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Abstract

In this paper we present two equilibrium solvers for axisymmetrical toroidal configurations, both

based on the expansion in poloidal angle method. The first one has been conceived as a two-point

boundary value solver in a system of coordinates with straight field lines, while the second one uses a

well-conditioned Cauchy formulation of the problem in a general curvilinear coordinate system. In order

to check the capability of our moment methods to describe equilibrium accurately, a comparison of the

moment solutions with analytical solutions obtained for a Solov’ev equilibrium has been performed.

1. INTRODUCTION

Since most MHD stability codes us a flux coordinate system, a mapping procedure is
required to map various quantities from the (r, z) space to the (ψ, θ) space in the flux coordinate
system, with θ a poloidal angle. This is the inverse equilibrium solution. Several types of inverse
equilibrium solvers (iterative metric methods, direct inverse solution methods and methods of
expansion in poloidal angle) were developed [1, 2].

Solving the elliptic equations as an initial value problem failed due to the ill-posed nature
of the Cauchy problem for elliptic equations. In Ref. [3] a very efficient ”sweeping” technique to
solve the general problem of the evaluation of a ”small” solution in presence of a ”large” solution
is given. In our Cauchy formulation, the solving of the free boundary equilibrium problem is
well-conditioned.

Two equilibrium solvers for axisymmetrical toroidal configurations have been developed,
both based on the expansion in poloidal angle method. The first solver has been conceived for
a two-point boundary value problem, while the second one for a free boundary problem.

2. TWO-POINT BOUNDARY VALUE EQUILIBRIUM SOLVER

In a system of coordinates (a, θ, ζ), with straight field lines on the a =const surface (the
current lines remain ”unrectified”) [4], the contravariant and covariant components of the mag-
netic field and current density reads as
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1Part of this work has been performed during a stay of one of the authors (C.V.Atanasiu) at the Max-Planck-
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where χ and Φ are the poloidal and the toroidal magnetic field fluxes, I and J are the poloidal and
toroidal currents,

√
gr is the Jacobian in the ”rectified” coordinate system, ν and ϕ are periodic

functions of θ and ζ characterizing the charge separation current and the scalar potential of the
irrotational part of the magnetic field, respectively [5, 6].

The equations for the determination of the θ and ζ coordinates are given by relating the
covariant components of the magnetic field to its contravariant components:
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Let us consider a general curvilinear coordinate system (”unrectified”) (a, ω, ζ) with the
connection between the poloidal angles given by θ = ω + Λ(a, ω), with Λ a periodic function of
ω to be determined. In a local coordinate system (x, y, ζ), associated with the magnetic axis of
the equilibrium configuration, we consider the x axis directed along the normal and the y axis
directed along the binormal to the magnetic axis. A coordinate transformation through Fourier
series in ω is given by [7] :

x = ρ(a, ω) cosω, y = ρ(a, ω) sinω, ρ2(a, ω) = a2 + Re

 ∞∑
m=−∞,m6=0

δmeimω

 , (5)

where δm(a) are the complex moments (δm = δ∗−m), and by definition a2 = Φ(a)/πB0, with B0

the toroidal magnetic field at the magnetic axis (a = 0). The metric coefficients gik have been
separated in the form

gik = g
(0)
ik + g

(1)
ik + g

(2)
ik , g̃

(0)
ik = 0, g

(1)
ik = 0, g

(2)
ik 6= 0, (6)

where()(0), ()(1) and ()(2) represent the averaged part, the linear periodic part, and the nonlinear
periodic part, respectively.

Eliminating ϕ from Eqs. (4), separating the different components: those with the super-
scripts (1) in the l.h.s. and those with the superscripts (2) in the r.h.s. of the equations and
identifying each moment m in the l.h.s. of the equations, we have obtained the following system
of complex differential equations

Y
′′
m +

(
3 + 2

µ
′
a

µ

)
Y
′
m

a
− (m2 − 1)

Ym
a2

= −2
Wm

µa2
, (7)

where Ym = δm/a, µ = 1/q is the rotational transform, Wm = Wm(a, µ(a), gik(a, ω), p
′
(a), B0,

R, δl,l 6=m) is a nonlinear functional and prime indicates differentiation with respect to a. By
solving this system as a Cauchy problem for m = 1: δ1(0) = δ

′
1(0) = 0, and as a two-point

boundary value problem for m > 1: δm(0) = 0 and given δm,m6=1(1), one obtains the δm(a)
dependence over the full plasma region and thus the full equilibrium description of the considered
plasma.

3. FREE-BOUNDARY EQUILIBRIUM SOLVER

For nested axisymmetrical flux surfaces, the Grad-Shafranov equation has the well-known
form

1
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This equation can be put in the form(
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where

Ψ = Ψ∗/T, F = µ0F
∗/T, T = 2πR0B0, p = µ0p

∗/B2
0 , H = r/R0,

j(a) = FF
′
/Ψ
′
+ p

′
/Ψ
′
, D = r

′
yω − rωy

′
H = 1 +Kx, K = 1/R0, x = r − R0,

S = p′/Ψ′ (HD −D/H) + jH/D, G = g12/(HD), Q = g22/(HD). (10)

with R0 the radius of the magnetic axis and B0 the magnetic induction at the magnetic axis.
For sake of simplicity, flux surfaces possessing up-down symmetry will be presented only. For
this case it is possible to represent the coordinate transformations as a Fourier series in ω

x =
a2

b
cosω +

∞∑
m=0, m6=1

xm cosmω, y = b sinω, b = λ1/2a, (11)

where x0 is the shift, λ is the ellipticity, x2 is the triungularity, x3 the quadrangularity of the flux
surfaces, etc. By substituting these Fourier series for x into the Grad-Shafranov equation (9),
and retaining only a finite number M of amplitude functions, one obtains an approximate
solution for the flux surface geometry. To identify each moment, we follow the ”classical” way
of averaging Eq. (9) multiplied by cosmω with respect to ω

The Grad-Shafranov equation has to be solved now in its Cauchy formulation: with given
ellipticity and initial conditions xm(0) = 0 at the magnetic axis. One can prove that near the
magnetic axis all the xm, m ≥ 2, moments have a xm ∼ Cma

m dependence, with Cm a free
parameter, while the magnetic shift x0 has an a2 dependence.

For numerical calculations it is more convenient to introduce the following new functions

wm =
xm
am−1

, m ≥ 2. (12)

Therefore, the averaged Eq. (9) can be written in a matrix form

AW
′′

= B, (13)

where the vector W has the form

WT = [Ψ x0 b w2 ... wM ] , (14)

while the aij and bj elements result by averaging. Thus, the Grad-Shafranov equation has been
put in the form of a system of differential equations, appropriate for numerical computation

W
′′

= A−1B = F(a,W,W
′
) (15)

To solve the system of equations (15), the initial conditions for W and W
′

at the magnetic
axis have been specified. For this Cauchy formulation, the problem is well-conditioned: for each
moment wm only the ”large” solutions ∼ am play a role. The ”weak” solutions ∼ a−m, which
could appear due to numerical errors, are ”forced” to zero in the vicinity of the magnetic axis,
while, near the plasma boundary, vanish ”naturally”.

4. EXACT EQUILIBRIUM SOLUTIONS

To check the capability of our moment method to accurately describe equilibria, a com-
parison of the moment solutions with analytical solutions obtained for a quasiuniform current
density distribution (Solov’ev equilibrium) [8]

∂2Ψ

∂z2
+
∂2Ψ
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− 1

r

∂Ψ
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2

dF 2

dΨ
, (16)
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with A and B constants. A particular solution of Eq. (16) is

Ψ =
A

8
r4 +

B

2
z2. (17)

The general solution can be written in the form

Ψ = C0Ψ0 + C1Ψ1 +C2Ψ2 +C3Ψ3 + ... (18)

with C0, C1, C2, ... some constants. By separating the variables, two groups of eigenfunctions
can be distinguished. The first group has the form

Ψ2n =
n−1∑
k=0

αkr
2(n−k)z2k, Ψ2n+1 = z

n−1∑
k=0

βkr
2(n−k)z2k, (19)

with a finite number of terms in the sum for any n, while the αk and βk coefficients are given
by recurrence formulas with α0 = 1 and β0 = 1. The second group has the form

Ψ2n =
n∑
k=0

(ak ln r + bk)z
2(n−k)r2k, Ψ2n+1 = z

n∑
k=0

(ck ln r + dk)z
2(n−k)r2k, (20)

with the ak, bk, ck and ak coefficients determined by recurrence relations, with a0 = 0, b0 = 1,
c0 = 0 and d0 = 1.

With these two groups of solutions, representing a generalized Solov’ev equilibrium, one
can describe a very large range of MHD equilibria.

5. CONCLUSIONS

Two equilibrium solvers for axisymmetrical toroidal configurations have been presented.
The first one has been conceived as a two-point boundary value problem to solve the fixed
boundary equilibrium problem, while the second one uses the Cauchy formulation to solve both
the free boundary problem and the fixed boundary one.

In our Cauchy formulation, the solving of the free boundary equilibrium problem is well-
conditioned: for each moment, only the ”large” solutions play a role, while the ”weak” solutions
are ”forced” to zero or vanish ”naturally”. Thus, the integration of the system of differential
equations, resulting from this formulation, takes place in one ”iteration” only.
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