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Abstract

Nonlinear MHD simulation results of pellet injection show that MHD forces can accelerate
large pellets, injected on the high �eld side of a tokamak, to the plasma center. Magnetic
reconnection can produce a reverse shear q pro�le. Ballooning instability caused by pellets is
also reduced by high �eld side injection. Studies are also reported of the current quench phase
of disruptions, which can cause 3D halo currents and runaway electrons.

1. MHD EFFECTS ON PELLET INJECTION

Nonlinear MHD simulations of pellet injection [1] are in qualitative agreement with recent
ASDEX results [2]. Pellets injected on the inboard, low major radius side tend to penetrate
into the plasma, while pellets injected on the outboard side tend to be expelled. EÆcient pellet
penetration is important for very large size, long pulse tokamaks, such as ITER.

A scaling law is obtained for pellet displacement which agrees well with the simulations. The
MHD simulations were carried out with the new MH3D++ unstructured mesh �nite element
version of the MH3D full MHD code [3].

The simulations are initialized with a two dimensional MHD equilibrium, to which a pellet
is added. The simulations assume that the pellet ionizes and ablates rapidly, compared to the
sound wave transit time scale. The pellet is the source of a plasma cloud, which has a non
uniform density and pressure distribution on magnetic surfaces. The pellet cloud contributes
no energy to the plasma; the 
ux surface averaged pressure pro�le is the same as without the
pellet. The three dimensional perturbed non equilibrium plasma relaxes by parallel streaming of
heat and density, and major radius displacement akin to the Shafranov shift. Driven magnetic
reconnection imparts some non reversibility to the e�ect.

When a pellet is injected into a plasma, the pellet rapidly heats, and ablates. The ablated gas
then ionizes and becomes a cloud of high density plasma, which is cooler than its surroundings.
The plasma cloud moves together with the background plasma, according to the dissipative
MHD equations,
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where p = �T , � is the resistivity and � a scalar viscosity. The density satis�es the continu-
ity equation. A single temperature, the electron temperature, is assumed for simplicity. The
temperature transport parallel to the magnetic �eld, which tends to make the temperature ap-
proximately constant on magnetic �eld lines, is modeled with the \arti�cial sound" method
[1,4].

In principle, the injection process is adiabatic, imparting no energy to the plasma. The
temperature is constant on 
ux surfaces before and after the pellet injection. After injection,
the temperature is lower on 
ux surfaces that intersect the pellet cloud. To calculate the new
temperature, adiabaticity implies that the 
ux surface average < p > of the pressure p remains
the same, before and after the pellet injection. The pellet - perturbed density Æ� is not constant
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on a 
ux surface. Hence p is far from constant on 
ux surfaces, and the plasma is out of MHD
equilibrium.

The subsequent motion of the plasma was studied in numerical simulations. The computa-
tions were done on a poloidal mesh of about 2000 grid points, and at least 9 toroidal Fourier
harmonics in addition to the n = 0 mode. The plasma is assumed bounded by a rigid conducting
wall. An initial equilibrium was prepared, starting with a prescribed initial, non equilibrium
state, and evolving in 2D, removing kinetic energy, until an equilibrium is approached. In the
following cases, the equilibrium has a rotational transform at the magnetic axis q0 = 1:7; ini-
tial peak � = 0:06a=R; and the aspect ratio R=a = 5: In addition, the pressure is boosted an
additional constant amount with � = 0:3a=R: This additional constant pressure enhances the
sound speed, while having no e�ect on the background magnetic equilibrium. This makes the
total peak � = 0:36a=R: The initial equilibrium density is constant.

(a) (b) (c)

Figure 1: (a) initial density contours showing the pellet in the poloidal plane � = 0; at the
outboard side of the equilibrium. (b) density contours at t = 96�A as the pellet moves outward
and spreads poloidally. (c) density isoplot at t = 51�A showing the pellet cloud spreading out
along the magnetic �eld.

The initial equilibrium was perturbed with a density blob representing the ionized pellet
ablation cloud. In the following, the blob's peak density is 15 times the background density.
The blob is cigar shaped, with a circular cross section in the poloidal plane, and a dependence
on toroidal angle � proportional to � cos4(�=2): The density perturbation extends roughly
1=4 of the way around the torus. The model ablation cloud is considerably less localized than
in experiments. This was done because of constraints on numerical resolution, that should
be relaxed in future simulations. Similarly the density contrast is less than in experiments.
However, the total mass of the pellet, which is a few percent of the total background plasma, is
comparable to experimental cases. The e�ects demonstrated here are expected to be suÆciently
robust to qualitatively account for experimental observations.

Since the 
ux surface averaged pressure < p > is the same with and without the pellet,
there is a tendency to return to the initial equilibrium state after the pellet cloud spreads out
on magnetic �eld lines. However, when reconnection occurs, the plasma tends toward a new
equilibrium.

All other things being equal, the 3D evolution depends on the initial location of the pellet
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perturbation in the poloidal plane, as well as the pellet density. In the case of outboard injection,
the initial density � is shown in Fig.1(a), in the plane � = 0 where the density is a maximum.
The pellet is located at the outboard midplane. The density contours at t = 96�A; � = 0 are
shown in Fig.1(b), where �A = R=vA; the toroidal Alfv�en transit time, R is the major radius,
and vA is the Alfv�en speed. The density has moved both outwards in major radius, as well as
spreading out laterally. Part of the pellet also appears on the inboard side. This is caused by
spreading along the magnetic �eld, as shown in an isoplot of the density at t = 51�A; in Fig.1(c).

(a) (b)

Figure 2: (a) initial density contours showing the pellet in the poloidal plane � = 0; at the
inboard side of the equilibrium. (b) density contours at t = 65�A as the pellet penetrates to the
plasma center.

In the case of inboard injection, the initial density blob is located at the inboard midplane,
shown in in Fig.2(a). The density at t = 65�A; � = 0; is shown in Fig.2(b). The pellet has
reached the plasma center. To get to this state, the density blob had to cut magnetic �eld
lines, by the process of driven magnetic reconnection. Accordingly, the run was performed with
resistivity � = 2� 10�4a2vA=R: The e�ect requires that the parallel sound transit time is longer
than or comparable to the reconnection time. This seems to be the case in present day large
tokamaks, for which the reconnection rate is anomalous. The q( ) pro�les at the times shown
in Fig.2, are shown in Fig.3(a). The pellet has reconnected magnetic 
ux to produce a reversed
magnetic shear pro�le. The q( ) pro�le at t = 65�A was generated using the toroidally averaged
magnetic 
ux  ; but at this time the magnetic asymmetry is small. This process might be
used to maintain a reversed shear con�guration, as well as for deep fueling of ITER like large
tokamaks, where pellets are expected to be ablated close to the surface.

The displacement of the pellet can be measured by calculating the change in 
ux surface
Æ = of the peak of the 
ux surface averaged density < � >; using the toroidally averaged
magnetic 
ux. An approximate expression for the maximum pellet displacement can be derived
[1]
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where Æp is the pellet pressure, Æa is the pellet radius, Æ� measures the extent of the pellet
cloud in the toroidal angle �; � = 2p0=B

2; and p0 is the background pressure. Plugging in
�R=a = :30; Æp=p0 = 10; Æa = :2a; q = 2:0; and Æ� = �=2; gives the dotted straight line in
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Figure 3: (a) q( ) pro�le at times (1)t = 0; (2)t = 65�A: Penetration of the pellet has reconnected
the magnetic �eld and produced a reversed shear q pro�le. (b) theory and simulation results of
maximum pellet displacement as a function of Æ�=� cos �; where � is the poloidal angle of the
pellet's initial position. Outboard is � = 0; inboard is � = �:

Fig.2(c). The data is collected in Fig.3(b), which plots the maximum shift Æ = as a function
of (Æp=p0) cos �: Several cases, marked with un�lled circles, were initialized with a simple non
adiabatic model, in which the temperature was not modi�ed to give an invariant pressure pro�le.
The maximum displacement (3) is proportional to Æp(Æa)2; which is proportional to the pellet
mass [1]. The left most point in Fig.2(c), the inboard injection case, has the maximum possible
deviation Æ = ; the pellet having penetrated to the center.

2. MHD DISRUPTIONS CAUSED BY PELLET INJECTION

Inboard pellet injection also confers advantages with regards to MHD stability of the back-
ground plus pellet system. Because of the high local � at the pellet cloud, the system may be
unstable to pressure driven modes, even though the background equilibrium is stable. Pellets
on the outboard side tend to be more destabilizing, because the pellet pressure gradient and the
equilibrium gradient add on the large R side of the equilibrium. With inboard injection, the
pressure gradients oppose one another. In addition, on the low �eld side, the velocity pertur-
bations resemble typical moderate wavelength ballooning modes. They produce disruptions in
nonlinear simulations. On the high �eld side, the velocity perturbations are much more localized.
They might simply cause the breakup and more rapid dispersion of the pellet cloud.

A high � equilibrium was produced, with peak � = :25a=R. The equilibrium becomes
unstable if � is increased to :30a=R: The q pro�le varied from 1:7 on axis to 3:7 at the wall, and
R=a = 3: The D shaped boundary was the same as in the previous section.

This was modi�ed by the presence of a pellet perturbation. The density perturbation had
localization similar to that of the previous section, but now varied as cos2 � for improved nu-
merical resolution. The amplitude of the density perturbation was varied, with the temperature
and density perturbations initialized as before. This time, the low toroidal mode number part of
the MHD equations were not allowed to evolve, only modes with mode number n > 4: This was
done to try to separate the equilibrium evolution, described above, from higher mode number,
faster growing instabilities.

Inboard and outboard pellet perturbations were centered on approximately the same 
ux
surface, so that a given density perturbation produced the same amplitude pressure perturbation.
An outboard pellet is considered in Fig.4. The initial pressure pro�le as a function of major
radius, p(R); through the maximum of the pellet pressure perturbation, is shown in Fig.4(a).
The density perturbation is Æ�=� = 15: The shape of the unstable modes is shown in Fig.4(b)
showing contours of electrostatic potential for an outboard pellet perturbation. This mode has
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(a) (b)

Figure 4: (a) pressure as a function of major radius through the center of the pellet. (b) Contours
of electrostatic potential for outboard pellet.

a mixture of toroidal mode numbers, centered at n = 5: The mode has a ballooning structure,
and is toroidally localized, but poloidally less localized than the following inboard injection case.
This is similar to nonlinear destabilization by n=1 pressure perturbations during disruptions.[5]

In comparison, an inboard pellet is shown in Fig.5. The pressure pro�le is shown in Fig.5(a).
The density perturbation is twice as large, Æ�=� = 30; and so is the pressure perturbation. A
perturbation of the same amplitude as in Fig.4(a) is marginally unstable for an inboard pellet.
The electrostatic potential contours of the unstable mode are shown in Fig.5(b). The mode is
more localized to the pellet, because outside the pellet, the pressure gradient is in the same
direction as the curvature, which is stabilizing. This di�erence appears to persist in nonlinear
runs, using the pellet and linear modes as perturbations of the background equilibrium. In this
case too, inboard injection is more favorable, because the instability threshold Æ�=� is higher,
and because the unstable modes are more localized.

3. DISRUPTIONS, HALO CURRENTS, AND RUNAWAYS

Another category of work with MH3D++, which is relevant to ITER and other large toka-
maks, concerns halo currents and runaways generated during the current quench phase following
major disruptions. Halo currents caused by 3D kink modes in the latter phases of a disruption
could cause serious mechanical load problems. In addition, runaway electron currents could be
channeled to the wall by the 3D magnetic �eld perturbations, causing wall damage. Disruption
simulations are being carried out which have both a self consistent three dimensional resistivity
proportional to the temperature to the �3=2 power, as well as a thin resistive shell through
which the plasma magnetic �eld is coupled to an external vacuum �eld. Runaway generation
by avalanche is also modeled based on Ref. 6.

The plasma is bounded by an inner, thin, resistive shell of thickness Æ and resistivity �w:
Surrounding this is an outer vacuum region, enclosed by an outer, conducting wall. In the
vacuum region, the magnetic �eld is source free and determined by boundary conditions on the
outer and inner walls. The vacuum boundary condition on the inner wall is found by integrating
r � B across the thin shell, n̂ � [[B]] = 0; where the double bracket indicates a jump across
the thin wall, and n̂ is the unit normal (pointing outward from the plasma.) The boundary
conditions on the plasma side of the boundary are given by the tangential components of the
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Figure 5: (a) pressure as a function of major radius through the center of the pellet. (b) Contours
of electrostatic potential for inboard pellet.

electric �eld, E = �J: In the wall, J = (1=Æ)n̂ � [[B]]; so the electric �eld at the plasma edge is
E = (�w=Æ)n̂� [[B]]:

The initial state is a resistive equilibrium with a current channel, having q = :8 on axis.
The conducting shell has an average radius about 1:5 times that of the thin resistive shell. The
equilibrium is unstable to an n = 1 kink. As the kink evolves nonlinearly, the radial component
of the poloidal current is measured. The radial component is typically only 10% of the tangential
component at the wall. The peak radial poloidal current is about 10% of the initial toroidal
current on axis.

When the runaways are included, the results are similar. The evolution time is somewhat
slowed, as the runaway parameter is increased. The model used is based on a local approximation
of equations given in [6], with the convection term and parallel propagation terms added;

Ek = �(jk � ecnR) (4)

@nR
@t

= 
RnR

�
Ek
Ec

� 1

�
f(
Ek
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)�r � (nRV?) + cB � rv=B (5)

@v

@t
= cB � r(nR=B) (6)

where 
R = eEc=(mc ln�) and f(x) = [1� 1=x+ c2=(x
2 + c3)]

�1=2: The constant Ec =
4�e3ne ln�=(mc

2) is here normalized as Ec = ��B=(cR); with � chosen such that the avalanche
time 1=
R = 0:03�R: The \arti�cial sound" terms, eq. 6 and the last term of eq. 5, represent
propagation along the �eld lines with speed of light c.[4]

In the following simulation, the resistive time is �R = 0:5�104�A: The wall time �w = :002�R;
where �w = Æa=�w; with Æ=a the ratio of wall thickness to plasma radius. The time scales are in
the order �R >> 1=
R >> �w >> �A:

A test simulation is shown in Fig.6. The initial toroidal current density j� contours are
shown in Fig.6(a), in the poloidal plane � = 0: At time t = 18:5�A; which is far into the
nonlinear evolution, the j� contours at � = 0 appear as in Fig.6(b). The peak current is on
the wall, where the peak value of the normal component of poloidal current jn is also located.
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(a) (b) (c)

Figure 6: (a) Initial toroidal current contours in a kink unstable resistive equilibrium. (b)
Contours of current density in nonlinear phase of instability. (c) Time history of: peak n=0
component of radial current at the wall (short - dashed line), peak n=0 component of runaway
toroidal current (long - dashed line), average toroidal current density (solid line).

A time history of the peak n = 0 component of jn; jR = ecnR, and the poloidal average of the
n = 0 component of j� are shown in Fig.6(c), where n is toroidal mode number. The ratio
of peak n = 0 and n = 1 components of radial poloidal current at the wall is close to unity,
so that the peaking factor is about 2. Contours of the runaway part of the current are shown
in Fig.7(a). In this simulation, the parallel propagation terms have not been included. These
terms would equilibrate the runaway density on magnetic 
ux surfaces, and cause losses along
open �eld lines. The total runaway current fraction in this simulation is about 15%.

4. MH3D++ UNSTRUCTURED MESH CODE

The most eÆcient way to represent general geometric e�ects is to use an unstructured nu-
merical mesh. MH3D++ is the unstructured mesh �nite element version of the MH3D code.
The MH3D++ code is a part of the larger M3D code package[3], so that non-MHD kinetic
e�ects can be included in the future simulations. The currently available physics models of the
M3D project are MHD, two-
uids, and gyrokinetic ion/
uid electron hybrid models.

MH3D++ replaces the original �nite di�erence - spectral discretization, with an unstructured
mesh and �nite element [7] - spectral discretization. The unstructured mesh is made with
triangular and quadrilateral cells, as shown in Fig.7(b). The MHD equations are discretized
with piecewise linear �nite elements, The di�erential operators in the equations become sparse
matrices involving integrals of the basis functions and their derivatives. The �nite element
unstructured mesh discretization has been incorporated into MH3D++ with an object oriented
approach. The unstructured mesh objects generate an unstructured mesh and produce the
sparse matrices which implement di�erential operators including gradient, curl, and divergence,
as well as various Poisson solvers based on an Incomplete Cholesky Conjugate Gradient solver.
Also included are mesh operations needed for line integration and contour plots. Routines
which perform di�erential operations and solve elliptic PDEs are encapsulated in C++ objects
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(a) (b)

Figure 7: (a) Contours of runaway current in nonlinear phase of instability. (b) Poloidal un-
structured mesh with 1/4 of the mesh points used in the simulations.

to isolate the �nite element operations from higher level routines. In this way, the code can be
run either in unstructured or in structured mesh versions, which still holds advantages for some
speci�c problems.

An important feature of this approach is that most of the MH3D code is retained. This
allows direct benchmarking of the two versions against each other. Equilibrium and stability
calculations using the two versions have been compared, and the MH3D++ and MH3D results
converge to each other. With the object oriented approach, it is straightforward to make arrays
of mesh objects. Two mesh objects were used in the simulations of the previous section: one for
the plasma interior mesh, and one for the vacuum region.

The MH3D++ code has been given an option of a �nite di�erence discretization in the
toroidal direction, replacing the spectral representation. This permits eÆcient parallelization.
The next step, using an array of mesh objects to build a three dimensional mesh, has been
carried out and is being tested for resistive, nonlinear stellarator simulations.
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