible radiation collapse. Since �d / T=

p
n while � / nT , the

limit of small �d and �nite � is consistent with larger n and smaller T , and we label in Fig. (1)
the rough boundary of this e�ectively forbidden zone as a \density limit". In agreement with
this, evaluating �d and � based on the edge disc harge parameters atthe density limit in AUG
[10] (R = 165cm, a = 50cm, B = 2:5T , Te = 50ev, n � 3 � 1013=cm3, Zeff = 2, q = 4),
w eobtain �d � 0:3, � � 0:5. The energy di�usion rate predicted b y the simulations for these
parameters is immense: D = �piD0 with D0 � 60m2=s and (see Fig. (2)) �pi � 1. This picture
is also consistent with observations on Alcator-C that con�nement degrades as the density limit
is approached [3].

In the case �d � 1, resistive ballooning modes are weak enedb y diamagnetic e�ects [9], and
the turbulence is predominantly caused by a nonlinear electron drift wave instability [9, 12, 11].
This instability relys on the nonlinear production of poloidal pressure gradients, which (unlike
radial gradients) excite unstable drift w avesev en in the presence of the equilibrium magnetic
shear[12]. The drift w avesthen gro w due to the convection of the electron pressure across
the magnetic �eld, which generates a parallel pressure gradient rkpe and an associated parallel
current through Ohm's law [12]. This process, how ev er, is inhibited by electromagnetic e�ects at
very small�. This is because the electrons at higher � convect the magnetic �eld together with
the electron pressure, leading to a large reduction of rkpe relative to the electrostatic, � = 0
limit. This e�ect can be illustrated by a linear analysis of a constant ambient density gradient
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in the y-direction n = n00y [6]. The resulting drift wave gro wth rate is strongly suppressed with
increasing �, consistent with Fig. (2). A similar e�ect was also invok ed in Ref. [13].

Returning to the issue of transport barrier formation, in a stable system an increased pres-
sure gradient leads to increased turbulence and enhanced 
ux, which in turn acts to 
atten
the gradient. The gradient therefore ev olv esto a state in which the energy 
ux and the
sources balance. A transport barrier can form spontaneously if the 
ux de creaseswith in-
creasing gradient. In dimensional units the particle 
ux (comparable to �pi) can be written as
� = (D0n0=Ln)�n(�d; �; �n; :::). The dependence on the gradient en tersexplicitly through the
scale length Ln, which decreases as the pro�les steepen, as w ellas implicitly through the Ln-
dependence of D0, �d, �, etc. Excluding the variation of �n, the 
ux has a strong positive pow er
dependence � � n02

0
. The dependence of �n on n0 must therefore reverse this for the system to

be unstable to the formation of a barrier. This dependence, neglecting the w eakvariation of
�d � n01=4, appears mainly through the parameters � � n0 and �n � n0�1. F orsmall �d, �n is
insensitive to �n and increases sharply with � (see Fig. (2)), which reinforces the stability of the
system. No barrier formation is therefore possible for small �d.

At higher �d � 1, on the other hand, the �-dependence of �pi (� �n) sho wnin Fig. (2) is
rev ersed, allowing the possibility that d�n=djn0j could change sign. The suppression associated
with increasing � in this case must compete with the contrary n02 dependence of the normaliza-
tion, as well as a strong destabilizing trend due to decreasing �n = 2Ln=R [9]. T o determine the
net dependence on the scale length, simulations were carried out in the range �n � 0:01�0:04 for
various values of �d, �. After steady transport levels were established, the pro�le scale lengths
w eredecreased and the parameters consistently adjusted. These simulations sho wd�n=djn0j
indeed changes sign, pro vided� >

�
0:4. The parametric boundary along which d�n=djn0j = 0

separates the L and H mode regimes in Fig. (1), and represents the L-H transition condition in
our model. This prediction is supported by a study of Alcator C-Mod [14] and AUG [15] edge
parameters at the L-H transition.

P oloidalE � B shear 
o ws,generated locally b y the turbulence, lead in part to the large
transport reduction with increasing �d seen in Fig. (2). The ordering on which our model is
based, ho w ev er,excludes a contribution to the Er shear that can arise from pro�le variations
beyond the in trinsic turbulence scale. This possibly understates the importance of Er shear
since suc hpro�le shear will reinforce the stability of the system during the steepening process
[7, 8]. T oaddress this issue, w ecarried out simulations of the edge pedestal in the context
of a simple model. The model includes a source and sink (radially periodic) in the density
equation (3), in tended to represent neutral particle fueling in the edge. In response to the
source, a modulation of the density pro�le develops that steepens the gradient in the center of
the simulation domain. The strength of the source is chosen so that for �d � 1 and � � 1 the
source produces only a slight steepening of the pro�le before the system comes into equilibrium.
We then slowly increase � with time. With increasing � the transport drops and the source
causes the gradient to steepen, enhancing the turbulence until a new equilibrium is reac hed.
At a critical value of � the region of maximum pressure gradient exceeds the L-H threshold
condition and the pro�les spontaneously begin to steepen. The subsequent ev olutiondepends
on the parameter �n: at �n = 0:02 it is smooth and monotonic, while at �n = 0:01 it is bursty.
Fig. (3a) sho wsthe 
ux �pi(t) from a simulation that includes the source in the latter case,
with �d = 1 and (initially) � = 0:05. At t = 1550 the source is turned on and the value of �
is slowly increased at a rate d�=dt = 2:5 � 10�3. This causes the transport to drop gradually
until t = 1630 (� ' 0:25), when a burst of turbulence produces a large E � B poloidal sheared

o w. This can be seen in Fig. (3b), which sho wsthe time ev olution of the root mean square

poloidal E�B velocity �vEy � hhvEyi2y;zi1=2x (dotted line), ion diamagnetic velocity �vdiy (dashed),
and total ion rotation �viy = vEy + vdiy (solid). This E � B 
o wsharply reduces the 
ux and
induces a localized transport barrier (muc h smaller than the box size), which in turn leads
to a steepening of the density pro�le that is re
ected in a slow rise of the ion diamagnetic

o w from 1650 to 1750. At t = 1750 (� ' 0:5) the barrier is disrupted b y a large scale
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resistiv eballooning mode which again produces strong E � B sheared 
o wand suppression of
the transport. A similar even tat t ' 1820 leads �nally to the formation of a global transport
barrier at t = 1920. Beyond this, the diamagnetic velocit y in Fig. (3b) increases monotonically
as the pro�les contin ue to steepen, while the total ion 
ow slowly decays due to e�ect of magnetic
pumping. Since viy = vEy + vdiy ' 0, this forces �vEy to increase in proportion to �vdiy, as seen in
the �gure. The growth of vEy reinforces the bifurcation of the system by suppressing turbulence
in the pedestal everywhere except in a small region surrounding the maximum pressure gradient
where E0

r ' 0.

4 Pedestal Stability

The steepening of the pro�les follo wingthe transition in our simulations is not limited by the
ideal n ! 1 stability boundary. This is shown in Fig. (4), which is a plot of the ion pressure
pro�le at an early time (dashed) and late time (solid, roughly 1000t0 after the transition) in a
simulation with �n = 0:02, �d = 1. The �-value at the cen terof the pedestal, �(x = 0) = 1:6,
is w ellbeyond the �rst stability limit (� = 0:8 at ŝ = 1). Shortly after the time of Fig. (4),
ho w ev er, the onset of a rapidly growing global mode with ky = 0:4 (poloidal wavelength equal to
the box-size) in the E0

r ' 0 region leads �nally to a complete disruption of the pedestal. F urther
simulations sho wthe onset of this mode occurs when � ' 1:6 ' 2�crit in the cen terof the
pedestal, irrespective of the radially averaged value of� at the time of the crash. Global mode
activity begins early in the simulation and appears at �rst in the form of tw ow eaklygro wing
modes. These modes propagate in both the !�e and !�i directions and closely resemble the tw o
dominant linear resistive ballooning modes in our system at ky = 0:4. One of these modes (the
!�i root) even tually transitions to the rapidly growing instability that destroys the pedestal.

The clear violation of the ideal n ! 1 stability limit in our simulations is consistent with
MHD analyses of data from DIIID [16] and other tok amaks, which sho wthe steep gradient
region of an H-mode edge pedestal may well exceed the �rst ideal stability boundary. We o�er
here an explanation for this based on our analysis of a simple ramp-gradient model (discussed
below). That analysis shows long wavelength ideal modes withky < 1=Lp are stable because the
radial localization of the pedestal gradient greatly w eak ensthe drive of suc h modes relative to
the stabilizing contribution of magnetic line-bending. Shorter wavelength modes withky >

�
1=Lp,

on the other hand, are stabilized by a combination of !�i and E �B shear e�ects.
T oexplore the behavior of ideal modes in the presence of a radially localized gradient, w e

consider a simple isothermal system in which the background density gradient (normally n00 = �1
in our normalized units) is �nite only in a localized region �� < x < �, and vanishes elsewhere
(n00 = 0). T obe consistent with the pedestal simulations discussed above, w eassume the
equilibrium E�B and ion-diamagnetic 
ows balance: �00 = ���dn00. As a further simpli�cation
w e eliminate thez-dependence of the con�guration by taking Ĉ = �n00d=dy (i. e. bad curvature
ev erywhere) andŝ = 0, and in analogy to ballooning modes consider modes varying as exp(
t+
ikyy + ikzz) with kz = 2� �xed. Finally, w eexclude resistiv emodes b y dropping the resistiv e
term (J term) in Ohm's law (1), and neglect the (small) terms proportional to �n. With these
simpli�cations, Eqs. (1,2,3) may be combined to yield

@x
h
(

� + 1=�)@x ~f(x)

i
= k2y(

� + 1=�+ n00)

~f(x) (5)

where 
� = 
 + i!�i, !�i = �n00ky��d, ~f = ~�=
�. The solution for ~f(x) that is asymptotically
w ell behaved at large x and contin uousat x = �� is giv enb y ~f = exp(�kyjx � �j) for jxj > �
(n00 = 0), and ~f = cos(kxx)= cos(kx�) for jxj < � (n00 = �1) (ev ensolutions turn out to be the
most unstable). Substituting this form into Eq. (5) for jxj < � yields



� =
k2y

k2y + k2x
� 1

�
(6)
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where kx is determined by integrating Eq. (5) across x = �� as

kx tan(kx�) = ky

 

2 + 1=�



� + 1=�

!
: (7)

In the limit ky� � 1, the kx value of low estorder mode obtained from Eq. (7) is kx � �=(2�),
and so Eq. (6) reduces in this limit to the local result 

� ' 
20 = 1 � 1=� with the usual
stability condition !2

�i > 4
20 . In the long wavelength limit,ky� � 1, on the other hand, Eq. (7)
reduces to k2x ' ky=� (the righ tside of Eq. (7) approaches unity for ky ! 0), and so Eq. (6)
giv es
2 ' ky�=(1 + ky�) � 1=� ' �1=�. That is, for � � 1, ideal modes are always stable
for ky � 1=�, independent of !�i. This stabilization is due physically to the contribution of
magnetic line-bending, which (unlike the ballooning drive term / n00) remains strong in the
exterior region out to large distances x � 1=ky � �.

We no w turn tothe case of arbitrary ky and the n umerical solution of Eqs. (6), (7). These
equations depend only on the quantities kx�, ky�, 
, �, and the normalized ion-diamagnetic
velocit y

v̂�i =
V�it0
�

=
�i
�

 
Ti

Ti + Te

R

2Lp

!
1=2

(Lp = p=jp0j): (8)

Solving Eqs. (6), (7) numerically for �xed values of �, v̂�i, and maximizing the growth rate over
all ky� yields a universal stability diagram shown in Fig. (5) (generalized to allow an arbitrary
ideal MHD �rst stability threshold at � = �crit). At late times in the pedestal simulation
discussed earlier, the parameter v̂�i � 1. Similarly, evaluating v̂�i in the H-mode pedestal based
on recent data in DIIID [16] (� � 6�i � 0:0075R) we obtain v̂�i � 1. F or such v̂�i, Fig. (5) shows
diamagnetic e�ects lead to an up-shift in the stability boundary of the pedestal (solid line) by
more than a factor of tw orelative to the prediction of ideal n!1 theory (dashed line). This
explains why the local maximum value of � in the simulations, and possibly also the experiments
[16], can exceed �crit. F urther,the steepening of the pedestal gradient follo wing the transition
in our simulations leads to a trajectory in the � { v̂�i space of Fig. (5) that even tually intersects
the unstable region near � � 2�crit. Thus, Fig. (5) is also consistent with the apparent onset of
an ideal mode in the simulations at such a value of �.

5 Conclusion

We have argued the L-H transition and the density limit in tokamaks are fundamentally linked
to the dependence of the turbulent edge transport on the parameters � and �d as sho wnin
Fig. (1). While the thresholds shown in the �gure are likely to depend on important factors not
discussed here, in particular Ti=Te, non-circular geometry, and ŝ, w eexpect the framework on
which they are based to be robust. We also �nd the steepening of the pedestal gradient follo wing
the L-H transition in our simulations can substantially exceed the stability limit predicted b y
ideal MHD for n ! 1 ballooning modes. This breakdown of ideal MHD theory is due to the
radially localized nature of the pedestal gradient, as well as the contribution of ion diamagnetic
e�ects.
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FIGURES

FIG. 1. Edge plasma phase space

FIG. 2. �pi(�) for �d = 0:25 (square); �d = 0:5 (triangle); �d = 0:75 (ast); �d = 1 (diam)

FIG. 3. (a) �pi vs. t at �n = 0:01; (b) Ion drifts vs. t: �viy (solid); �vdiy (dash); �vEy (dot)

FIG. 4. Early (dash), late (solid) ion pressure pro�les.

FIG. 5. Stability boundary for ideal curvature driven modes
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